Seeking Data Quality. Using Agile Methods to Test a Data Warehouse
|
|
|
- Austen Shepherd
- 10 years ago
- Views:
Transcription
1 Seeking Data Quality Using Agile Methods to Test a Data Warehouse Copyright Ideaca 2008
2 Agenda Seeking Data Quality Data Warehouse Overview The Value of a Data Warehouse Agile as Business Value Driver Test Strategy Test Techniques Test Results Conclusions Copyright Ideaca
3 Agenda Seeking Data Quality Data Warehouse Overview The Value of a Data Warehouse Agile as Business Value Driver Test Strategy Test Techniques Test Results Conclusions Copyright Ideaca
4 What is a Data Warehouse? A non-transactional data repository Integrates data from multiple sources Organized around relevant subjects Queryable by business users Used for reporting Used for analysis Copyright Ideaca
5 The Structure of a Data Warehouse Kimball s Star Schema Copyright Ideaca
6 The Flow of Data Typical data flow Copyright Ideaca
7 Agenda Seeking Data Quality Data Warehouse Overview The Value of a Data Warehouse Agile as Business Value Driver Test Strategy Test Techniques Test Results Conclusions Copyright Ideaca
8 The Value of a Data Warehouse To provide information that will help people make better choices This information is a solution to the problem of making choices in a complex environment The benefit of the information is that it reduces risk by providing an accurate representation of the state of the world This comes at the cost of building and maintaining the data warehouse now and into the future Copyright Ideaca
9 Data Value Drivers Our research led us to these value drivers: The more accurate the data is, the more useful it is, and therefore the more valuable it is The value of data increases when combined with other data The value of data increases with its use; in fact is only has value when people use it Focus on high risk problems using limited resources Emphasis on Data Quality Relevance Completeness Correctness Consistency Copyright Ideaca
10 Agenda Seeking Data Quality Data Warehouse Overview The Value of a Data Warehouse Agile as Business Value Driver Test Strategy Test Techniques Test Results Conclusions Copyright Ideaca
11 Agile Principles as Guides Testing is a process of investigation and evaluation Customer involved in deciding test relevance Customer involved in deciding test priority Communication of test goals and approach Simple and lightweight test scripts Avoid effort on low value tasks Copyright Ideaca
12 Agenda Seeking Data Quality Data Warehouse Overview The Value of a Data Warehouse Agile as Business Value Driver Test Strategy Test Techniques Test Results Conclusions Copyright Ideaca
13 Test Strategy Outline Data Warehouse Test Targets Stars are the business view of a data warehouse Stars are comprised of a Fact and its Dimensions Fact and Dimension tables are loaded through ETL s Each target had a similar test approach The test backlog was a prioritized list of these tests Detailed test scripts are expensive to produce Our scripts outlined a guided exploration Progress could be measured through a burndown chart Regulatory requirements needed to be met Copyright Ideaca
14 Business View of a Data Warehouse Testing progress reported on the basis of stars Copyright Ideaca
15 Agenda Seeking Data Quality Data Warehouse Overview The Value of a Data Warehouse Agile as Business Value Driver Test Strategy Test Techniques Test Results Conclusions Copyright Ideaca
16 Tests We tested for completeness No missing records No missing fields We tested for correctness Correct keys Correct calculations Correct aggregations Correct data type/size We tested for consistency Consistent aggregations Consistent calculations Consistent data type/size Consistent granularity Consistent business rules Consistent use of nulls and defaults Consistent formatting Copyright Ideaca
17 Test Points Test every ETL, Fact, and Dimension Copyright Ideaca
18 Agenda Seeking Data Quality Data Warehouse Overview The Value of a Data Warehouse Agile as Business Value Driver Test Strategy Test Techniques Test Results Conclusions Copyright Ideaca
19 Test Results Greater than % data accuracy Testing less than 20% of development effort Common scripts, common understanding Copyright Ideaca
20 Root Cause Analysis Defects Classified by root cause Cause Defect % Development Standards Issues 23% Implementation Errors 22% ETL Errors 21% Database Issues 13% Design Issues 9% Other Issues 12% Copyright Ideaca
21 Defect Roots Causes Cause Development standards issues Implementation errors ETL errors Cause Breakdown Naming conventions Design standards Documentation standards Metadata Primary/foreign key problems Inconsistent field lengths Field types Bad data Missing data Counts off Totals off Failed calculations Failed conversions Unpopulated fields Copyright Ideaca
22 Defect Roots Causes - continued Cause Database errors Design issues All other issues Cause Breakdown Performance Indexes Partitions Tablespace Missing fields Extra fields Missing dimensions Mapping problems Miscellaneous Copyright Ideaca
23 Agenda Seeking Data Quality Data Warehouse Overview The Value of a Data Warehouse Agile as Business Value Driver Test Strategy Test Techniques Test Results Conclusions Copyright Ideaca
24 Conclusions Value based approach focused our test efforts to find more serious problems sooner Applying agile principles allowed us to minimize wasted time and effort Testing identified development process changes that had the greatest impact on data quality New regulatory requirements mean that the ability to test is now a design issue Copyright Ideaca
25 Summary Contrasting Test Styles Old Approach Focus on tool database, data warehouse Focus on process tables, views, stored procedures Test plans Test cases Detailed scripts for instructions No special emphasis on team communication New Approach Focus on value data usage in business context Focus on outcome stars/dimensions/facts Test backlogs Test targets Light scripts as guides for exploration Team communication is vital Copyright Ideaca
POLAR IT SERVICES. Business Intelligence Project Methodology
POLAR IT SERVICES Business Intelligence Project Methodology Table of Contents 1. Overview... 2 2. Visualize... 3 3. Planning and Architecture... 4 3.1 Define Requirements... 4 3.1.1 Define Attributes...
Making SAP Information Steward a Key Part of Your Data Governance Strategy
Making SAP Information Steward a Key Part of Your Data Governance Strategy Part 2 SAP Information Steward Overview and Data Insight Review Part 1 in our series on Data Governance defined the concept of
White Paper www.wherescape.com
What s your story? White Paper Agile Requirements Epics and Themes help get you Started The Task List The Story Basic Story Structure One More Chapter to the Story Use the Story Structure to Define Tasks
ETL-EXTRACT, TRANSFORM & LOAD TESTING
ETL-EXTRACT, TRANSFORM & LOAD TESTING Rajesh Popli Manager (Quality), Nagarro Software Pvt. Ltd., Gurgaon, INDIA [email protected] ABSTRACT Data is most important part in any organization. Data
Presented by: Jose Chinchilla, MCITP
Presented by: Jose Chinchilla, MCITP Jose Chinchilla MCITP: Database Administrator, SQL Server 2008 MCITP: Business Intelligence SQL Server 2008 Customers & Partners Current Positions: President, Agile
SAS Business Intelligence Online Training
SAS Business Intelligence Online Training IQ Training facility offers best online SAS Business Intelligence training. Our SAS Business Intelligence online training is regarded as the best training in Hyderabad
Data Quality Assessment. Approach
Approach Prepared By: Sanjay Seth Data Quality Assessment Approach-Review.doc Page 1 of 15 Introduction Data quality is crucial to the success of Business Intelligence initiatives. Unless data in source
Reflections on Agile DW by a Business Analytics Practitioner. Werner Engelen Principal Business Analytics Architect
Reflections on Agile DW by a Business Analytics Practitioner Werner Engelen Principal Business Analytics Architect Introduction Werner Engelen Active in BI & DW since 1998 + 6 years at element61 Previously:
Rational Reporting. Module 2: IBM Rational Insight Data Warehouse
Rational Reporting Module 2: IBM Rational Insight Data Warehouse 1 Copyright IBM Corporation 2012 What s next? Module 1: RRDI and IBM Rational Insight Introduction Module 2: IBM Rational Insight Data Warehouse
META DATA QUALITY CONTROL ARCHITECTURE IN DATA WAREHOUSING
META DATA QUALITY CONTROL ARCHITECTURE IN DATA WAREHOUSING Ramesh Babu Palepu 1, Dr K V Sambasiva Rao 2 Dept of IT, Amrita Sai Institute of Science & Technology 1 MVR College of Engineering 2 [email protected]
Enterprise Data Quality Dashboards and Alerts: Holistic Data Quality
Enterprise Data Quality Dashboards and Alerts: Holistic Data Quality Jay Zaidi Bonnie O Neil (Fannie Mae) Data Governance Winter Conference Ft. Lauderdale, Florida November 16-18, 2011 Agenda 1 Introduction
Oracle BI 11g R1: Build Repositories
Oracle University Contact Us: 1.800.529.0165 Oracle BI 11g R1: Build Repositories Duration: 5 Days What you will learn This Oracle BI 11g R1: Build Repositories training is based on OBI EE release 11.1.1.7.
Data Warehouse: Introduction
Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,
Data Warehouse (DW) Maturity Assessment Questionnaire
Data Warehouse (DW) Maturity Assessment Questionnaire Catalina Sacu - [email protected] Marco Spruit [email protected] Frank Habers [email protected] September, 2010 Technical Report UU-CS-2010-021
1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing
1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing 2. What is a Data warehouse a. A database application
Rational Reporting. Module 3: IBM Rational Insight and IBM Cognos Data Manager
Rational Reporting Module 3: IBM Rational Insight and IBM Cognos Data Manager 1 Copyright IBM Corporation 2012 What s next? Module 1: RRDI and IBM Rational Insight Introduction Module 2: IBM Rational Insight
Establish and maintain Center of Excellence (CoE) around Data Architecture
Senior BI Data Architect - Bensenville, IL The Company s Information Management Team is comprised of highly technical resources with diverse backgrounds in data warehouse development & support, business
Lean QA: The Agile Way. Chris Lawson, Quality Manager
Lean QA: The Agile Way Chris Lawson, Quality Manager The Quality Problem Agile Overview Manifesto Development Methodologies Process Agile QA Lean QA Principles An Agile QA Framework Summary Q & A Agenda
Methodology Framework for Analysis and Design of Business Intelligence Systems
Applied Mathematical Sciences, Vol. 7, 2013, no. 31, 1523-1528 HIKARI Ltd, www.m-hikari.com Methodology Framework for Analysis and Design of Business Intelligence Systems Martin Závodný Department of Information
Paper DM10 SAS & Clinical Data Repository Karthikeyan Chidambaram
Paper DM10 SAS & Clinical Data Repository Karthikeyan Chidambaram Cognizant Technology Solutions, Newbury Park, CA Clinical Data Repository (CDR) Drug development lifecycle consumes a lot of time, money
SimCorp Solution Guide
SimCorp Solution Guide Data Warehouse Manager For all your reporting and analytics tasks, you need a central data repository regardless of source. SimCorp s Data Warehouse Manager gives you a comprehensive,
The Benefits of Data Modeling in Data Warehousing
WHITE PAPER: THE BENEFITS OF DATA MODELING IN DATA WAREHOUSING The Benefits of Data Modeling in Data Warehousing NOVEMBER 2008 Table of Contents Executive Summary 1 SECTION 1 2 Introduction 2 SECTION 2
Would you like to have a process that unlocks ability to learn and produce faster?
Would you like to have a process that unlocks ability to learn and produce faster? Agile - your unfair advantage in the competition. BUILD LEARN MEASURE DEFINED MEASURABLE REPEATABLE COLLABORATIVE IMPROVABLE
Master Data Management The Nationwide Experience. Lance Dacre Director, Data Governance
Master Data Management The Nationwide Experience Lance Dacre Director, Data Governance Agenda Finance FOCUS project Master Data Management Data Governance Assessment of Finance Function Availability of
Oracle Data Integrator integration with OBIEE
Oracle Data Integrator integration with OBIEE February 26, 2010 1:20 2:00 PM Presented By Phani Kottapalli [email protected] 1 Agenda Introduction to ODI Architecture Installation Repository
Data Integration and ETL with Oracle Warehouse Builder: Part 1
Oracle University Contact Us: + 38516306373 Data Integration and ETL with Oracle Warehouse Builder: Part 1 Duration: 3 Days What you will learn This Data Integration and ETL with Oracle Warehouse Builder:
Requirements-Based Testing: Encourage Collaboration Through Traceability
White Paper Requirements-Based Testing: Encourage Collaboration Through Traceability Executive Summary It is a well-documented fact that incomplete, poorly written or poorly communicated requirements are
Analytics: Pharma Analytics (Siebel 7.8) Student Guide
Analytics: Pharma Analytics (Siebel 7.8) Student Guide D44606GC11 Edition 1.1 March 2008 D54241 Copyright 2008, Oracle. All rights reserved. Disclaimer This document contains proprietary information and
Agile Enterprise Data Warehousing Radical idea or practical concept?
Agile Enterprise Warehousing Radical idea or practical concept? Larissa T. Moss Method Focus Inc. [email protected] TDWI South Florida Chapter March 11, 2011 Copyright 2011, Larissa T. Moss, Method
MS 20467: Designing Business Intelligence Solutions with Microsoft SQL Server 2012
MS 20467: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Description: This five-day instructor-led course teaches students how to design and implement a BI infrastructure. The
Optimizing the Performance of the Oracle BI Applications using Oracle Datawarehousing Features and Oracle DAC 10.1.3.4.1
Optimizing the Performance of the Oracle BI Applications using Oracle Datawarehousing Features and Oracle DAC 10.1.3.4.1 Mark Rittman, Director, Rittman Mead Consulting for Collaborate 09, Florida, USA,
Data Integrator: Object Naming Conventions
White Paper Data Integrator: Object Naming Conventions Data Integrator: Object Naming Conventions 1 Author: Sense Corp Contributors: Peter Siegel, Alicia Chang, George Ku Audience: ETL Developers Date
Building Views and Charts in Requests Introduction to Answers views and charts Creating and editing charts Performing common view tasks
Oracle Business Intelligence Enterprise Edition (OBIEE) Training: Working with Oracle Business Intelligence Answers Introduction to Oracle BI Answers Working with requests in Oracle BI Answers Using advanced
B. 3 essay questions. Samples of potential questions are available in part IV. This list is not exhaustive it is just a sample.
IS482/682 Information for First Test I. What is the structure of the test? A. 20-25 multiple-choice questions. B. 3 essay questions. Samples of potential questions are available in part IV. This list is
COURSE OUTLINE. Track 1 Advanced Data Modeling, Analysis and Design
COURSE OUTLINE Track 1 Advanced Data Modeling, Analysis and Design TDWI Advanced Data Modeling Techniques Module One Data Modeling Concepts Data Models in Context Zachman Framework Overview Levels of Data
IBM WebSphere DataStage Online training from Yes-M Systems
Yes-M Systems offers the unique opportunity to aspiring fresher s and experienced professionals to get real time experience in ETL Data warehouse tool IBM DataStage. Course Description With this training
How to Leverage Your QMS for Competitive Advantage. Katie Farrand Continuous Improvement Specialist Synergy Resources
How to Leverage Your QMS for Competitive Advantage Katie Farrand Continuous Improvement Specialist Synergy Resources Some Quality Management System Facts Supplier Manufacturing Company Customer *US & Canada,
Data Warehousing Fundamentals for IT Professionals. 2nd Edition
Brochure More information from http://www.researchandmarkets.com/reports/2171973/ Data Warehousing Fundamentals for IT Professionals. 2nd Edition Description: Cutting-edge content and guidance from a data
Advantages of Implementing a Data Warehouse During an ERP Upgrade
Advantages of Implementing a Data Warehouse During an ERP Upgrade Advantages of Implementing a Data Warehouse During an ERP Upgrade Introduction Upgrading an ERP system represents a number of challenges
Avoiding Common Analysis Services Mistakes. Craig Utley
Avoiding Common Analysis Services Mistakes Craig Utley Who Am I? Craig Utley, Mentor with Solid Quality Mentors [email protected] Consultant specializing in development with Microsoft technologies and data
Making Business Intelligence Easy. Whitepaper Measuring data quality for successful Master Data Management
Making Business Intelligence Easy Whitepaper Measuring data quality for successful Master Data Management Contents Overview... 3 What is Master Data Management?... 3 Master Data Modeling Approaches...
Cúram Business Intelligence and Analytics Guide
IBM Cúram Social Program Management Cúram Business Intelligence and Analytics Guide Version 6.0.4 Note Before using this information and the product it supports, read the information in Notices at the
Data Warehouse Overview. Srini Rengarajan
Data Warehouse Overview Srini Rengarajan Please mute Your cell! Agenda Data Warehouse Architecture Approaches to build a Data Warehouse Top Down Approach Bottom Up Approach Best Practices Case Example
Data Warehousing Fundamentals Student Guide
Data Warehousing Fundamentals Student Guide D16310GC10 Edition 1.0 September 2002 D37302 Authors Nikos Psomas Padmaja Mitravinda, Kolachalam Technical Contributors and Reviewers Kasturi Shekhar Vidya Nagaraj
Taking the first step to agile digital services
Taking the first step to agile digital services Digital Delivered. Now for Tomorrow. 0207 602 6000 [email protected] @CACI_Cloud 2 1. Background & Summary The Government s Digital by Default agenda has
THOMAS RAVN PRACTICE DIRECTOR [email protected]. An Effective Approach to Master Data Management. March 4 th 2010, Reykjavik WWW.PLATON.
An Effective Approach to Master Management THOMAS RAVN PRACTICE DIRECTOR [email protected] March 4 th 2010, Reykjavik WWW.PLATON.NET Agenda Introduction to MDM The aspects of an effective MDM program How
A Case Study in Integrated Quality Assurance for Performance Management Systems
A Case Study in Integrated Quality Assurance for Performance Management Systems Liam Peyton, Bo Zhan, Bernard Stepien School of Information Technology and Engineering, University of Ottawa, 800 King Edward
Whitepaper Data Governance Roadmap for IT Executives Valeh Nazemoff
Whitepaper Data Governance Roadmap for IT Executives Valeh Nazemoff The Challenge IT Executives are challenged with issues around data, compliancy, regulation and making confident decisions on their business
Data warehouse Architectures and processes
Database and data mining group, Data warehouse Architectures and processes DATA WAREHOUSE: ARCHITECTURES AND PROCESSES - 1 Database and data mining group, Data warehouse architectures Separation between
Data Warehouse and Business Intelligence Testing: Challenges, Best Practices & the Solution
Warehouse and Business Intelligence : Challenges, Best Practices & the Solution Prepared by datagaps http://www.datagaps.com http://www.youtube.com/datagaps http://www.twitter.com/datagaps Contact [email protected]
CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved
CHAPTER SIX DATA Business Intelligence 2011 The McGraw-Hill Companies, All Rights Reserved 2 CHAPTER OVERVIEW SECTION 6.1 Data, Information, Databases The Business Benefits of High-Quality Information
www.ijreat.org Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 28
Data Warehousing - Essential Element To Support Decision- Making Process In Industries Ashima Bhasin 1, Mr Manoj Kumar 2 1 Computer Science Engineering Department, 2 Associate Professor, CSE Abstract SGT
A Design Technique: Data Integration Modeling
C H A P T E R 3 A Design Technique: Integration ing This chapter focuses on a new design technique for the analysis and design of data integration processes. This technique uses a graphical process modeling
Management Update: The Cornerstones of Business Intelligence Excellence
G00120819 T. Friedman, B. Hostmann Article 5 May 2004 Management Update: The Cornerstones of Business Intelligence Excellence Business value is the measure of success of a business intelligence (BI) initiative.
James Serra Data Warehouse/BI/MDM Architect [email protected] JamesSerra.com
James Serra Data Warehouse/BI/MDM Architect [email protected] JamesSerra.com Agenda Do you need Master Data Management (MDM)? Why Master Data Management? MDM Scenarios & MDM Hub Architecture Styles
Enterprise Performance Tuning: Best Practices with SQL Server 2008 Analysis Services. By Ajay Goyal Consultant Scalability Experts, Inc.
Enterprise Performance Tuning: Best Practices with SQL Server 2008 Analysis Services By Ajay Goyal Consultant Scalability Experts, Inc. June 2009 Recommendations presented in this document should be thoroughly
TRANSFORMING YOUR BUSINESS
September, 21 2012 TRANSFORMING YOUR BUSINESS PROCESS INTO DATA MODEL Prasad Duvvuri AST Corporation Agenda First Step Analysis Data Modeling End Solution Wrap Up FIRST STEP It Starts With.. What is the
Top 10 Business Intelligence (BI) Requirements Analysis Questions
Top 10 Business Intelligence (BI) Requirements Analysis Questions Business data is growing exponentially in volume, velocity and variety! Customer requirements, competition and innovation are driving rapid
HP Application Lifecycle Management (ALM)
HP Application Lifecycle Management (ALM) Knowledge Share Maheshwar Salendra Date : 12/02/2012 AGENDA: Introduction to ALM ALM Functionality by Edition ALM Home page Side bars: Management Requirements
Oracle Database 12c: SQL Tuning for Developers. Sobre o curso. Destinatários. Oracle - Linguagens. Nível: Avançado Duração: 18h
Oracle Database 12c: SQL Tuning for Developers Oracle - Linguagens Nível: Avançado Duração: 18h Sobre o curso In the Oracle Database: SQL Tuning for Developers course, you learn about Oracle SQL tuning
Data warehouses. Data Mining. Abraham Otero. Data Mining. Agenda
Data warehouses 1/36 Agenda Why do I need a data warehouse? ETL systems Real-Time Data Warehousing Open problems 2/36 1 Why do I need a data warehouse? Why do I need a data warehouse? Maybe you do not
Oracle Database 11g: SQL Tuning Workshop
Oracle University Contact Us: + 38516306373 Oracle Database 11g: SQL Tuning Workshop Duration: 3 Days What you will learn This Oracle Database 11g: SQL Tuning Workshop Release 2 training assists database
Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Course 20467A; 5 Days
Lincoln Land Community College Capital City Training Center 130 West Mason Springfield, IL 62702 217-782-7436 www.llcc.edu/cctc Designing Business Intelligence Solutions with Microsoft SQL Server 2012
Enabling Data Quality
Enabling Data Quality Establishing Master Data Management (MDM) using Business Architecture supported by Information Architecture & Application Architecture (SOA) to enable Data Quality. 1 Background &
Top 10 Performance Tips for OBI-EE
Top 10 Performance Tips for OBI-EE Narasimha Rao Madhuvarsu L V Bharath Terala October 2011 Apps Associates LLC Boston New York Atlanta Germany India Premier IT Professional Service and Solution Provider
Copyright 2013 wolfssl Inc. All rights reserved. 2
- - Copyright 2013 wolfssl Inc. All rights reserved. 2 Copyright 2013 wolfssl Inc. All rights reserved. 2 Copyright 2013 wolfssl Inc. All rights reserved. 3 Copyright 2013 wolfssl Inc. All rights reserved.
Chapter 6 Basics of Data Integration. Fundamentals of Business Analytics RN Prasad and Seema Acharya
Chapter 6 Basics of Data Integration Fundamentals of Business Analytics Learning Objectives and Learning Outcomes Learning Objectives 1. Concepts of data integration 2. Needs and advantages of using data
LEARNING SOLUTIONS website milner.com/learning email [email protected] phone 800 875 5042
Course 20467A: Designing Business Intelligence Solutions with Microsoft SQL Server 2012 Length: 5 Days Published: December 21, 2012 Language(s): English Audience(s): IT Professionals Overview Level: 300
Report and Dashboard Template 9.5.1 User Guide
Report and Dashboard Template 9.5.1 User Guide Introduction The Informatica Data Quality Reporting and Dashboard Template for Informatica Data Quality 9.5.1, is designed to provide you a framework to capture
FDQM Financial Data Quality Management Fundamentals - Tips & Tricks Gary Womack, May 8th, 2013
FDQM Financial Data Quality Management Fundamentals - Tips & Tricks Gary Womack, May 8th, 2013 Agenda Welcome and Introductions Understanding FDQM Using Extended Analytics to sync Essbase/Other Systems
No one has to change. Survival is optional. - W. Edwards Deming - Continue your Beyond Budgeting Journey with help from Agile, Lean and Scrum
No one has to change. Survival is optional. - W. Edwards Deming - Continue your Beyond Budgeting Journey with help from Agile, Lean and Helge Eikeland, Statoil, October 2010 Today s challenge is complexity
Exadata in the Retail Sector
Exadata in the Retail Sector Jon Mead Managing Director - Rittman Mead Consulting Agenda Introduction Business Problem Approach Design Considerations Observations Wins Summary Q&A What it is not... Introductions
Data Warehousing and OLAP Technology for Knowledge Discovery
542 Data Warehousing and OLAP Technology for Knowledge Discovery Aparajita Suman Abstract Since time immemorial, libraries have been generating services using the knowledge stored in various repositories
Cúram Business Intelligence Reporting Developer Guide
IBM Cúram Social Program Management Cúram Business Intelligence Reporting Developer Guide Version 6.0.5 IBM Cúram Social Program Management Cúram Business Intelligence Reporting Developer Guide Version
Welcome to online seminar on. Oracle Agile PLM BI. Presented by: Rapidflow Apps Inc. January, 2011
Welcome to online seminar on Oracle Agile PLM BI Presented by: Rapidflow Apps Inc. January, 2011 Agenda Agile PLM BI Overview What is Agile BI? Who Needs Agile PLM BI? What does it offer? PLM Business
3/17/2009. Knowledge Management BIKM eclassifier Integrated BIKM Tools
Paper by W. F. Cody J. T. Kreulen V. Krishna W. S. Spangler Presentation by Dylan Chi Discussion by Debojit Dhar THE INTEGRATION OF BUSINESS INTELLIGENCE AND KNOWLEDGE MANAGEMENT BUSINESS INTELLIGENCE
Oracle Warehouse Builder 10g
Oracle Warehouse Builder 10g Architectural White paper February 2004 Table of contents INTRODUCTION... 3 OVERVIEW... 4 THE DESIGN COMPONENT... 4 THE RUNTIME COMPONENT... 5 THE DESIGN ARCHITECTURE... 6
AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO
DW2.0 The Architecture for the Next Generation of Data Warehousing W. H. Inmon Forest Rim Technology Derek Strauss Gavroshe Genia Neushloss Gavroshe AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS
Tiber Solutions. Understanding the Current & Future Landscape of BI and Data Storage. Jim Hadley
Tiber Solutions Understanding the Current & Future Landscape of BI and Data Storage Jim Hadley Tiber Solutions Founded in 2005 to provide Business Intelligence / Data Warehousing / Big Data thought leadership
3/13/2008. Financial Analytics Operational Analytics Master Data Management. March 10, 2008. Looks like you ve got all the data what s the holdup?
Financial Analytics Operational Analytics Master Data Management Master Data Management Adam Hanson Principal, Profisee Group March 10, 2008 Looks like you ve got all the data what s the holdup? 1 MDM
Sizing Logical Data in a Data Warehouse A Consistent and Auditable Approach
2006 ISMA Conference 1 Sizing Logical Data in a Data Warehouse A Consistent and Auditable Approach Priya Lobo CFPS Satyam Computer Services Ltd. 69, Railway Parallel Road, Kumarapark West, Bangalore 560020,
Enterprise Data Warehouse (EDW) UC Berkeley Peter Cava Manager Data Warehouse Services October 5, 2006
Enterprise Data Warehouse (EDW) UC Berkeley Peter Cava Manager Data Warehouse Services October 5, 2006 What is a Data Warehouse? A data warehouse is a subject-oriented, integrated, time-varying, non-volatile
Quality Assurance in an Agile Environment
Quality Assurance in an Agile Environment 1 Discussion Topic The Agile Movement Transition of QA practice and methods to Agile from Traditional Scrum and QA Recap Open Discussion www.emids.com 2 What is
Practical meta data solutions for the large data warehouse
K N I G H T S B R I D G E Practical meta data solutions for the large data warehouse PERFORMANCE that empowers August 21, 2002 ACS Boston National Meeting Chemical Information Division www.knightsbridge.com
SQL Server Analysis Services Complete Practical & Real-time Training
A Unit of Sequelgate Innovative Technologies Pvt. Ltd. ISO Certified Training Institute Microsoft Certified Partner SQL Server Analysis Services Complete Practical & Real-time Training Mode: Practical,
Introduction to Agile Software Development Process. Software Development Life Cycles
Introduction to Agile Software Development Process Presenter: Soontarin W. (Senior Software Process Specialist) Date: 24 November 2010 AGENDA Software Development Life Cycles Waterfall Model Iterative
Data Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc.
Warehousing: A Technology Review and Update Vernon Hoffner, Ph.D., CCP EntreSoft Resouces, Inc. Introduction Abstract warehousing has been around for over a decade. Therefore, when you read the articles
The Microsoft Business Intelligence 2010 Stack Course 50511A; 5 Days, Instructor-led
The Microsoft Business Intelligence 2010 Stack Course 50511A; 5 Days, Instructor-led Course Description This instructor-led course provides students with the knowledge and skills to develop Microsoft End-to-
IBM Software A Journey to Adaptive MDM
IBM Software A Journey to Adaptive MDM What is Master Data? Why is it Important? A Journey to Adaptive MDM Contents 2 MDM Business Drivers and Business Value 4 MDM is a Journey 7 IBM MDM Portfolio An Adaptive
Lean Software Development and Kanban
1 of 7 10.04.2013 21:30 Lean Software Development and Kanban Learning Objectives After completing this topic, you should be able to recognize the seven principles of lean software development identify
The Role of the BI Competency Center in Maximizing Organizational Performance
The Role of the BI Competency Center in Maximizing Organizational Performance Gloria J. Miller Dr. Andreas Eckert MaxMetrics GmbH October 16, 2008 Topics The Role of the BI Competency Center Responsibilites
Comparing Scrum And CMMI
Comparing Scrum And CMMI How Can They Work Together Neil Potter The Process Group [email protected] 1 Agenda Definition of Scrum Agile Principles Definition of CMMI Similarities and Differences CMMI
Measuring for Results: Metrics and Myths
Measuring for Results: Metrics and Myths Peter Hundermark Certified Scrum Coach and Trainer ScrumSense 1 Project Success Rates Succeeded Challenged Failed 44% Late Over budget Missing features On time
Cost Savings THINK ORACLE BI. THINK KPI. THINK ORACLE BI. THINK KPI. THINK ORACLE BI. THINK KPI.
THINK ORACLE BI. THINK KPI. THINK ORACLE BI. THINK KPI. MIGRATING FROM BUSINESS OBJECTS TO OBIEE KPI Partners is a world-class consulting firm focused 100% on Oracle s Business Intelligence technologies.
Creating Connection with Hive
Creating Connection with Hive Intellicus Enterprise Reporting and BI Platform Intellicus Technologies [email protected] www.intellicus.com Creating Connection with Hive Copyright 2010 Intellicus Technologies
