Nokia Networks. Voice over LTE (VoLTE) Optimization

Size: px
Start display at page:

Download "Nokia Networks. Voice over LTE (VoLTE) Optimization"

Transcription

1 Nokia Networks Voice over LTE (VoLTE) Optimization

2 Contents 1. Introduction 3 2. VoIP Client Options 5 3. Radio Network Optimization 6 4. Voice Quality Optimization Handset Power Consumption Optimization Summary Further Reading 19 Page 2

3 1. Introduction Mobile operator networks carry tens of billions of minutes of voice traffic every day, the majority of it using Circuit Switched (CS) voice in 2G and 3G technologies. Most LTE operators serve voice calls via so-called CS-fallback function, while several operators have already made the switch to Voice over LTE (VoLTE), providing a carrier grade Voice over IP (VoIP) solution, built on IP-Multimedia Sub System (IMS) architecture. VoLTE provides a number of benefits for operators and end users by enhancing LTE radio spectral efficiency and offering High Definition (HD) voice quality. VoLTE can use LTE on low frequency spectrum for good coverage, providing fast call setup times and enabling LTE data rates during the voice call. Additionally, IMS architecture is the foundation for new, innovative carrier-provided end-user multimedia services. The main reasons for adopting VoLTE are summarized in Figure 1. Provide faster call setup time Migrate from dual radio CDMA + LTE devices to LTE only devices Enhance voice quality with wideband codec Take benefit of low band LTE for extended coverage Enable simultaneous voice and LTE data Improve spectral efficiency Provide evolution from voice to rich next generation IMS services Prepare evolution to LTE only deployments Fig. 1. Motivations for VoLTE. Page 3

4 Deploying VoLTE requires a number of optimization steps to gain the full benefit of the technology s potential. This white paper presents a number of aspects of VoLTE optimization in radio networks and in handsets to provide reliable voice with good quality and low handset power consumption. The white paper also compares VoLTE with CS voice and with over-the-top (OTT) VoIP solutions. A VoLTE solution has synergies with Voice over Wi-Fi (VoWiFi), where operator voice can be run over Wi-Fi radio. If evolved packet core is enhanced with evolved Packet Data Gateway (epdg), the VoWiFi can be considered an extension of VoLTE, providing seamless handovers between the LTE and WiFi accesses, which also requires mobile handset support. The number of VoLTE deployments is increasing rapidly, with a wide selection of handsets, including iphone 6, supporting also VoWiFi. VoWiFi specific considerations are covered in a separate VoWiFi white paper. The radio network optimization solutions are considered in this paper first, followed by end-user quality optimization and finally focusing on the optimization of handset power consumption. The contents are summarized in Figure 2. Radio network optimization End user quality optimization Terminal power consumption optimization Fig. 2. Contents of this paper. Page 4

5 2. VoIP Client Options VoIP over LTE can be achieved using several different solutions. A native VoLTE client can be integrated into the handset design, allowing optimization of the handset power consumption and offering interworking with legacy CS networks. The VoLTE client can also benefit from Quality of Service (QoS) capability in the radio network for voice packet prioritization. It is also possible to have a non-native VoLTE client from third parties which runs on top of the application processor. Also, any general VoIP application, such as Skype or Viber, will work over LTE radio, but without QoS support. This paper compares three voice options for quality and efficiency: 1. Native VoLTE client integrated in the handset chip set. The number of commercial handsets with native VoLTE clients is growing rapidly. 2. Non-native VoLTE clients. Third party applications which can register to IMS (IP Multimedia Subsystem) and establish VoLTE call using QoS (QCI1). Examples include Bria and CSipSimple. 3. Over-the-Top (OTT) VoIP applications such as Skype, Facetime and Viber. Page 5

6 3. Radio Network Optimization The success rate and the retainability of a VoLTE call must match and exceed the level provided by CS connections. The key performance indicators in the radio network are setup success rate, handover success rate and call completion success rate. Network optimization also aims at reducing the required bandwidth for voice and maximizing the capacity. The network optimization includes parameter optimization and feature activation, like header compression, TTI (Transmission Time Interval) bundling and QoS. These features help to make VoLTE call reliability, quality and efficiency significantly higher than with OTT VoIP applications. Figure 3 presents the average IP user throughput, based on different voice applications over a two minute call with a predefined voice and silence pattern. The measurement assumes 23% talking, 23% listening and 54% no activity. The throughput shows the impact of the codec bit rate and the efficiency of the voice activity detection. The native VoLTE with Adaptive Multirate Wideband (AMR WB) provided an average of 10.2 kbps with the codec rate of kbps and 8.8 kbps with the codec rate of kbps. The third-party Session Initiation Protocol (SIP) application with Adaptive Multirate Wideband (AMR WB) codec averaged as low as 8 kbps when using voice activity detection. The lower average throughput in this case was a consequence of transmitting virtually nothing during silence periods, which on the other hand contributed to a significant reduction of the Mean Opinion Score MOS. This same application with Enhanced Full rate Narrowband (EFR NB) codec generated up to 17.3 kbps, driven by less efficient voice activity detection. The three OTT VoIP applications ranged between 17.6 kbps to 42.8 kbps average throughput, depending on the codec they used and the particular implementation of features such as codec rate adaptation or voice activity detection kbps SIP EFR SIP AMR WB OTT AP1 OTT AP2 OTT AP3 VoLTE kbps VoLTE kbps Fig. 3. Measured throughput of different VoIP codecs. Page 6

7 The throughput measurements shown in Figure 3 include full IP headers. VoLTE throughput requirements on the radio interface can be further reduced with Robust Header Compression (ROHC,) which improves spectral efficiency. ROHC runs between the base station and the handset. Figure 4 illustrates the benefit of RoHC - the header size is reduced from 40 bytes to 5 bytes, which is relevant for voice traffic since the voice packets are small. For example, an AMR kbps voice packet is 60 bytes and AMR kbps just 32 bytes. The header can be larger than the voice packet if header compression is not used. Therefore, activation of header compression is essential for maximizing VoLTE capacity. Header size (byte) Header compression Original header size Uplink header size Downlink header size Fig. 4. Benefit from header compression. Page 7

8 VoLTE uplink performance in the weak signal can be enhanced with TTI bundling which allows the handset to repeat the same transmission in four consecutive 1 ms TTIs. TTI bundling makes the uplink more robust and enhances coverage by 4 db. The benefit of TTI bundling in the weak signal is shown in Figure 5. The uplink Block Error Rate (BLER) is reduced from 73% to 9% with TTI bundling. The low BLER maintains good voice quality and avoids unnecessary retransmissions which eat up substantial radio resources. TTI bundling is switched on only when the handset hits the edge of the coverage area. TTI bundling runs between the base station and the handset PUSCH BLER comparison 72.7 BLER (in %) With TTI bundling Without TTI bundling Fig. 5. Benefit of TTI bundling in uplink quality. Page 8

9 A high success rate for VoLTE calls requires reliable control channel transmission, which can be obtained by optimized channel coding in the radio interface to protect signaling quality. The high success rate also requires that interference levels and excessive signaling can be controlled in highly loaded cells. Figure 6 shows an example VoLTE call setup success rate in a live network including tens of millions of VoLTE calls during the measurement period. The success rate exceeds 99.7%, showing that excellent VoLTE availability can be achieved even in the loaded network. The network carried tens of billions of packet calls at the same time. Another important factor for VoLTE is reliable mobility. The handover success rate can be optimized with RF planning and new features included in Nokia ison (Self Organizing Network) such as Mobility Robustness Optimization. This enables radio level connection re-establishment in the event of handover failure. 100 VoLTE call setup success rate 98 (%) Three-month period Fig. 6. VoLTE call setup success rate. Page 9

10 When the handset leaves the LTE coverage area, the VoLTE connection can be handed over to a CS connection in a 3G or 2G network. This procedure is called Single Radio Voice Call Continuity (SRVCC) or enhanced SRVCC (esrvcc). If LTE coverage is extensive, the SRVCC probability is low. It is beneficial to have a low SRVCC probability to gain full benefit of VoLTE capabilities and to minimize any potential loss in voice quality, or even call drops which may be caused by a radio leg change. The SRVCC probability also depends on the parameter settings, like minimum Reference Signal Received Power (RSRP), which define the threshold when the LTE network initiates SRVCC. Figure 7 shows the probability of SRVCC in an example network. The SRVCC probability is reduced by 7% to below 3% by network optimization. More than a million SRVCC attempts are included in this graph. SRVCC functionality is available for QCI1 connections but not for OTT VoIP. If an OTT VoIP connection loses LTE coverage, the call continues in the 3G or 2G network as a VoIP connection over a best effort data connection, not as a CS call. VoIP in 3G can provide reasonable voice quality in low loaded networks, but VoIP does not work in practice on a 2G network. Also, the connection break during the inter-system handover is substantially longer for best effort data than with SRVCC for QCI1 (less that 300ms according 3GPP standard). 10% 9% Percentage of VoLTE Calls Using SRVCC 8% 7% 6% 5% 4% 3% 2% 1% 0% Fig. 7. Probability of VoLTE call using SRVCC. Three-month period Page 10

11 4. Voice Quality Optimization The voice quality depends heavily on the voice codec sampling rate and the resulting audio bandwidth. An AMR Narrowband (NB) codec provides audio bandwidth of Hz, while an AMR Wideband (WB) extends the audio bandwidth to Hz. Furthermore, handset acoustics may limit the maximum bandwidth provided by the speech codecs. Terminal acoustic requirements can be found in 3GPP TS The bandwidth is illustrated in Figure 8. The CS connections can use either AMR-NB or AMR-WB, while VoLTE in practice always uses AMR-WB. The AMR-WB data rate for CS connection ranges from 6.6 kbps to kbps, while the VoLTE connection can use data rates up to kbps, enhancing the quality of the connection compared to HD voice in CS networks. AMR - NB Hz AMR - WB Hz khz Fig. 8. Audio bandwidth of narrowband and wideband AMR. The average user opinion of a system s speech quality can be presented with MOS. Latency also has an influence on the perceived quality. Traditionally, in network quality testing, absolute category rating (ACR), listening-only tests, defined in the ITU-T P.800 Recommendation, have been used to collect subjective responses of the performance of the telephone transmission system by listening to spoken material and by giving the judgments on a five-point scale, ranging from 1 (poor) to 5 (excellent). The averaged results have been presented as a mean opinion score (MOS). In addition to subjective opinion, the abbreviation MOS is generally used for scores that originate from objective models. Algorithms have been developed for objective assessment of speech quality in telecommunication applications, estimating subjective listening tests performed in accordance with the ACR method. Objective methods are often more convenient than subjective methods. The latest standardized algorithm, Perceptual Objective Listening Quality Assessment (POLQA, or ITU-T P.863) has two operational modes: a narrowband (NB) mode and a super wideband (SWB) mode. The SWB mode can handle up to 14 khz audio frequencies. Page 11

12 Figure 9 presents the average MOS for different voice applications. VoLTE with AMR-WB kbps provided a MOS of 3.9.The reference CS narrowband call provided a score of 2.9 in the POLQA SWB scale in good radio conditions, while the non-native SIP client with NB EFR codec scored only slightly lower with 2.7. The same SIP client with an AMR-WB codec configuration provided a score of 3.0. The score of this and other third party SIP clients could be increased to 3.4 or 3.6 by tweaking some optional functionality such as deactivating voice activity detection. However, this caused an increase in the power consumption and throughput requirements as the application would transmit a constant data stream regardless of whether the speaker was talking or silent. The OTT VoIP applications scored between 4.1 and 4.2 in the POLQA SWB scale using proprietary codecs, quite close to the native VoLTE client. Future VoLTE voice quality can be further improved with the new super wideband (SWB) and full band (FB) codecs, which will able to cover all the voice and audio bandwidths. 3GPP has defined a new speech/ audio codec in Release 12 called Enhanced Voice Services (EVS) codec, which includes SWB and FB modes in addition to NB and WB modes. That codec will make it possible for VoLTE to match and beat the voice quality of all OTT clients MOS G CS AMR-NB SIP EFR SIP AMR-WB OTT AP1 OTT AP2 OTT AP3 VoLTE Fig. 9. Voice quality with different voice applications. Page 12

13 Next, we present voice quality measurements for VoLTE and for one OTT VoIP as a function of network loading. VoLTE uses QoS Class Identifier (QCI) 1, while OTT VoIP is carried as non-guaranteed data traffic. A LTE base station is able to identify VoLTE calls and prioritize VoLTE in the packet scheduler. Figure 10 shows MOS measurements as a function of cell loading. Two cases are studied: good radio conditions with the signal level better than -80 dbm and bad radio conditions with the signal level at -110 dbm. The voice quality for VoLTE remains stable regardless of the loading, while the quality of OTT VoIP decreases as a function of loading. The OTT VoIP call also frequently drops during high loading. There is some difference in the voice quality between good and bad radio conditions but the VoLTE quality remains stable, also under bad radio conditions. OTT VoIP-Good OTT VoIP-Bad VoLTE-Good VoLTE-Bad MOS OTT VoIP fails to work Effective number of non-gbr data users Fig. 10. Voice quality with different loadings in good and bad radio conditions. Page 13

14 Mouth-to-ear delay as a function of loading is shown in Figure 11. The delay for VoLTE remains constant for all different load cases, demonstrating the benefit of QoS and Nokia Smart Scheduler in the base station. The delay of OTT VoIP increases as a function of simultaneous data loading in the cell. OTT-Good OTT-Bad VoLTE-Good VoLTE-Bad Mouth to Ear Delay (ms) OTT VoIP fails to work Effective non-gbr Load (users) Fig. 11. Mouth-to-ear delay with different loadings. Page 14

15 The call setup time is an important factor affecting the quality perceived by the end user. Figure 12 shows how VoLTE can significantly improve the call establishment time compared to the legacy CS systems. The total time for call establishment depends on many factors such as whether the handsets were initially in RRC Idle or RRC Connected state when the call was originated and the latency experienced by the signaling network. The laboratory measurements show a VoLTE call setup time of s, while the delay in the field is slightly higher depending on the operator network and transport architecture. The corresponding typical CS call setup time is four seconds and with CS Fallback (CSFB) at both ends, approximately six seconds Call setup time 6.0 Seconds idle - idle (field) idle - idle connected - connected VoLTE 3G idle - CSFB - CSFB idle CS voice Fig. 12. Call setup time measurements. Page 15

16 To minimize the call setup time, an operator can apply a special paging strategy for incoming VoLTE calls. VoLTE paging logic is executed in a Mobility Management Entity (MME), based on the Evolved Packet Core (EPC) bearer information from the Serving Gateway in the Downlink Data Notification (DDN) message. The IMS network may assist this procedure by marking packets related to the incoming voice calls with a special Differentiated Services Code Point (DSCP) value. Figure 13 shows an example of paging response delay distribution. A more aggressive timer value for paging a re-try timer could be applied for VoLTE to minimize the paging response delay, for example two seconds instead of a typical value of several seconds. In addition, MME could be configured to execute VoLTE paging immediately for the whole Tracking Area instead of first paging the last known cell Number of Samples Delay between Paging and Service Request More Fig. 13. Paging response delay distribution in live network. Page 16

17 5. Handset Power Consumption Optimization Device battery life is one of the most relevant factors for smartphone users. It can be extended by using advanced features in the radio network and by optimized handset design. The two main factors affecting the mobile handset s power consumption are considered to be availability of radio optimization features such as Discontinuous Reception (DRX) and the handset s implementation of the voice client. The power optimization solutions are shown in Figure 14. Handset architecture optimization VoLTE integrated to the chip set Application processor can enter sleep mode Radio features including DRX Discontinuous reception (DRX) Modem activity from 100% to below 50% Fig. 14. Mobile handset power saving solutions. Page 17

18 The voice application can run in the handset application processor, which however needs a lot of power. Power consumption can be minimized by integrating a VoLTE client to the modem processor. The idea of DRX is to use sleep mode in the handset between packet receptions. The VoLTE voice packets arrive every 20 ms while the transmission time in LTE is just 1 ms. Such bursty transmission and reception allows the use of power saving sleep mode even between voice packets. The DRX activation and parameter configurations are controlled by the base station. The DRX can be configured in such a way that two voice packets are transmitted simultaneously, which increases the packet arrival period to 40 ms. Figure 15 illustrates the instantaneous handset power consumption during a VoLTE call when the person is listening and not talking. The short power peaks happen mostly every 40 ms during the reception of the voice packet, while the power consumption is considerably lower between the packets. 600 Current (ma) Current (ma) Time (s) Fig. 15. Discontinuous reception (DRX) during VoLTE call. The measured current consumption of different voice applications is shown in Figure 16. VoLTE power consumption can be reduced by 80% with DRX. 121 ma has been measured on a handset, which is even slightly below the 125 ma measured on the same codec on 3G CS using the same handset. The power consumption of the OTT VoIP application is substantially higher at 248 ma. Page 18

19 300 Current (ma) % G CS AMR-NB 3G CS AMR-WB nodrx DRX on with different settings OTT VoIP Fig. 16. Handset power consumption with different voice applications, showing 50% lower power consumption for VoLTE than for OTT VoIP. 6. Summary VoLTE is being deployed globally, supported by new VoLTE-capable handsets. VoLTE can enhance an operator s network efficiency and improve end-user performance in areas such as voice quality and setup times. This paper illustrates that optimization of radio features and parameters is needed to provide reliable VoLTE connections with high success rates and low drop rates. The live network results show that excellent key performance indicators can be obtained for VoLTE in optimized networks. The measurements also show that VoLTE offers a number of benefits compared to OTT VoIP applications, including robust performance and higher voice quality during congestion and lower power consumption. Reliability is obtained by using QoS features in the radio network and by optimizing power consumption with the DRX feature. 7. Further Reading Nokia VoLTE white paper: paper.pdf Nokia VoWiFi white paper: (to be published 4Q2014) Page 19

20 Public Nokia is a registered trademark of Nokia Corporation. Other product and company names mentioned herein may be trademarks or trade names of their respective owners. Nokia Nokia Solutions and Networks Oy P.O. Box 1 FI Finland Visiting address: Karaportti 3, ESPOO, Finland Switchboard Product code C WP EN Nokia Solutions and Networks 2014

NSN White paper November 2013. From Voice over IP to Voice over LTE

NSN White paper November 2013. From Voice over IP to Voice over LTE NSN White paper November 2013 From Voice over IP to Voice over LTE CONTENTS 1. Introduction 3 2. VoLTE markets 4 3. VoLTE technology 5 3.1 VoLTE user experience 5 3.1.1 VoLTE talk time 5 3.1.2 VoLTE service

More information

What is going on in Mobile Broadband Networks?

What is going on in Mobile Broadband Networks? Nokia Networks What is going on in Mobile Broadband Networks? Smartphone Traffic Analysis and Solutions White Paper Nokia Networks white paper What is going on in Mobile Broadband Networks? Contents Executive

More information

LTE-Advanced Carrier Aggregation Optimization

LTE-Advanced Carrier Aggregation Optimization Nokia Networks LTE-Advanced Carrier Aggregation Optimization Nokia Networks white paper LTE-Advanced Carrier Aggregation Optimization Contents Introduction 3 Carrier Aggregation in live networks 4 Multi-band

More information

Voice Quality with VoLTE

Voice Quality with VoLTE Matthias Schulist Akos Kezdy Qualcomm Technologies, Inc. Voice Quality with VoLTE 20. ITG Tagung Mobilkommunikation 2015 Qualcomm Engineering Services Support of Network Operators Strong R&D Base End-to-end

More information

The Voice Evolution VoLTE, VoHSPA+, WCDMA+ and Quality Evolution. April 2012

The Voice Evolution VoLTE, VoHSPA+, WCDMA+ and Quality Evolution. April 2012 The Voice Evolution VoLTE, VoHSPA+, WCDMA+ and Quality Evolution April 2012 Qualcomm is a Leader in Wireless 2012 2013 2014 2015+ Rel-8 Rel-9 LTE (FDD&TDD Commercial) Rel-10 Rel-11 & Beyond LTE Advanced

More information

Understanding the Transition From PESQ to POLQA. An Ascom Network Testing White Paper

Understanding the Transition From PESQ to POLQA. An Ascom Network Testing White Paper Understanding the Transition From PESQ to POLQA An Ascom Network Testing White Paper By Dr. Irina Cotanis Prepared by: Date: Document: Dr. Irina Cotanis 6 December 2011 NT11-22759, Rev. 1.0 Ascom (2011)

More information

NSN White paper February 2014. Nokia Solutions and Networks Smart Scheduler

NSN White paper February 2014. Nokia Solutions and Networks Smart Scheduler NSN White paper February 2014 Nokia Solutions and Networks Smart Scheduler CONTENTS 1. Introduction 3 2. Smart Scheduler Features and Benefits 4 3. Smart Scheduler wit Explicit Multi-Cell Coordination

More information

Active Monitoring of Voice over IP Services with Malden

Active Monitoring of Voice over IP Services with Malden Active Monitoring of Voice over IP Services with Malden Introduction Active Monitoring describes the process of evaluating telecommunications system performance with intrusive tests. It differs from passive

More information

White paper. Mobile broadband with HSPA and LTE capacity and cost aspects

White paper. Mobile broadband with HSPA and LTE capacity and cost aspects White paper Mobile broadband with HSPA and LTE capacity and cost aspects Contents 3 Radio capacity of mobile broadband 7 The cost of mobile broadband capacity 10 Summary 11 Abbreviations The latest generation

More information

Nokia Networks. Voice over Wi-Fi. White paper. Nokia Networks white paper Voice over Wi-Fi

Nokia Networks. Voice over Wi-Fi. White paper. Nokia Networks white paper Voice over Wi-Fi Nokia Networks Voice over Wi-Fi White paper Nokia Networks white paper Voice over Wi-Fi Contents 1 Why consider VoWiFi? 3 2 User experience requirements 4 3 Mobile operator vs. OTT services 5 4 VoWiFi

More information

Efficient resource utilization improves the customer experience

Efficient resource utilization improves the customer experience White paper Efficient resource utilization improves the customer experience Multiflow, aggregation and multi band load balancing for Long Term HSPA Evolution Executive summary Contents 2. Executive summary

More information

Supporting operators as they introduce Voice over LTE

Supporting operators as they introduce Voice over LTE 1 / 3 Japanese Monthly Telecommunication Magazine, November issue 2012 Mr. Jukka Hongisto, Nokia Siemens Networks Solution Architect Supporting operators as they introduce Voice over LTE The first commercial

More information

Delivery of Voice and Text Messages over LTE

Delivery of Voice and Text Messages over LTE Delivery of Voice and Text Messages over LTE 1. The Market for Voice and SMS! 2. Third Party Voice over IP! 3. The IP Multimedia Subsystem! 4. Circuit Switched Fallback! 5. VoLGA LTE was designed as a

More information

VoLTE or VoIP over LTE Who Is the Ultimate Winner?

VoLTE or VoIP over LTE Who Is the Ultimate Winner? VoLTE or VoIP over LTE Who Is the Ultimate Winner? IEEE Santa Clara Valley Consumer Electronics Society Saraj Mudigonda 26 th March, 2013 www.imgtec.com Imagination Technologies p1 Outline VoIP Applications

More information

Business aware traffic steering

Business aware traffic steering Nokia Networks Business aware traffic steering Nokia Networks white paper Business aware traffic steering Contents 1. Executive Summary 3 2. Static load or QoS-based traffic steering alone is no longer

More information

Nokia Siemens Networks LTE 1800 MHz Introducing LTE with maximum reuse of GSM assets

Nokia Siemens Networks LTE 1800 MHz Introducing LTE with maximum reuse of GSM assets Nokia Siemens Networks LTE 1800 MHz Introducing LTE with maximum reuse of GSM assets White paper Table of contents 1. Overview... 3 2. 1800 MHz spectrum... 3 3. Traffic Migration... 5 4. Deploying LTE-GSM

More information

VoLTE with SRVCC: White Paper October 2012

VoLTE with SRVCC: White Paper October 2012 VoLTE with SRVCC: White Paper October 2012 Qualcomm VoLTE with SRVCC: The second phase of voice evolution for mobile LTE devices LTE Growth The 3GPP Long Term Evolution (LTE) high-speed, highcapacity data

More information

Just like speaking face to face.

Just like speaking face to face. Full HD Voice Huawei October 2014 Just like speaking face to face. Full High Definition voice, refers to the next generation of voice quality for Enterprise VoIP telephony audio resulting in crystal clear

More information

SERVICE CONTINUITY. Ensuring voice service

SERVICE CONTINUITY. Ensuring voice service SERVICE CONTINUITY FOR TODAY S Voice over LTE SUBSCRIBERS Ensuring voice service with Single Radio Voice Call Continuity (SR-VCC) TECHNOLOGY White Paper Subscribers expectations for mobile data services

More information

Wireless Technologies for the 450 MHz band

Wireless Technologies for the 450 MHz band Wireless Technologies for the 450 MHz band By CDG 450 Connectivity Special Interest Group (450 SIG) September 2013 1. Introduction Fast uptake of Machine- to Machine (M2M) applications and an installed

More information

TECHNICAL PAPER. Fraunhofer Institute for Integrated Circuits IIS

TECHNICAL PAPER. Fraunhofer Institute for Integrated Circuits IIS TECHNICAL PAPER The Future of Communication: Full-HD Voice powered by EVS and the AAC-ELD Family We have grown accustomed to HD Everywhere by consuming high fidelity content in most aspects of our lives.

More information

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight TEC Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight HP 4/15/2013 A powerful software upgrade leverages quaternary modulation and MIMO techniques to improve network efficiency

More information

VoIP Shim for RTP Payload Formats

VoIP Shim for RTP Payload Formats PITALS 50 pt 32 pt VoIP Shim for RTP Payload Formats draft-johansson-avt-rtp-shim Ingemar Johansson, Ericsson AB Outline MTSI in 3GPP Voice service requirements Problems with RTCP Why is inband signaling

More information

LTE Evolution for Cellular IoT Ericsson & NSN

LTE Evolution for Cellular IoT Ericsson & NSN LTE Evolution for Cellular IoT Ericsson & NSN LTE Evolution for Cellular IoT Overview and introduction White Paper on M2M is geared towards low cost M2M applications Utility (electricity/gas/water) metering

More information

Choosing the Right Audio Codecs for VoIP over cdma2000 Networks:

Choosing the Right Audio Codecs for VoIP over cdma2000 Networks: Choosing the Right Audio Codecs for VoIP over cdma2000 Networks: System capacity, Voice quality, Delay, and Transcoding issues Dr. Sassan Ahmadi NOKIA Inc. sassan.ahmadi@nokia.com February 8, 2005 1 2005

More information

How QoS differentiation enhances the OTT video streaming experience. Netflix over a QoS enabled

How QoS differentiation enhances the OTT video streaming experience. Netflix over a QoS enabled NSN White paper Netflix over a QoS enabled LTE network February 2013 How QoS differentiation enhances the OTT video streaming experience Netflix over a QoS enabled LTE network 2013 Nokia Solutions and

More information

3GPP Wireless Standard

3GPP Wireless Standard 3GPP Wireless Standard Shishir Pandey School of Technology and Computer Science TIFR, Mumbai April 10, 2009 Shishir Pandey (TIFR) 3GPP Wireless Standard April 10, 2009 1 / 23 3GPP Overview 3GPP : 3rd Generation

More information

How To Improve Your Cell Phone Battery Life

How To Improve Your Cell Phone Battery Life Nokia Siemens Networks Managed Services Nokia Siemens Networks Smart Labs Edition 2013 Version 12.2 2/12 Nokia Siemens Networks Smart Labs are hot-beds of ideas and research that help operators to understand

More information

Unlicensed Mobile Access (UMA) Handover and Packet Data Performance Analysis

Unlicensed Mobile Access (UMA) Handover and Packet Data Performance Analysis Unlicensed Mobile Access (UMA) Handover and Packet Data Performance Analysis Andres Arjona Nokia Siemens Networks andres.arjona@nsn.com Hannu Verkasalo Helsinki University of Technology hannu.verkasalo@tkk.fi

More information

Technical white paper. Enabling mobile broadband growth Evolved Packet Core

Technical white paper. Enabling mobile broadband growth Evolved Packet Core Technical white paper Enabling mobile broadband growth Evolved Packet Core Contents 3 Enabling mobile broadband growth 4 Enabling migration from current networks to LTE 4 Terminology 5 The demand for cost-effective

More information

Basic principles of Voice over IP

Basic principles of Voice over IP Basic principles of Voice over IP Dr. Peter Počta {pocta@fel.uniza.sk} Department of Telecommunications and Multimedia Faculty of Electrical Engineering University of Žilina, Slovakia Outline VoIP Transmission

More information

White Paper ON Dual Mode Phone (GSM & Wi-Fi)

White Paper ON Dual Mode Phone (GSM & Wi-Fi) White Paper ON Dual Mode Phone (GSM & Wi-Fi) Author: N Group 1.0 Abstract Dual Mode Handset is in demand for converged Network, Access, Billing, and Operation environment. Dual mode handsets provide cost

More information

Overview of GSMA VoLTE Profile. minimum required functions [3]. 2. Background

Overview of GSMA VoLTE Profile. minimum required functions [3]. 2. Background GSMA Overview of GSMA Profile It was agreed in the GSMA in February 2010 that voice services over LTE () shall use the platform standardized by the 3GPP with a view to maximizing international interoperability.

More information

Customer Training Catalog Training Programs WCDMA RNP&RNO Technical Training

Customer Training Catalog Training Programs WCDMA RNP&RNO Technical Training Customer Training Catalog Training Programs Customer Training Catalog Training Programs WCDMA RNP&RNO Technical Training HUAWEI Learning Service 2015 COMMERCIAL IN CONFIDENCE 1 Customer Training Catalog

More information

Application Note. Introduction. Definition of Call Quality. Contents. Voice Quality Measurement. Series. Overview

Application Note. Introduction. Definition of Call Quality. Contents. Voice Quality Measurement. Series. Overview Application Note Title Series Date Nov 2014 Overview Voice Quality Measurement Voice over IP Performance Management This Application Note describes commonlyused call quality measurement methods, explains

More information

The future of mobile networking. David Kessens <david.kessens@nsn.com>

The future of mobile networking. David Kessens <david.kessens@nsn.com> The future of mobile networking David Kessens Introduction Current technologies Some real world measurements LTE New wireless technologies Conclusion 2 The future of mobile networking

More information

REPORT ITU-R M.2134. Requirements related to technical performance for IMT-Advanced radio interface(s)

REPORT ITU-R M.2134. Requirements related to technical performance for IMT-Advanced radio interface(s) Rep. ITU-R M.2134 1 REPORT ITU-R M.2134 Requirements related to technical performance for IMT-Advanced radio interface(s) (2008) TABLE OF CONTENTS... Page 1 Introduction... 2 2 Scope and purpose... 2 3

More information

VoIP in 3G Networks: An End-to- End Quality of Service Analysis

VoIP in 3G Networks: An End-to- End Quality of Service Analysis VoIP in 3G etworks: An End-to- End Quality of Service Analysis 1 okia etworks P.O.Box 301, 00045 okia Group, Finland renaud.cuny@nokia.com Renaud Cuny 1, Ari Lakaniemi 2 2 okia Research Center P.O.Box

More information

MNS Viewpoint: LTE EVOLUTION IN AFRICA 1. Introduction

MNS Viewpoint: LTE EVOLUTION IN AFRICA 1. Introduction MNS Viewpoint: LTE EVOLUTION IN AFRICA 1. Introduction Wireless communications have evolved rapidly since the emergence of 2G networks. 4G technology (also called LTE), enables to answer the new data market

More information

WiMAX and the IEEE 802.16m Air Interface Standard - April 2010

WiMAX and the IEEE 802.16m Air Interface Standard - April 2010 WiMAX and the IEEE 802.16m Air Interface Standard - April 2010 Introduction The IEEE 802.16e-2005 amendment to the IEEE Std 802.16-2004 Air Interface Standard which added Scalable-Orthogonal Frequency

More information

HD VoIP Sounds Better. Brief Introduction. March 2009

HD VoIP Sounds Better. Brief Introduction. March 2009 HD VoIP Sounds Better Brief Introduction March 2009 Table of Contents 1. Introduction 3 2. Technology Overview 4 3. Business Environment 5 4. Wideband Applications for Diverse Industries 6 5. AudioCodes

More information

Nokia Siemens Networks mobile softswitching Taking voice to the next level

Nokia Siemens Networks mobile softswitching Taking voice to the next level Nokia Siemens Networks mobile softswitching Taking voice to the next level Providing an answer for today and tomorrow Evolving technologies Nokia Siemens Networks provides a solid platform for the future

More information

THE EVOLUTION OF EDGE

THE EVOLUTION OF EDGE 285 23-3107 Uen Rev A THE EVOLUTION OF EDGE February 2007 White Paper With EDGE Evolution higher data rates and improved coverage will be introduced, further strengthening GSM/EDGE as being an attractive

More information

Deployment Aspects for VoIP Services over HSPA Networks

Deployment Aspects for VoIP Services over HSPA Networks Nash Technologies Your partner for world-class custom software solutions & consulting Deployment Aspects for VoIP Services over HSPA Networks Jens Mueckenheim, Enrico Jugl, Thomas Wagner, Michael Link,

More information

3GPP Technologies: Load Balancing Algorithm and InterNetworking

3GPP Technologies: Load Balancing Algorithm and InterNetworking 2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology 3GPP Technologies: Load Balancing Algorithm and InterNetworking Belal Abuhaija Faculty of Computers

More information

LTE CDMA Interworking

LTE CDMA Interworking LTE CDMA Interworking ehrpd - Use of a Common Core and a Stepping Stone to LTE Mike Dolan Consulting Member of Technical Staff Alcatel-Lucent Overview ehrpd (evolved High Rate Packet Data*) ehrpd involves

More information

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Jianguo Cao School of Electrical and Computer Engineering RMIT University Melbourne, VIC 3000 Australia Email: j.cao@student.rmit.edu.au

More information

White Paper. D-Link International Tel: (65) 6774 6233, Fax: (65) 6774 6322. E-mail: info@dlink.com.sg; Web: http://www.dlink-intl.

White Paper. D-Link International Tel: (65) 6774 6233, Fax: (65) 6774 6322. E-mail: info@dlink.com.sg; Web: http://www.dlink-intl. Introduction to Voice over Wireless LAN (VoWLAN) White Paper D-Link International Tel: (65) 6774 6233, Fax: (65) 6774 6322. Introduction Voice over Wireless LAN (VoWLAN) is a technology involving the use

More information

TECHNICAL PAPER. Fraunhofer Institute for Integrated Circuits IIS

TECHNICAL PAPER. Fraunhofer Institute for Integrated Circuits IIS TECHNICAL PAPER Enhanced Voice Services (EVS) Codec Until now, telephone services have generally failed to offer a high-quality audio experience due to limitations such as very low audio bandwidth and

More information

3G smartphones. ericsson White paper Uen 284 23-3250 February 2015

3G smartphones. ericsson White paper Uen 284 23-3250 February 2015 ericsson White paper Uen 284 23-3250 February 2015 3G smartphones optimizing user experience and network efficiency Rapid global smartphone uptake is creating new mobile data traffic patterns. There is

More information

GSM VOICE CAPACITY EVOLUTION WITH VAMOS Strategic White Paper

GSM VOICE CAPACITY EVOLUTION WITH VAMOS Strategic White Paper GSM VOICE CAPACITY EVOLUTION WITH VAMOS Strategic White Paper Table of contents VAMOS increases your GSM voice capacity at minimum investment / 1 Take the full benefit of VAMOS / 1 Standard aspects / 1

More information

Single Radio Voice Call Continuity. (SRVCC) with LTE. White Paper. Overview. By: Shwetha Vittal, Lead Engineer CONTENTS

Single Radio Voice Call Continuity. (SRVCC) with LTE. White Paper. Overview. By: Shwetha Vittal, Lead Engineer CONTENTS White Paper Single Radio Voice Call Continuity (SRVCC) with LTE By: Shwetha Vittal, Lead Engineer Overview Long Term Evolution (LTE) is heralded as the next big thing for mobile networks. It brings in

More information

Analysis of QoS parameters of VOIP calls over Wireless Local Area Networks

Analysis of QoS parameters of VOIP calls over Wireless Local Area Networks Analysis of QoS parameters of VOIP calls over Wireless Local Area Networks Ayman Wazwaz, Computer Engineering Department, Palestine Polytechnic University, Hebron, Palestine, aymanw@ppu.edu Duaa sweity

More information

How To Steer A Cell Phone On A Network On A Cell Network On An Lteo Cell Phone (Lteo) On A 4G Network On Ltea (Cell Phone) On An Ipad Or Ipad (Cellphone)

How To Steer A Cell Phone On A Network On A Cell Network On An Lteo Cell Phone (Lteo) On A 4G Network On Ltea (Cell Phone) On An Ipad Or Ipad (Cellphone) Nokia Siemens Networks Load balancing mobile broadband traffic in LTE HetNets The application of traffic steering methods 2/24 Table of contents 1. Executive summary... 3 2. Introduction... 4 2.1 Traffic

More information

PQ.01.01.08 v3.0. Voice over Wi-Fi. Datasheet

PQ.01.01.08 v3.0. Voice over Wi-Fi. Datasheet PQ.01.01.08 v3.0 Voice over Wi-Fi Datasheet Version 1.0 29 January 2015 Wi-Fi to the rescue Telecommunication Operators have always struggled to achieve 100% coverage, and to provide basic services like

More information

LTE service area. 3G service area. EPS : Evolved Packet System. Currently Planning & Coordination Office 1 C *

LTE service area. 3G service area. EPS : Evolved Packet System. Currently Planning & Coordination Office 1 C * VoLTE esrvcc VSRVCC Inter-domain Handover Technologies in LTE for Voice (VoLTE) and TV Phone A data communication service called Xi (Crossy) has started in LTE. In the future, voice and TV phone services

More information

Signaling is growing 50% faster than data traffic

Signaling is growing 50% faster than data traffic Signaling is growing 50% faster than data traffic To enable future-proof mobile broadband networks, Nokia Siemens Networks has designed its Evolved Packet Core to handle high signaling load. 2/8 Signaling

More information

Simplified network architecture delivers superior mobile broadband

Simplified network architecture delivers superior mobile broadband White paper Simplified network architecture delivers superior mobile broadband Profitable wireless broadband with Internet-HSPA Contents 3 Executive Summary 4 Mobile data traffic is growing strongly 5

More information

A User s Perspective on Voice over WiFi Calling

A User s Perspective on Voice over WiFi Calling A User s Perspective on Voice over WiFi Calling An Ascom Network Testing White Paper By Dr. Irina Cotanis 1 Contents 1 VoWiFi s Impact in Moving beyond Traditional Voice Services 3 2 A User s Perspective

More information

Wi-Fi integration with cellular networks enhances the customer experience. White paper

Wi-Fi integration with cellular networks enhances the customer experience. White paper Wi-Fi integration with cellular networks enhances the customer experience White paper Executive summary Contents Executive Summary 2 Mobile data services fuel 3 the traffic tornado Wi-Fi integration offers

More information

LTE Overview October 6, 2011

LTE Overview October 6, 2011 LTE Overview October 6, 2011 Robert Barringer Enterprise Architect AT&T Proprietary (Internal Use Only) Not for use or disclosure outside the AT&T companies except under written agreement LTE Long Term

More information

Joint Radio Resource Management and QoS Implications of Software Downloading for SDR Terminals

Joint Radio Resource Management and QoS Implications of Software Downloading for SDR Terminals Joint Radio Resource Management and QoS Implications of Software Downloading for SDR Terminals Nicolas Motte, Robert Rümmler 2, David Grandblaise, Lucas Elicegui, Didier Bourse, Eiko Seidel 3 - Motorola

More information

HSPA, LTE and beyond. HSPA going strong. PRESS INFORMATION February 11, 2011

HSPA, LTE and beyond. HSPA going strong. PRESS INFORMATION February 11, 2011 HSPA, LTE and beyond The online multimedia world made possible by mobile broadband has changed people s perceptions of data speeds and network service quality. Regardless of where they are, consumers no

More information

The 3GPP Enhanced Voice Services (EVS) codec

The 3GPP Enhanced Voice Services (EVS) codec Nokia Networks The 3GPP Enhanced Voice Services (EVS) codec Nokia Networks white paper The 3GPP Enhanced Voice Services (EVS) codec Contents Executive summary 3 1. Introduction 3 2. Evolution of 3GPP mobile

More information

The Smart VoLTE Solution. Fast track to carrier-grade voice

The Smart VoLTE Solution. Fast track to carrier-grade voice Fast track to carrier-grade voice Table of Contents Executive Summary 3 VoLTE: Origins and Structure 4 The VoLTE Complement: Rich Communication Suite 6 VoLTE Benefits 7 Path to IMS-based VoLTE 8 Growth

More information

SIP Trunking and Voice over IP

SIP Trunking and Voice over IP SIP Trunking and Voice over IP Agenda What is SIP Trunking? SIP Signaling How is Voice encoded and transported? What are the Voice over IP Impairments? How is Voice Quality measured? VoIP Technology Confidential

More information

Voice and video calling over LTE

Voice and video calling over LTE ericsson White paper Uen 284 23-3160 Rev B November 2014 Voice and video calling over SECURING HIGH-QUALITY COMMUNICATION SERVICES OVER IP NETWORKS As mobile-broadband networks continue to expand, Vo leverages

More information

Delivering Network Performance and Capacity. The most important thing we build is trust

Delivering Network Performance and Capacity. The most important thing we build is trust Delivering Network Performance and Capacity The most important thing we build is trust The Ultimate in Real-life Network Perfomance Testing 1 The TM500 Family the most comprehensive 3GPP performance and

More information

LTE Performance and Analysis using Atoll Simulation

LTE Performance and Analysis using Atoll Simulation IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 6 Ver. III (Nov Dec. 2014), PP 68-72 LTE Performance and Analysis using Atoll Simulation

More information

Some Experiences with VoIP Over Converging Networks

Some Experiences with VoIP Over Converging Networks Some Experiences with VoIP Over Converging Networks Pekka Perälä, Martín Varela VTT Electronics PL, FI-957, Oulu, Finland {pekka.perala,ext-martin.varela-rico}@vtt.fi May 4, 7 Abstract Over last few years

More information

Evolution of the voice interconnect

Evolution of the voice interconnect Vinjett Keep evolving towards all 10 Evolution of the voice interconnect The migration to all- networks calls for an evolution of the interconnect between operator networks. This might lead to a new interconnect

More information

Evolved HD voice for LTE

Evolved HD voice for LTE ericsson White paper Uen 284 23-3160 Rev B October 2014 Evolved HD voice for LTE A NEW MOBILE VOICE EXPERIENCE Evolved HD voice enables next-generation mobile voice services for LTE networks. It further

More information

ARIB STD-T64-C.S0042 v1.0 Circuit-Switched Video Conferencing Services

ARIB STD-T64-C.S0042 v1.0 Circuit-Switched Video Conferencing Services ARIB STD-T-C.S00 v.0 Circuit-Switched Video Conferencing Services Refer to "Industrial Property Rights (IPR)" in the preface of ARIB STD-T for Related Industrial Property Rights. Refer to "Notice" in the

More information

Voice Service Quality Evaluation Techniques and the New Technology, POLQA

Voice Service Quality Evaluation Techniques and the New Technology, POLQA Voice Service Quality Evaluation Techniques and the New Technology, POLQA White Paper Prepared by: Date: Document: Dr. Irina Cotanis 3 November 2010 NT11-1037 Ascom (2010) All rights reserved. TEMS is

More information

HSPA+ and LTE Test Challenges for Multiformat UE Developers

HSPA+ and LTE Test Challenges for Multiformat UE Developers HSPA+ and LTE Test Challenges for Multiformat UE Developers Presented by: Jodi Zellmer, Agilent Technologies Agenda Introduction FDD Technology Evolution Technology Overview Market Overview The Future

More information

Circuit-Switched Voice Services over HSPA

Circuit-Switched Voice Services over HSPA Circuit-Switched Voice Services over HSPA 1 Qualcomm Incorporated, Corporate R&D San Diego, USA Abstract Circuit-Switched (CS) Voice Services over HSPA (CSoHS) was recently introduced for 3GPP WCDMA Release

More information

Nokia Siemens Networks Smart Labs Smart networks for smart devices

Nokia Siemens Networks Smart Labs Smart networks for smart devices Nokia Siemens Networks Smart Labs Smart networks for smart devices Marko Hokkanen NSN Smart Labs, Silicon Valley, California 1 Nokia Siemens Networks Agenda NSN Smart Labs NSN Smart Lab Measurements (Messaging,

More information

Evaluating Data Networks for Voice Readiness

Evaluating Data Networks for Voice Readiness Evaluating Data Networks for Voice Readiness by John Q. Walker and Jeff Hicks NetIQ Corporation Contents Introduction... 2 Determining Readiness... 2 Follow-on Steps... 7 Summary... 7 Our focus is on organizations

More information

How Voice Calls Affect Data in Operational LTE Networks

How Voice Calls Affect Data in Operational LTE Networks How Voice Calls Affect Data in Operational LTE Networks Guan-Hua Tu*, Chunyi Peng+, Hongyi Wang*, Chi-Yu Li*, Songwu Lu* *University of California, Los Angeles, US +Ohio State University, Columbus, US

More information

How To Make A Multi-User Communication Efficient

How To Make A Multi-User Communication Efficient Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8 Multiple Access Scheme Allow many users to share simultaneously a finite amount of radio spectrum Need to be done without severe degradation of the

More information

Single Radio Voice Call Continuity (SRVCC) Testing Using Spirent CS8 Interactive Tester

Single Radio Voice Call Continuity (SRVCC) Testing Using Spirent CS8 Interactive Tester Application Note Single Radio Voice Call Continuity (SRVCC) Testing Using Spirent CS8 Interactive Tester September 2013 Rev. A 09/13 Single Radio Voice Call Continuity (SRVCC) Testing Using Spirent CS8

More information

VoIP over Wireless Opportunities and Challenges

VoIP over Wireless Opportunities and Challenges Prof. Dr. P. Tran-Gia VoIP over Wireless Opportunities and Challenges Universität Würzburg Lehrstuhl für verteilte Systeme H.323 RTP Codec Voice-over-IP over Wireless (VoIPoW) UDP IMS G723.1 SIP G729 HSDPA

More information

Providing reliable and efficient VoIP over WCDMA

Providing reliable and efficient VoIP over WCDMA Providing reliable and efficient VoIP over WCDMA Mårten Ericson, Lotta Voigt and Stefan Wänstedt The architecture of the IP Multimedia Subsystem (IMS) defined by the Third Generation Partnership Project

More information

Upcoming Enhancements to LTE: R9 R10 R11!

Upcoming Enhancements to LTE: R9 R10 R11! Upcoming Enhancements to LTE: R9 R10 R11! Jayant Kulkarni Award Solutions jayant@awardsolutions.com Award Solutions Dallas-based wireless training and consulting company Privately held company founded

More information

LTE Mobility Enhancements

LTE Mobility Enhancements Qualcomm Incorporated February 2010 Table of Contents [1] Introduction... 1 [2] LTE Release 8 Handover Procedures... 2 2.1 Backward Handover... 2 2.2 RLF Handover... 3 2.3 NAS Recovery... 5 [3] LTE Forward

More information

End to End Delay Performance Evaluation for VoIP in the LTE Network

End to End Delay Performance Evaluation for VoIP in the LTE Network ENSC 427 COMMUNICATION NETWORKS SPRING 2013 Final Project Presentation End to End Delay Performance Evaluation for VoIP in the LTE Network Dai, Hongxin Ishita, Farah Lo, Hao Hua danield @ sfu.ca fishita

More information

Expanding the human possibilities of technology

Expanding the human possibilities of technology Expanding the human possibilities of technology Let s talk Barcelona Days 2015 1 Nokia Solutions and Networks 2015 - Technology Vision 2020 For internal use Nokia Networks voice evolution strategies How

More information

Goal We want to know. Introduction. What is VoIP? Carrier Grade VoIP. What is Meant by Carrier-Grade? What is Meant by VoIP? Why VoIP?

Goal We want to know. Introduction. What is VoIP? Carrier Grade VoIP. What is Meant by Carrier-Grade? What is Meant by VoIP? Why VoIP? Goal We want to know Introduction What is Meant by Carrier-Grade? What is Meant by VoIP? Why VoIP? VoIP Challenges 2 Carrier Grade VoIP Carrier grade Extremely high availability 99.999% reliability (high

More information

Indepth Voice over IP and SIP Networking Course

Indepth Voice over IP and SIP Networking Course Introduction SIP is fast becoming the Voice over IP protocol of choice. During this 3-day course delegates will examine SIP technology and architecture and learn how a functioning VoIP service can be established.

More information

Push-to-talk Over Wireless

Push-to-talk Over Wireless Push-to-talk Over Wireless Is the time right for Push-to-talk? Does it work over GPRS? www.northstream.se Conclusions Push-to-talk is a walkie-talkie-type service implemented over mobile networks. US operator

More information

Mobility and cellular networks

Mobility and cellular networks Mobility and cellular s Wireless WANs Cellular radio and PCS s Wireless data s Satellite links and s Mobility, etc.- 2 Cellular s First generation: initially debuted in Japan in 1979, analog transmission

More information

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit

More information

1 Introduction 1 1.1 Services and Applications for HSPA 3 1.2 Organization of the Book 6 References 7

1 Introduction 1 1.1 Services and Applications for HSPA 3 1.2 Organization of the Book 6 References 7 Figures and Tables About the Authors Preface Foreword Acknowledgements xi xix xxi xxiii xxv 1 Introduction 1 1.1 Services and Applications for HSPA 3 1.2 Organization of the Book 6 References 7 2 Overview

More information

ADAPTIVE SPEECH QUALITY IN VOICE-OVER-IP COMMUNICATIONS. by Eugene Myakotnykh

ADAPTIVE SPEECH QUALITY IN VOICE-OVER-IP COMMUNICATIONS. by Eugene Myakotnykh ADAPTIVE SPEECH QUALITY IN VOICE-OVER-IP COMMUNICATIONS by Eugene Myakotnykh Ph.D. Dissertation Submitted to Faculty of the Telecommunications Program, Graduate School of Information Sciences, University

More information

ATA: An Analogue Telephone Adapter is used to connect a standard telephone to a high-speed modem to facilitate VoIP and/or calls over the Internet.

ATA: An Analogue Telephone Adapter is used to connect a standard telephone to a high-speed modem to facilitate VoIP and/or calls over the Internet. KEY VOIP TERMS 1 ACD: Automatic Call Distribution is a system used to determine how incoming calls are routed. When the ACD system receives an incoming call it follows user-defined specifications as to

More information

Cellular Network Planning and Optimization Part XI: HSDPA. Jyri Hämäläinen, Communications and Networking Department, TKK, 25.1.

Cellular Network Planning and Optimization Part XI: HSDPA. Jyri Hämäläinen, Communications and Networking Department, TKK, 25.1. Cellular Network Planning and Optimization Part XI: HSDPA Jyri Hämäläinen, Communications and Networking Department, TKK, 25.1.2008 HSDPA HSDPA = High Speed Downlink Packet Access. Release 5 was the first

More information

Quality of Service Testing in the VoIP Environment

Quality of Service Testing in the VoIP Environment Whitepaper Quality of Service Testing in the VoIP Environment Carrying voice traffic over the Internet rather than the traditional public telephone network has revolutionized communications. Initially,

More information

Access to GSM and GPRS mobile services over unlicensed spectrum technologies through UMA

Access to GSM and GPRS mobile services over unlicensed spectrum technologies through UMA Access to GSM and GPRS mobile services over unlicensed spectrum technologies through UMA Snehlata Barde Sujata Khobragade Rasmiprava Singh NIT Raipur(C.G.) MATS university, Raipur MATS university,raipur

More information

APTA TransiTech Conference Communications: Vendor Perspective (TT) Phoenix, Arizona, Tuesday, 3.19.13. VoIP Solution (101)

APTA TransiTech Conference Communications: Vendor Perspective (TT) Phoenix, Arizona, Tuesday, 3.19.13. VoIP Solution (101) APTA TransiTech Conference Communications: Vendor Perspective (TT) Phoenix, Arizona, Tuesday, 3.19.13 VoIP Solution (101) Agenda Items Introduction What is VoIP? Codecs Mean opinion score (MOS) Bandwidth

More information