II. Recovering Risk-neutral Densities from Option Prices
|
|
|
- Lauren McKinney
- 10 years ago
- Views:
Transcription
1 II. Recovering Risk-neutral Densities from Option Prices Xiaoquan Liu Department of Statistics and Finance University of Science and Technology of China Spring 2011 Risk-neutral Densities (USTC) 1 / 12
2 Outline risk-neutral densities (RND) and physical distributions methods to recover RND Melick and Thomas (1997) Risk-neutral Densities (USTC) 2 / 12
3 Risk-neutral densities risk-neutral densities are asset price distributions in a risk-neutral world at a future point of time estimated today; also referred to as risk-neutral PDF (probability density functions) as investors are risk-neutral, asset prices and payoffs are discounted by the riskfree rate in discrete time, this can be written as follows where ˆπ denotes risk-neutral probabilities p i = 1 ˆπ s X is 1 + r F in continuous time, option prices can be expressed as follows where f (S T ) is the RND, c(x ) = e r(t t) f (S T )(S T X )ds T X p(x ) = e r(t t) X s f (S T )(X S T )ds T Risk-neutral Densities (USTC) 3 / 12
4 Physical distributions physical distributions are also asset price distributions and ones really exist in the market they contain investor risk attitude they are not easy to use because we need to discount asset returns more heavily in bad states of the world but to do so we need to know investor risk aversion and risk premium compared with physical distribution, RND assigns higher probability to bad states of the world as a way to incorporate risk aversion Risk-neutral Densities (USTC) 4 / 12
5 RND and physical distributions for FTSE100 index options estimated on 21 March probability index levels RND physical distribution
6 RND and option prices Breeden and Litzenberger (1978) first show that there is a one-to-one relation between option prices and RND c(x ) X = e rt K f (S t )ds T 2 c(x ) X 2 = e rt f (X ) as proper distributions, RND must be non-negative and integrate to 1 as risk-neutral price distributions, the mean of RND is the futures price of the asset (F = E[S T ]) ideally, there is a continuum of strike prices from 0 to infinity this is clearly not the case in the market so interpolation and extrapolation are needed between strike prices and outside the range of [X min, Xmax] Risk-neutral Densities (USTC) 5 / 12
7 RND and option prices because options are inherently forward-looking, they prove to be an ideal asset for estimating investor expectation of future price movements once accurately estimated, RND are very useful as they can be used to (1) price other derivatives written on the same asset; (2) hedge derivatives written on the asset; (3) used by central banks and policy-makers in adjusting interest rates, exchange rates, etc Risk-neutral Densities (USTC) 6 / 12
8 Methods to recover RND parametric methods typically assume a certain parametric function for RND, including lognormal or a mixture of lognornal functions; they have the advantage that parameters may contain economic information non-parametric methods aim to fit the distribution using polynomials or other expansions; they have the advantage that they are normally more accurate fitting the volatility smile with polynomials (Shimko, 1993) fitting the volatility smile with cubic spline (Bliss and Panigirtzoglou, 2002) quadratic approximation (Jackwerth and Rubinstein, 1996) Edgeworth expansions and hermite polynomials (Jondeau and Rockinger, 2000) and the list goes on... Risk-neutral Densities (USTC) 7 / 12
9 Volatility Smile days 115 days 206 days 297 days implied σ K/F 1 Risk-neutral Densities (USTC) 8 / 12
10 Melick and Thomas (1997) assume a mixture of 3 lognormal distributions as functional form for RND, which is much more flexible than the single lognormal assumption in the BS the RND is expressed as follows f MLN (x θ) = π 1 f (x F 1, σ 1, T ) + π 2 f (x F 2, σ 2, T ) + π 3 f (x F 3, σ 3, T ) where f (x F i, σ i, T ) is a lognormal distribution and θ is the parameter vector constraints include π 1 F 1 + π 2 F 2 + π 3 F 3 = F, 0 π i 1, and 3 i=1 π i = 1 Risk-neutral Densities (USTC) 9 / 12
11 Melick and Thomas (1997) correspondingly, the option pricing formula is a mixture of three BS formula c(x θ, r, T ) = π 1 c BS (F 1, T, X, r, σ 1 ) + π 2 c BS (F 2, T, X, r, σ 2 ) + π 3 c BS (F 3, T, X, r, σ 3 ) to estimate the parameters we minimize 1 N N ( cmkt (X i ) c(x i θ) ) 2, 1 i N i=1 where N is the number of different strike prices in a trading day in Melick and Thomas (1997), it is slightly different as they use American options so they specify a rather tight upper and lower bounds for option prices Risk-neutral Densities (USTC) 10 / 12
12 Melick and Thomas (1997) data are daily settlement prices for crude oil futures options from 2 July 1990 to 30 March 1991 this sample period covers the Persian Gulf crisis between Jan to Feb 1991 (Iraq invaded Kuwait in August 1990) during the crisis, market participants expect 3 outcomes (1) a return to pre-crisis conditions, e.g. Iraq withdraw peacefully from Kuwait; (2) a severe disruption to the oil supplies, e.g. damage to Saudi oil facilities; (3) a continuation of unsettled conditions, e.g. a prolonged stalemate in which (1) or (2) may eventually occur hence market participants expect oil prices to be described by a tri-modal distribution; as news hit the market, investors revise their expectation which is reflected in the shape of RND see Figures 7 and 8 in Section C Selected Events Risk-neutral Densities (USTC) 11 / 12
13 To recap risk-neutral densities are future price distributions estimated today in a risk-neutral world, hence we can use them to weigh future payoff and discount at the riskfree rate options provide an ideal asset to infer RND as they are by definition forward-looking a variety of methods have been proposed in the literature to estimate RND and the list is still expanding accurately inferred RND can provide important information for investors, central banks and investment banks hence they are monitored closely Risk-neutral Densities (USTC) 12 / 12
NOTES ON THE BANK OF ENGLAND OPTION-IMPLIED PROBABILITY DENSITY FUNCTIONS
1 NOTES ON THE BANK OF ENGLAND OPTION-IMPLIED PROBABILITY DENSITY FUNCTIONS Options are contracts used to insure against or speculate/take a view on uncertainty about the future prices of a wide range
Recovering Risk-Neutral Probability Density Functions from Options Prices using Cubic Splines and Ensuring Nonnegativity
Recovering Risk-Neutral Probability Density Functions from Options Prices using Cubic Splines and Ensuring Nonnegativity Ana Margarida Monteiro Reha H. Tütüncü Luís N. Vicente Abstract We present a new
Generating Options-Implied Probability Densities to Understand Oil Market Events
Board of Governors of the Federal Reserve System International Finance Discussion Papers Number 1122 October 2014 Generating Options-Implied Probability Densities to Understand Oil Market Events Deepa
Retrieving Risk Neutral Moments and Expected Quadratic Variation from Option Prices
Retrieving Risk Neutral Moments and Expected Quadratic Variation from Option Prices by Leonidas S. Rompolis and Elias Tzavalis Abstract This paper derives exact formulas for retrieving risk neutral moments
Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.
Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards
How Useful are Implied Distributions? Evidence from Stock-Index Options
How Useful are Implied Distributions? Evidence from Stock-Index Options by Gordon Gemmill and Apostolos Saflekos * Abstract Option prices can be used to construct implied (risk-neutral) distributions,
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes consider the way put and call options and the underlying can be combined to create hedges, spreads and combinations. We will consider the
No-Arbitrage Condition of Option Implied Volatility and Bandwidth Selection
Kamla-Raj 2014 Anthropologist, 17(3): 751-755 (2014) No-Arbitrage Condition of Option Implied Volatility and Bandwidth Selection Milos Kopa 1 and Tomas Tichy 2 1 Institute of Information Theory and Automation
Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12
Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond
Consistent Pricing of FX Options
Consistent Pricing of FX Options Antonio Castagna Fabio Mercurio Banca IMI, Milan In the current markets, options with different strikes or maturities are usually priced with different implied volatilities.
Pricing Barrier Options under Local Volatility
Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: [email protected], Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly
Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12.
Week 9 Binomial Trees : Hull, Ch. 12. 1 Binomial Trees Objective: To explain how the binomial model can be used to price options. 2 Binomial Trees 1. Introduction. 2. One Step Binomial Model. 3. Risk Neutral
Pricing Kinis and Risk Anecdities
Rare events and investor risk aversion: Evidence from crude oil options 1 Marie-Hélène Gagnon Gabriel J.Power Abstract: The effect of four distinct events on investor risk aversion is evaluated using options
Option pricing. Vinod Kothari
Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate
Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13
Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The Black-Scholes-Merton Random Walk Assumption
Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options
Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder
Chapter 1: Financial Markets and Financial Derivatives
Chapter 1: Financial Markets and Financial Derivatives 1.1 Financial Markets Financial markets are markets for financial instruments, in which buyers and sellers find each other and create or exchange
Option Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
Introduction to Options. Derivatives
Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived
ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 10, 11, 12, 18. October 21, 2010 (Thurs)
Problem ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 0,, 2, 8. October 2, 200 (Thurs) (i) The current exchange rate is 0.0$/. (ii) A four-year dollar-denominated European put option
The Black-Scholes pricing formulas
The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock
On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price
On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.
Two-State Options. John Norstad. [email protected] http://www.norstad.org. January 12, 1999 Updated: November 3, 2011.
Two-State Options John Norstad [email protected] http://www.norstad.org January 12, 1999 Updated: November 3, 2011 Abstract How options are priced when the underlying asset has only two possible
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative
Portfolio Optimization within Mixture of Distributions
Portfolio Optimization within Mixture of Distributions Rania Hentati Kaffel, Jean-Luc Prigent To cite this version: Rania Hentati Kaffel, Jean-Luc Prigent. Portfolio Optimization within Mixture of Distributions.
Finance 436 Futures and Options Review Notes for Final Exam. Chapter 9
Finance 436 Futures and Options Review Notes for Final Exam Chapter 9 1. Options: call options vs. put options, American options vs. European options 2. Characteristics: option premium, option type, underlying
An Introduction to Exotic Options
An Introduction to Exotic Options Jeff Casey Jeff Casey is entering his final semester of undergraduate studies at Ball State University. He is majoring in Financial Mathematics and has been a math tutor
Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.
Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.
DISTRIBUTION-BASED PRICING FORMULAS ARE NOT ARBITRAGE-FREE DAVID RUHM DISCUSSION BY MICHAEL G. WACEK. Abstract
DISTRIBUTION-BASED PRICING FORMULAS ARE NOT ARBITRAGE-FREE DAVID RUHM DISCUSSION BY MICHAEL G. WACEK Abstract David Ruhm s paper is a welcome addition to the actuarial literature. It illustrates some difficult
Options on Leveraged ETFs: A Window on Investor Heterogeneity
Draft of Jan. 31, 2015 Comments welcome Options on Leveraged ETFs: A Window on Investor Heterogeneity Stephen Figlewski* and Muhammad Fahd Malik** * Professor of Finance New York University Stern School
Preliminary Version { Comments Welcome
Option Pricing under the Mixture of Distributions Hypothesis Marco Neumann Diskussionspapier Nr. 208 First Version: December 14, 1997 Current Version: June 27, 1998 Preliminary Version { Comments Welcome
Finance 400 A. Penati - G. Pennacchi. Option Pricing
Finance 400 A. Penati - G. Pennacchi Option Pricing Earlier we derived general pricing relationships for contingent claims in terms of an equilibrium stochastic discount factor or in terms of elementary
Package RND. R topics documented: February 19, 2015
Type Package Title Risk Neutral Density Extraction Package Version 1.1 Date 2014-03-21 Author Kam Hamidieh Package RND February 19, 2015 Maintainer Kam Hamidieh This
Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008
: A Stern School of Business New York University Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008 Outline 1 2 3 4 5 6 se notes review the principles underlying option pricing and some of
Do option prices support the subjective probabilities of takeover completion derived from spot prices? Sergey Gelman March 2005
Do option prices support the subjective probabilities of takeover completion derived from spot prices? Sergey Gelman March 2005 University of Muenster Wirtschaftswissenschaftliche Fakultaet Am Stadtgraben
Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)
Copyright 2003 Pearson Education, Inc. Slide 08-1 Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared
Financial Options: Pricing and Hedging
Financial Options: Pricing and Hedging Diagrams Debt Equity Value of Firm s Assets T Value of Firm s Assets T Valuation of distressed debt and equity-linked securities requires an understanding of financial
Lecture 9. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 8
Lecture 9 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 8 Lecture 9 1 Risk-Neutral Valuation 2 Risk-Neutral World 3 Two-Steps Binomial
Lecture 8. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 1
Lecture 8 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 8 1 One-Step Binomial Model for Option Price 2 Risk-Neutral Valuation
LOG-TYPE MODELS, HOMOGENEITY OF OPTION PRICES AND CONVEXITY. 1. Introduction
LOG-TYPE MODELS, HOMOGENEITY OF OPTION PRICES AND CONVEXITY M. S. JOSHI Abstract. It is shown that the properties of convexity of call prices with respect to spot price and homogeneity of call prices as
Investors attitude towards risk: what can we learn from options? 1
Nikola Tarashev +41 61 280 9213 [email protected] Kostas Tsatsaronis +41 61 280 8082 [email protected] Dimitrios Karampatos +41 61 280 8324 [email protected] Investors attitude towards
Black-Scholes Equation for Option Pricing
Black-Scholes Equation for Option Pricing By Ivan Karmazin, Jiacong Li 1. Introduction In early 1970s, Black, Scholes and Merton achieved a major breakthrough in pricing of European stock options and there
Factors Affecting Option Prices
Factors Affecting Option Prices 1. The current stock price S 0. 2. The option strike price K. 3. The time to expiration T. 4. The volatility of the stock price σ. 5. The risk-free interest rate r. 6. The
Lecture 21 Options Pricing
Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Put-call
Exam Introduction Mathematical Finance and Insurance
Exam Introduction Mathematical Finance and Insurance Date: January 8, 2013. Duration: 3 hours. This is a closed-book exam. The exam does not use scrap cards. Simple calculators are allowed. The questions
Options: Valuation and (No) Arbitrage
Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial
FX Options and Smile Risk_. Antonio Castagna. )WILEY A John Wiley and Sons, Ltd., Publication
FX Options and Smile Risk_ Antonio Castagna )WILEY A John Wiley and Sons, Ltd., Publication Preface Notation and Acronyms IX xiii 1 The FX Market 1.1 FX rates and spot contracts 1.2 Outright and FX swap
Lecture 7: Bounds on Options Prices Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 7: Bounds on Options Prices Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Option Price Quotes Reading the
Implied Volatility Surface
Implied Volatility Surface Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 16) Liuren Wu Implied Volatility Surface Options Markets 1 / 18 Implied volatility Recall
Option Portfolio Modeling
Value of Option (Total=Intrinsic+Time Euro) Option Portfolio Modeling Harry van Breen www.besttheindex.com E-mail: [email protected] Introduction The goal of this white paper is to provide
Pricing multi-asset options and credit derivatives with copulas
Pricing multi-asset options and credit derivatives with copulas Séminaire de Mathématiques et Finance Louis Bachelier, Institut Henri Poincaré Thierry Roncalli Groupe de Recherche Opérationnelle Crédit
Part V: Option Pricing Basics
erivatives & Risk Management First Week: Part A: Option Fundamentals payoffs market microstructure Next 2 Weeks: Part B: Option Pricing fundamentals: intrinsic vs. time value, put-call parity introduction
Options Pricing with Skewness and Kurtosis Adjustments
Options Pricing with Skewness and Kurtosis Adjustments N. S. Nilakantan, Faculty, KJSIMSR, Mumbai, India. Email: [email protected] Achal Jain, PGFS 2012-14, KJSIMSR, Mumbai, India. Email: [email protected]
One Period Binomial Model
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 One Period Binomial Model These notes consider the one period binomial model to exactly price an option. We will consider three different methods of pricing
BINOMIAL OPTION PRICING
Darden Graduate School of Business Administration University of Virginia BINOMIAL OPTION PRICING Binomial option pricing is a simple but powerful technique that can be used to solve many complex option-pricing
How To Price Garch
2011 3rd International Conference on Information and Financial Engineering IPEDR vol.12 (2011) (2011) IACSIT Press, Singapore A Study on Heston-Nandi GARCH Option Pricing Model Suk Joon Byun KAIST Business
Chapter 13 The Black-Scholes-Merton Model
Chapter 13 The Black-Scholes-Merton Model March 3, 009 13.1. The Black-Scholes option pricing model assumes that the probability distribution of the stock price in one year(or at any other future time)
Convenient Conventions
C: call value. P : put value. X: strike price. S: stock price. D: dividend. Convenient Conventions c 2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 168 Payoff, Mathematically Speaking The payoff
UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014. MFE Midterm. February 2014. Date:
UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014 MFE Midterm February 2014 Date: Your Name: Your Equiz.me email address: Your Signature: 1 This exam is open book,
Chapter 3: Commodity Forwards and Futures
Chapter 3: Commodity Forwards and Futures In the previous chapter we study financial forward and futures contracts and we concluded that are all alike. Each commodity forward, however, has some unique
FINANCIAL ECONOMICS OPTION PRICING
OPTION PRICING Options are contingency contracts that specify payoffs if stock prices reach specified levels. A call option is the right to buy a stock at a specified price, X, called the strike price.
American and European. Put Option
American and European Put Option Analytical Finance I Kinda Sumlaji 1 Table of Contents: 1. Introduction... 3 2. Option Style... 4 3. Put Option 4 3.1 Definition 4 3.2 Payoff at Maturity... 4 3.3 Example
Options. Moty Katzman. September 19, 2014
Options Moty Katzman September 19, 2014 What are options? Options are contracts conferring certain rights regarding the buying or selling of assets. A European call option gives the owner the right to
IAA PAPER VALUATION OF RISK ADJUSTED CASH FLOWS AND THE SETTING OF DISCOUNT RATES THEORY AND PRACTICE
Introduction This document refers to sub-issue 11G of the IASC Insurance Issues paper and proposes a method to value risk-adjusted cash flows (refer to the IAA paper INSURANCE LIABILITIES - VALUATION &
第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model
1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model
A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model Fabio Mercurio Financial Models, Banca IMI Abstract In this document we derive some fundamental relationships
A Day in the Life of a Trader
Siena, April 2014 Introduction 1 Examples of Market Payoffs 2 3 4 Sticky Smile e Floating Smile 5 Examples of Market Payoffs Understanding risk profiles of a payoff is conditio sine qua non for a mathematical
The Binomial Option Pricing Model André Farber
1 Solvay Business School Université Libre de Bruxelles The Binomial Option Pricing Model André Farber January 2002 Consider a non-dividend paying stock whose price is initially S 0. Divide time into small
10 Binomial Trees. 10.1 One-step model. 1. Model structure. ECG590I Asset Pricing. Lecture 10: Binomial Trees 1
ECG590I Asset Pricing. Lecture 10: Binomial Trees 1 10 Binomial Trees 10.1 One-step model 1. Model structure ECG590I Asset Pricing. Lecture 10: Binomial Trees 2 There is only one time interval (t 0, t
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008. Options
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes describe the payoffs to European and American put and call options the so-called plain vanilla options. We consider the payoffs to these
PRICING OPTIONS USING IMPLIED TREES: EVIDENCE FROM FTSE-100 OPTIONS
PRICING OPTIONS USING IMPLIED TREES: EVIDENCE FROM FTSE-100 OPTIONS KIAN GUAN LIM* DA ZHI Previously, few, if any, comparative tests of performance of Jackwerth s (1997) generalized binomial tree (GBT)
Lecture 5: Put - Call Parity
Lecture 5: Put - Call Parity Reading: J.C.Hull, Chapter 9 Reminder: basic assumptions 1. There are no arbitrage opportunities, i.e. no party can get a riskless profit. 2. Borrowing and lending are possible
Caput Derivatives: October 30, 2003
Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor
Option Properties. Liuren Wu. Zicklin School of Business, Baruch College. Options Markets. (Hull chapter: 9)
Option Properties Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 9) Liuren Wu (Baruch) Option Properties Options Markets 1 / 17 Notation c: European call option price.
EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines
EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation
Lecture Notes: Basic Concepts in Option Pricing - The Black and Scholes Model
Brunel University Msc., EC5504, Financial Engineering Prof Menelaos Karanasos Lecture Notes: Basic Concepts in Option Pricing - The Black and Scholes Model Recall that the price of an option is equal to
9 Hedging the Risk of an Energy Futures Portfolio UNCORRECTED PROOFS. Carol Alexander 9.1 MAPPING PORTFOLIOS TO CONSTANT MATURITY FUTURES 12 T 1)
Helyette Geman c0.tex V - 0//0 :00 P.M. Page Hedging the Risk of an Energy Futures Portfolio Carol Alexander This chapter considers a hedging problem for a trader in futures on crude oil, heating oil and
9 Basics of options, including trading strategies
ECG590I Asset Pricing. Lecture 9: Basics of options, including trading strategies 1 9 Basics of options, including trading strategies Option: The option of buying (call) or selling (put) an asset. European
Mathematical Finance
Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European
a. What is the portfolio of the stock and the bond that replicates the option?
Practice problems for Lecture 2. Answers. 1. A Simple Option Pricing Problem in One Period Riskless bond (interest rate is 5%): 1 15 Stock: 5 125 5 Derivative security (call option with a strike of 8):?
