TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science
|
|
|
- Loreen Mathews
- 10 years ago
- Views:
Transcription
1 TNS EX A MINE BehaviourForecast Predictive Analytics for CRM 1
2 TNS BehaviourForecast Why is BehaviourForecast relevant for you? The concept of analytical Relationship Management (acrm) becomes more and more important for most companies. The objective of CRM is to win long-term profitable customers, bind them to the company, increase their value and if required win back lost customers by a selective and individual addressing. The essential basis is the identification of profitable customers and the in-depth knowledge about their needs and behaviour in every phase of the customer life cycle. For this purpose TNS BehaviourForecast provides valuable information by analysing all available data sources and by extracting the relevant information for a specific problem via up-to-date Data Mining Techniques. 2
3 TNS BehaviourForecast Analytical CRM along the customer life cycle Business Volume Targeting / Acquisition Strengthening Relationship Regular Intensifying Relationship Retention Win-Back Strategies Re-activated Prospect New Lost EX A MINE ProspectFinder Target Group Selection Response Rate Analyses AffinityTracer Market Basket Analysis Cross- and Up-Selling-Analyses Lifetime Value ChurnPredictor Churn Analysis Factors influencing Loyalty 3
4 Analytical CRM with TNS Questions along the customer life cycle ProspectFinder AffinityTracer ChurnPredictor Objective: cost-efficient new customer acquisition Which is the best target segment with the highest affinity to my offer and potentially profitable customers? Objective: increasing customer profitability What are my most profitable customers ( Lifetime Value)? Which cross- / upselling actions are most promising? Objective: avoiding migration What are the crucial factors of customer retention? How can you identify churners early (Churn Prediction)? Lower cost of acquisition by targeting new customers well-directed Individually addressing customers, higher revenues Increasing brand loyalty, cost-efficient realisation of loyalty programmes 4
5 Efficient CRM via Data Mining Increase of information allows well directed customer contact ProspectFinder Systematic selection of addresses with high purchase probability Limitation to potentially profitable customers AffinityTracer Which products are often bought jointly? Which customers bought only parts of a common combination? ChurnPredictor Building typical churn profiles Derivation of churn probability Identification of most important factors of customer retention Marketing activities only to selected addresses Minimisation of acquisition cost Forwarding of customers with high cross-/up-selling potential to sales force Selection of customers at risk and forwarding to sales force Win-back activities 5
6 Phase-specific Data in the Life Cycle Holistic examination of available information Master data Potential customers Active customers Former customers Master data Response behaviour Transactions behaviour Churn behaviour Address Age Sex / Gender Campaign affinity / history Credit report Self-disclosure Use of product Payment behaviour Channel preferences... Reason for termination (activ / passive?) Reactivation TNS BehaviourForecast CRM: Selection of target groups + individually addressing customers 6
7 TNS DataFusion + BehaviourForecast Holistic examination of internal and external data Internal External database Attitudes Competition / total market Psycho-social structural data Addresses Response Transactions Churns Level: Person TNS TRI*M Level: Homogenous micro segments TNS Access Panels Level: Homogenous micro segments Microgeographics Lifestyles Level: e.g. street TNS DataFusion + BehaviourForecast CRM: Selection of target groups + individually addressing customers 7
8 Tasks and Problems of Data Mining Broad spectrum of methods for specific analyses Credit rating / scoring Forecasting s - Segmentation - Analysis of potential Faud detection Transactions patterns Classification Segmentation Association Decision trees Neuronal networks Classical methods Clustering methods Association methods Tasks Problems Methods / Algorithms 8
9 The TNS Algorithms-Toolbox Multivariate statistics Logistic, Categorical, Linear Regression, EM Algorithm Multivariate Adaptive Regression Splines (MARS) Ridge Regression, Robust Regression Cluster Analysis, Latent Class Analysis Decision Trees / Decision Rules, Automatic Learning C&RT, C5.0, QUEST, CHAID, Association rules MART Multiple Additive Regression Trees, Random Forest Nearest Neighbours / Instance based learning Profiler Artificial Neural Networks Cascade Correlation Learning Architecture, MLP, SOM Hybrid Methods Automatic OLAP Navigation and Search Genetic Algorithms for variable selection Neuro Fuzzy Algorithms, interactive visualisation of data 9
10 TNS Contact Dr. Robert Hartl Tel Cornelia Lotz Tel
How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK
How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK Agenda Analytics why now? The process around data and text mining Case Studies The Value of Information
Data Mining + Business Intelligence. Integration, Design and Implementation
Data Mining + Business Intelligence Integration, Design and Implementation ABOUT ME Vijay Kotu Data, Business, Technology, Statistics BUSINESS INTELLIGENCE - Result Making data accessible Wider distribution
Data Analytical Framework for Customer Centric Solutions
Data Analytical Framework for Customer Centric Solutions Customer Savviness Index Low Medium High Data Management Descriptive Analytics Diagnostic Analytics Predictive Analytics Prescriptive Analytics
CRM Analytics for Telecommunications
CRM Analytics for Telecommunications The WAR Framework Dr. Paulo Costa Data Mining & CRM for Telecom Industry IBM Global Service [email protected] Contents The Telecommunications Industry Market WAR The
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
Data Mining is sometimes referred to as KDD and DM and KDD tend to be used as synonyms
Data Mining Techniques forcrm Data Mining The non-trivial extraction of novel, implicit, and actionable knowledge from large datasets. Extremely large datasets Discovery of the non-obvious Useful knowledge
An Introduction to Advanced Analytics and Data Mining
An Introduction to Advanced Analytics and Data Mining Dr Barry Leventhal Henry Stewart Briefing on Marketing Analytics 19 th November 2010 Agenda What are Advanced Analytics and Data Mining? The toolkit
White Paper. Data Mining for Business
White Paper Data Mining for Business January 2010 Contents 1. INTRODUCTION... 3 2. WHY IS DATA MINING IMPORTANT?... 3 FUNDAMENTALS... 3 Example 1...3 Example 2...3 3. OPERATIONAL CONSIDERATIONS... 4 ORGANISATIONAL
Potential Value of Data Mining for Customer Relationship Marketing in the Banking Industry
Advances in Natural and Applied Sciences, 3(1): 73-78, 2009 ISSN 1995-0772 2009, American Eurasian Network for Scientific Information This is a refereed journal and all articles are professionally screened
Data Science & Big Data Practice
INSIGHTS ANALYTICS INNOVATIONS Data Science & Big Data Practice Customer Intelligence - 360 Insight Amplify customer insight by integrating enterprise data with external data Customer Intelligence 360
CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics
CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics Session map Session1 Session 2 Introduction The new focus on customer loyalty CRM and Business Intelligence CRM Marketing initiatives Session
Data Mining in CRM & Direct Marketing. Jun Du The University of Western Ontario [email protected]
Data Mining in CRM & Direct Marketing Jun Du The University of Western Ontario [email protected] Outline Why CRM & Marketing Goals in CRM & Marketing Models and Methodologies Case Study: Response Model Case
Using reporting and data mining techniques to improve knowledge of subscribers; applications to customer profiling and fraud management
Using reporting and data mining techniques to improve knowledge of subscribers; applications to customer profiling and fraud management Paper Jean-Louis Amat Abstract One of the main issues of operators
Marketing Advanced Analytics. Predicting customer churn. Whitepaper
Marketing Advanced Analytics Predicting customer churn Whitepaper Churn prediction The challenge of predicting customers churn It is between five and fifteen times more expensive for a company to gain
What is Customer Relationship Management? Customer Relationship Management Analytics. Customer Life Cycle. Objectives of CRM. Three Types of CRM
Relationship Management Analytics What is Relationship Management? CRM is a strategy which utilises a combination of Week 13: Summary information technology policies processes, employees to develop profitable
Helping retailers maximise customer lifetime value
HTK Horizon for Magento Helping retailers maximise customer lifetime value As personalisation becomes increasingly important, marketers need a deeper understanding of each customer to drive loyalty and
Created to make a. Specialists in data and campaign management
Created to make a difference Specialists in data and campaign management XCM created to make a positive difference to your thinking, your marketing, your business XCM would like to thank all customers,
TEXT ANALYTICS INTEGRATION
TEXT ANALYTICS INTEGRATION A TELECOMMUNICATIONS BEST PRACTICES CASE STUDY VISION COMMON ANALYTICAL ENVIRONMENT Structured Unstructured Analytical Mining Text Discovery Text Categorization Text Sentiment
DIGITS CENTER FOR DIGITAL INNOVATION, TECHNOLOGY, AND STRATEGY THOUGHT LEADERSHIP FOR THE DIGITAL AGE
DIGITS CENTER FOR DIGITAL INNOVATION, TECHNOLOGY, AND STRATEGY THOUGHT LEADERSHIP FOR THE DIGITAL AGE INTRODUCTION RESEARCH IN PRACTICE PAPER SERIES, FALL 2011. BUSINESS INTELLIGENCE AND PREDICTIVE ANALYTICS
Data Mining Techniques in CRM
Data Mining Techniques in CRM Inside Customer Segmentation Konstantinos Tsiptsis CRM 6- Customer Intelligence Expert, Athens, Greece Antonios Chorianopoulos Data Mining Expert, Athens, Greece WILEY A John
ElegantJ BI. White Paper. The Competitive Advantage of Business Intelligence (BI) Forecasting and Predictive Analysis
ElegantJ BI White Paper The Competitive Advantage of Business Intelligence (BI) Forecasting and Predictive Analysis Integrated Business Intelligence and Reporting for Performance Management, Operational
Journal of Management Systems
27 Journal of Management Systems ISSN #1041-2808 A Publication of the Association of Management to Mitigate Account Outflows for Finance Companies Stephan Kudyba and Jerry Fjermestad School of Management
Past, present, and future Analytics at Loyalty NZ. V. Morder SUNZ 2014
Past, present, and future Analytics at Loyalty NZ V. Morder SUNZ 2014 Contents Visions The undisputed customer loyalty experts To create, maintain and motivate loyal customers for our Participants Win
Product recommendations and promotions (couponing and discounts) Cross-sell and Upsell strategies
WHITEPAPER Today, leading companies are looking to improve business performance via faster, better decision making by applying advanced predictive modeling to their vast and growing volumes of data. Business
Customer Analytics. Turn Big Data into Big Value
Turn Big Data into Big Value All Your Data Integrated in Just One Place BIRT Analytics lets you capture the value of Big Data that speeds right by most enterprises. It analyzes massive volumes of data
Bigger Data for Marketing and Customer Intelligence Customer Analytics Roadmap
Bigger Data for Marketing and Intelligence Analytics Roadmap Segmentation Add Heading Here Add copy here Learn 1 how marketers analyze customer data to improve campaign performance, attract new customers
MS1b Statistical Data Mining
MS1b Statistical Data Mining Yee Whye Teh Department of Statistics Oxford http://www.stats.ox.ac.uk/~teh/datamining.html Outline Administrivia and Introduction Course Structure Syllabus Introduction to
Data are everywhere. IBM projects that every day we generate 2.5 quintillion bytes of data. In relative terms, this means 90
FREE echapter C H A P T E R1 Big Data and Analytics Data are everywhere. IBM projects that every day we generate 2.5 quintillion bytes of data. In relative terms, this means 90 percent of the data in the
Chapter. Enterprise Business Systems
Chapter 4 Enterprise Business Systems Learning Objectives Identify and give examples to illustrate the following aspects of customer relationship. Business processes supported Customer and business value
Business Analytics and Data Mining for CRM Business Analytics and Data Mining for CRM: Jumpstart workshop
: Jumpstart workshop Date and Place: Bangalore, Sep 1 st (Sat) and 2 nd (Sun) 2012 Registration Link: http://compegence.com/open-programs.php http://compegence.com/workshop-analytics-for-crm.php Audience:
Analytical CRM solution for Banking industry
Analytical CRM solution for Banking industry Harbinger TechAxes PVT. LTD. 2005 Insights about What are the reasons and freq. for a customer contact? What are my product holding patterns? Which of my are
Predictive Analytics in an hour: a no-nonsense quick guide
Predictive Analytics in an hour: a no-nonsense quick guide Jarlath Quinn Analytics Consultant Rachel Clinton Business Development www.sv-europe.com FAQ s Is this session being recorded? Yes Can I get a
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over
Database Marketing simplified through Data Mining
Database Marketing simplified through Data Mining Author*: Dr. Ing. Arnfried Ossen, Head of the Data Mining/Marketing Analysis Competence Center, Private Banking Division, Deutsche Bank, Frankfurt, Germany
Driving Customer Acquisition and Retention with Predictive Analytics
PREDICTIVE ANALYTICS WHITE PAPER Driving Customer Acquisition and Retention with Predictive Analytics Big data is growing at an exponential rate. According to IBM, 2.5 quintillion bytes of data were generated
Data Mining Algorithms Part 1. Dejan Sarka
Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka ([email protected]) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses
Predictive Analytics: Extracts from Red Olive foundational course
Predictive Analytics: Extracts from Red Olive foundational course For more details or to speak about a tailored course for your organisation please contact: Jefferson Lynch: [email protected]
Maximize Revenues on your Customer Loyalty Program using Predictive Analytics
Maximize Revenues on your Customer Loyalty Program using Predictive Analytics 27 th Feb 14 Free Webinar by Before we begin... www Q & A? Your Speakers @parikh_shachi Technical Analyst @tatvic Loves js
Fluency With Information Technology CSE100/IMT100
Fluency With Information Technology CSE100/IMT100 ),7 Larry Snyder & Mel Oyler, Instructors Ariel Kemp, Isaac Kunen, Gerome Miklau & Sean Squires, Teaching Assistants University of Washington, Autumn 1999
Hello, Goodbye. The New Spin on Customer Loyalty. From Customer Acquisition to Customer Loyalty. Definition of CRM.
Hello, Goodbye. The New Spin on Customer Loyalty The so-called typical customer no longer exists. Companies were focused on selling as many products as possible, without regard to who was buying them.
Nine Common Types of Data Mining Techniques Used in Predictive Analytics
1 Nine Common Types of Data Mining Techniques Used in Predictive Analytics By Laura Patterson, President, VisionEdge Marketing Predictive analytics enable you to develop mathematical models to help better
Data Mining with SAS. Mathias Lanner [email protected]. Copyright 2010 SAS Institute Inc. All rights reserved.
Data Mining with SAS Mathias Lanner [email protected] Copyright 2010 SAS Institute Inc. All rights reserved. Agenda Data mining Introduction Data mining applications Data mining techniques SEMMA
Federico Rajola. Customer Relationship. Management in the. Financial Industry. Organizational Processes and. Technology Innovation.
Federico Rajola Customer Relationship Management in the Financial Industry Organizational Processes and Technology Innovation Second edition ^ Springer Contents 1 Introduction 1 1.1 Identification and
Predictive Analytics in an hour: a no-nonsense quick guide
Predictive Analytics in an hour: a no-nonsense quick guide Jarlath Quinn Analytics Consultant Rachel Clinton Business Development www.sv-europe.com FAQ s Is this session being recorded? No Can I get a
Principles of Data Mining by Hand&Mannila&Smyth
Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences
Chapter 12 Discovering New Knowledge Data Mining
Chapter 12 Discovering New Knowledge Data Mining Becerra-Fernandez, et al. -- Knowledge Management 1/e -- 2004 Prentice Hall Additional material 2007 Dekai Wu Chapter Objectives Introduce the student to
Enhanced Boosted Trees Technique for Customer Churn Prediction Model
IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 03 (March. 2014), V5 PP 41-45 www.iosrjen.org Enhanced Boosted Trees Technique for Customer Churn Prediction
Deriving Value From Big Data Visual, Predictive, GeoLocation and Event Analytics
Deriving Value From Big Data Visual, Predictive, GeoLocation and Event Analytics Nick Young Solutions Consultant - APJ [email protected] Analytics Insight to Action Value Grow Revenue Reduce Risk Analytics
CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics
CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics Session map Session1 Session 2 Introduction The new focus on customer loyalty CRM and Business Intelligence CRM Marketing initiatives Session
Analyze It use cases in telecom & healthcare
Analyze It use cases in telecom & healthcare Chung Min Chen, VP of Data Science The views and opinions expressed in this presentation are those of the author and do not necessarily reflect the position
Master of Science in Marketing Analytics (MSMA)
Master of Science in Marketing Analytics (MSMA) COURSE DESCRIPTION The Master of Science in Marketing Analytics program teaches students how to become more engaged with consumers, how to design and deliver
Automated Predictive Analysis. Tomer Steinberg
Automated Predictive Analysis Tomer Steinberg Analytics solutions from SAP SAP Analytics Portfolio Cloud Mobile Agile Visualization Advanced Analytics Big Data Enterprise Business Intelligence Collaboration
Customer Relationship Management using SAS Software. Julian Kulkarni, SAS Europe Joanna Crosse, SAS UK
Relationship using SAS Software Julian Kulkarni, SAS Europe Joanna Crosse, SAS UK Relationship The Growing Pains... Complete CRM Business Model The Cycle Applications The growing pains of Mrs I. Deer,
Prediction of Stock Performance Using Analytical Techniques
136 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 2, MAY 2013 Prediction of Stock Performance Using Analytical Techniques Carol Hargreaves Institute of Systems Science National University
Predictive Modeling Techniques in Insurance
Predictive Modeling Techniques in Insurance Tuesday May 5, 2015 JF. Breton Application Engineer 2014 The MathWorks, Inc. 1 Opening Presenter: JF. Breton: 13 years of experience in predictive analytics
Easily Identify Your Best Customers
IBM SPSS Statistics Easily Identify Your Best Customers Use IBM SPSS predictive analytics software to gain insight from your customer database Contents: 1 Introduction 2 Exploring customer data Where do
Integrating CRM with ERP
Integrating CRM with ERP A by Benjamin Castro Copyright 2002, Baseline Consulting Group. All Rights Reserved. INTRODUCTION... 2 COMPANIES LOOKING FOR EFFICIENCY WILL TURN TO ERP VENDORS 3 COMPANIES LOOKING
Five Predictive Imperatives for Maximizing Customer Value
Executive Brief Five Predictive Imperatives for Maximizing Customer Value Applying Predictive Analytics to enhance customer relationship management Table of contents Executive summary...2 The five predictive
A Basic Guide to Modeling Techniques for All Direct Marketing Challenges
A Basic Guide to Modeling Techniques for All Direct Marketing Challenges Allison Cornia Database Marketing Manager Microsoft Corporation C. Olivia Rud Executive Vice President Data Square, LLC Overview
EVENT HISTORY AND MULTILEVEL ANALYSIS UNIT
WARSAW SCHOOL OF ECONOMICS EVENT HISTORY AND MULTILEVEL ANALYSIS UNIT HEADED BY PROFESSOR EWA FRĄTCZAK EVENT HISTORY & MULTILEVEL ANALYSIS UNIT The fact that our efforts are appreciated, motivates the
Customer and Business Analytic
Customer and Business Analytic Applied Data Mining for Business Decision Making Using R Daniel S. Putler Robert E. Krider CRC Press Taylor &. Francis Group Boca Raton London New York CRC Press is an imprint
Data Mining Algorithms and Techniques Research in CRM Systems
Data Mining Algorithms and Techniques Research in CRM Systems ADELA TUDOR, ADELA BARA, IULIANA BOTHA The Bucharest Academy of Economic Studies Bucharest ROMANIA {Adela_Lungu}@yahoo.com {Bara.Adela, Iuliana.Botha}@ie.ase.ro
DATA DATA: THE CORNERSTONE OF DIGITAL ADVERTISING
DATA DATA: THE CORNERSTONE OF DIGITAL ADVERTISING Grzegorz Sławatyński / nugg.ad Director CEE EUROPE S AUDIENCE EXPERTS Europe s largest targeting platform Since 2010 nugg.ad is a company of Co-operation
Customer Relationship Management (CRM)
Customer Relationship Management (CRM) Dr A. Albadvi Asst. Prof. Of IT Tarbiat Modarres University Information Technology Engineering Dept. Affiliate of Sharif University of Technology School of Management
Using SAS Enterprise Miner for Analytical CRM in Finance
Using SAS Enterprise Miner for Analytical CRM in Finance Sascha Schubert SAS EMEA Agenda Trends in Finance Industry Analytical CRM Case Study: Customer Attrition in Banking Future Outlook Trends in Finance
Cross Sell. Unlocking the value from your customer relationships. < PREVIOUS NEXT > CLOSE x PRINT. Visit our website: www.lbm.co.
Unlocking the value from your customer relationships < PREVIOUS NEXT > CLOSE x PRINT Call us: 0161 616 Call 0599 us: 0161 616 0599 When cross and up-selling to your customers you tread a fine-line. Get
Five Predictive Imperatives for Maximizing Customer Value
Five Predictive Imperatives for Maximizing Customer Value Applying predictive analytics to enhance customer relationship management Contents: 1 Customers rule the economy 1 Many CRM initiatives are failing
KnowledgeSTUDIO HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES
HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES Translating data into business value requires the right data mining and modeling techniques which uncover important patterns within
Business Analytics and Credit Scoring
Study Unit 5 Business Analytics and Credit Scoring ANL 309 Business Analytics Applications Introduction Process of credit scoring The role of business analytics in credit scoring Methods of logistic regression
Data Mining Techniques
15.564 Information Technology I Business Intelligence Outline Operational vs. Decision Support Systems What is Data Mining? Overview of Data Mining Techniques Overview of Data Mining Process Data Warehouses
Predictive Dynamix Inc
Predictive Modeling Technology Predictive modeling is concerned with analyzing patterns and trends in historical and operational data in order to transform data into actionable decisions. This is accomplished
Predictive Modeling and Big Data
Predictive Modeling and Presented by Eileen Burns, FSA, MAAA Milliman Agenda Current uses of predictive modeling in the life insurance industry Potential applications of 2 1 June 16, 2014 [Enter presentation
DATA MINING TECHNIQUES AND APPLICATIONS
DATA MINING TECHNIQUES AND APPLICATIONS Mrs. Bharati M. Ramageri, Lecturer Modern Institute of Information Technology and Research, Department of Computer Application, Yamunanagar, Nigdi Pune, Maharashtra,
How To Get More Business From Big Data And Analytics
ACQUIRE, GROW & RETAIN CUSTOMERS: The Business Imperative for BIG DATA & ANALYTICS INSIDESSS Introduction Page 2 The Four Benefits Page 3 Make Your Business Big Data & Analytics Driven Page 4 Acquire Page
CUSTOMER RELATIONSHIP MANAGEMENT CONCEPTS AND TECHNOLOGIES
CUSTOMER RELATIONSHIP MANAGEMENT CONCEPTS AND TECHNOLOGIES Chapter 1: Introduction to CRM Selected definitions of CRM 1 CRM is an information industry term for methodologies, software, and usually Internet
Predictive Analytics for Retail: Understanding Customer Behaviour
Predictive Analytics for Retail: Understanding Customer Behaviour Jarlath Quinn Analytics Consultant Rachel Clinton Business Development www.sv-europe.com FAQ s Is this session being recorded? No Can I
Predictive modelling around the world 28.11.13
Predictive modelling around the world 28.11.13 Agenda Why this presentation is really interesting Introduction to predictive modelling Case studies Conclusions Why this presentation is really interesting
Mobile Phone APP Software Browsing Behavior using Clustering Analysis
Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 Mobile Phone APP Software Browsing Behavior using Clustering Analysis
INDIAN STATISTICAL INSTITUTE announces Training Program on Statistical Techniques for Data Mining & Business Analytics
INDIAN STATISTICAL INSTITUTE announces Training Program on Statistical Techniques for Data Mining & Business Analytics Date: 29-31 August 2011 Venue : Indian Statistical Institute Bangalore Organized by:
Data are everywhere. IBM projects that every day we generate 2.5
C HAPTER 1 Big Data and Analytics Data are everywhere. IBM projects that every day we generate 2.5 quintillion bytes of data. 1 In relative terms, this means 90 percent of the data in the world has been
DISCOVER MERCHANT PREDICTOR MODEL
DISCOVER MERCHANT PREDICTOR MODEL A Proactive Approach to Merchant Retention Welcome to Different. A High-Level View of Merchant Attrition It s a well-known axiom of business that it costs a lot more to
A SAS White Paper: Implementing a CRM-based Campaign Management Strategy
A SAS White Paper: Implementing a CRM-based Campaign Management Strategy Table of Contents Introduction.......................................................................... 1 CRM and Campaign Management......................................................
Increasing Retail Banking Profitability through CRM: the UniCredito Italiano Case History
Increasing Retail Banking Profitability through CRM: the UniCredito Italiano Case History Giorgio Redemagni Marketing Information Systems Manager Paris, 2002 June 11-13 UNICREDITO ITALIANO GROUP OVERVIEW
EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER. Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d.
EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER ANALYTICS LIFECYCLE Evaluate & Monitor Model Formulate Problem Data Preparation Deploy Model Data Exploration Validate Models
Index Contents Page No. Introduction . Data Mining & Knowledge Discovery
Index Contents Page No. 1. Introduction 1 1.1 Related Research 2 1.2 Objective of Research Work 3 1.3 Why Data Mining is Important 3 1.4 Research Methodology 4 1.5 Research Hypothesis 4 1.6 Scope 5 2.
[Big]-Data Analytics for Businesses SESSION 1
Theos Evgeniou; Professor of Decision Sciences [Big]-Data Analytics for Businesses SESSION 1 Five Key Takeaways 1. It is now possible to make evidence based, data driven decisions in increasingly more
CRM: Making it Simple for the Banking Industry Aslam Chaudhry, SAS Institute Inc., Cary, NC
Paper 180-29 CRM: Making it Simple for the Banking Industry Aslam Chaudhry, SAS Institute Inc., Cary, NC ABSTRACT Executing Customer Relationship Management (CRM) for the financial and banking industry
ANALYTICS CENTER LEARNING PROGRAM
Overview of Curriculum ANALYTICS CENTER LEARNING PROGRAM The following courses are offered by Analytics Center as part of its learning program: Course Duration Prerequisites 1- Math and Theory 101 - Fundamentals
How2Guide. How Marketers Can Tap into Customer Data to Improve Customer Profitability and Campaign Effectiveness
How2Guide How Marketers Can Tap into Customer Data to Improve Customer Profitability and Campaign Effectiveness How Marketers Can Tap into Customer Data to Improve Customer Profitability and Campaign Effectiveness
CRM project. Business impact and technology challenges
CRM project Business impact and technology challenges 18/10/2012, Ms P. Koleva (Head of IT) & Mr. J. Stoyanov (Head of Change and Portfolio Management) Business case Build on: Improved cross selling; Improved
Adobe Analytics Premium Customer 360
Adobe Analytics Premium: Customer 360 1 Adobe Analytics Premium Customer 360 Adobe Analytics 2 Adobe Analytics Premium: Customer 360 Adobe Analytics Premium: Customer 360 3 Get a holistic view of your
Use of Data Mining in Banking
Use of Data Mining in Banking Kazi Imran Moin*, Dr. Qazi Baseer Ahmed** *(Department of Computer Science, College of Computer Science & Information Technology, Latur, (M.S), India ** (Department of Commerce
