Riding the Data Wave. New Capabilities New Techniques. Bill Chute Acadiant Limited
|
|
|
- Andrew Harrell
- 10 years ago
- Views:
Transcription
1 Riding the Data Wave New Capabilities New Techniques Bill Chute Acadiant Limited
2 There are new challenges New technologies are on your side 2
3 MiFID II & MIFIR Basel III NAV Volcker VaR Dodd-Frank MAD II & MIR FATCA EMIR 3
4 MiFID II & MIFIR MAD II & MIR Basel III Dodd-Frank EMIR Volcker FATCA NAV VaR Who loaned that security? Which transaction hedged that other transaction? Which model calculated that ratio? What s your exposure to? 4
5 Historic Scarcity Modern Abundance Constrained Storage Constrained CPU Constrained RAM Constrained Bandwidth Computing was Expensive Cheap Storage on Demand Cheap CPU on Demand Cheap RAM on Demand Cheap Bandwidth on Demand Unit Costs Tend Towards Zero Response to Scarcity: Structured Query Language Offline Storage Batch Processing Response to Abundance: NoSQL / Document Oriented DBs Online Archive Asynchronous Processing 5
6 Scarcity Built the Grid Row / Column was a crude, cheap way to organise data RDBMS, Spreadsheets, Fixed Data Formats Rigid Reporting Systems Time Grids coped with limited time, limited power Batch: gather once, process once BREAK THE GRID 6
7 BREAK THE GRID Exploit Mobile Social Technologies Loosely Structured Data Store everything, parse when needed Flexible Query Systems Asynchronous computing Process data whenever available 7
8 Ride That Wave NASDAQ OMX UltraFeed 8 hours per day: ~230GB per day Sustained 8Mbps, peaks ~3X to 4X Packed Binary, Optimised for Real-Time Trading Twitter Firehose 24 hours per day: ~900GB per day Sustained 10Mbps, peaks ~3X to 4X JSON, Optimised for Rich Data 8
9 What is in a tweet? Along with our new #Twitterbird, we've also updated our Display Guidelines: ^JC 9
10 What is in a tweet? 1. { 2. "coordinates": null, 3. "favorited": false, 4. "truncated": false, 5. "created_at": "Wed Jun 06 20:07: ", 6. "id_str": " ", 7. "entities": { 8. "urls": [ 9. { 10. "expanded_url": " 11. "url": " 12. "indices": [ , ], 16. "display_url": "dev.twitter.com/terms/display-\u2026" 17. } 18. ], 19. "hashtags": [ 20. { 21. "text": "Twitterbird", 22. "indices": [ , ] 26. } 27. ], 28. "user_mentions": [ ] 31. }, 32. "in_reply_to_user_id_str": null, 33. "contributors": [ ], 36. "text": "Along with our new #Twitterbird, we've also updated our Display Guidelines: ^JC", 37. "retweet_count": 66, 38. "in_reply_to_status_id_str": null, 101. "show_all_inline_media": false, 102. "screen_name": "twitterapi" 103. }, 104. "in_reply_to_screen_name": null, 105. "source": "web", 106. "in_reply_to_status_id": null 107. } 10
11 Process Data At Rest Use an Aggregation Framework like MapReduce Store in Structures like BigTable, Cassandra, DynamoDB, MongoDB Think About Your Data Server & Application Server Use many CPUs 11
12 Process Data At Rest Use an Aggregation Framework like MapReduce Store in Structures like BigTable, Cassandra, DynamoDB, MongoDB Think About Your Data Server & Application Server Use many CPUs And In Motion Update asynchronously. Do not wait for batch time. Use an Enterprise Service Bus Use many CPUs 11
13 Use the Cloud Unit Cost Tends Towards Zero 2ECU, 4GB RAM, 24x365: ECU, 60GB RAM, 24x365: 11,000 Data Warehouse 1TB: 600/year Online Archive 1TB: 100/year 12
14 Use the Cloud Security, Audit, Compliance Can Be Managed PPCI, ITAR, FIPS, HIPAA, ISO27001 An Opportunity for Enhanced Governance 13
15 Acadiant Every data element is timestamped and attributed for audit Nothing is ever deleted or overwritten History is always available Multilingual Multiple Character Sets Multi Currency 14
16 Acadiant Every data element is timestamped and attributed for audit Nothing is ever deleted or overwritten History is always available Multilingual Multiple Character Sets Multi Currency 14
17 Acadiant Every data element is timestamped and attributed for audit Nothing is ever deleted or overwritten History is always available Multilingual Multiple Character Sets Multi Currency 14
18 Acadiant Modern Graphics: SVG Server Side: Calculation and Storage Client Side: Display and Interaction 15
19 Back End Stack: Asynchronous Services Ruby Golang R MongoDB Node.js ESB Front End Stack: Asynchronous Mobile Clients HTML JavaScript Cascading Style Sheets Scalable Vector Graphics Intelligent Local Cache Protocols Optimised for High Latency Mobile Networks 16
20 A New Model for Collaboration Define a Product, Not a One-Off Fix Reduce Implementation Risk Scale Up From a Small Proof of Concept 17
21 Thank
Cognos Performance Troubleshooting
Cognos Performance Troubleshooting Presenters James Salmon Marketing Manager [email protected] Andy Ellis Senior BI Consultant [email protected] Want to ask a question?
Practical Cassandra. Vitalii Tymchyshyn [email protected] @tivv00
Practical Cassandra NoSQL key-value vs RDBMS why and when Cassandra architecture Cassandra data model Life without joins or HDD space is cheap today Hardware requirements & deployment hints Vitalii Tymchyshyn
Cloud Scale Distributed Data Storage. Jürmo Mehine
Cloud Scale Distributed Data Storage Jürmo Mehine 2014 Outline Background Relational model Database scaling Keys, values and aggregates The NoSQL landscape Non-relational data models Key-value Document-oriented
So What s the Big Deal?
So What s the Big Deal? Presentation Agenda Introduction What is Big Data? So What is the Big Deal? Big Data Technologies Identifying Big Data Opportunities Conducting a Big Data Proof of Concept Big Data
Open source large scale distributed data management with Google s MapReduce and Bigtable
Open source large scale distributed data management with Google s MapReduce and Bigtable Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory
GigaSpaces Real-Time Analytics for Big Data
GigaSpaces Real-Time Analytics for Big Data GigaSpaces makes it easy to build and deploy large-scale real-time analytics systems Rapidly increasing use of large-scale and location-aware social media and
Using distributed technologies to analyze Big Data
Using distributed technologies to analyze Big Data Abhijit Sharma Innovation Lab BMC Software 1 Data Explosion in Data Center Performance / Time Series Data Incoming data rates ~Millions of data points/
Database Scalability and Oracle 12c
Database Scalability and Oracle 12c Marcelle Kratochvil CTO Piction ACE Director All Data/Any Data [email protected] Warning I will be covering topics and saying things that will cause a rethink in
Comparison of the Frontier Distributed Database Caching System with NoSQL Databases
Comparison of the Frontier Distributed Database Caching System with NoSQL Databases Dave Dykstra [email protected] Fermilab is operated by the Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing
BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research &
BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research & Innovation 04-08-2011 to the EC 8 th February, Luxembourg Your Atos business Research technologists. and Innovation
Real World Hadoop Use Cases
Real World Hadoop Use Cases JFokus 2013, Stockholm Eva Andreasson, Cloudera Inc. Lars Sjödin, King.com 1 2012 Cloudera, Inc. Agenda Recap of Big Data and Hadoop Analyzing Twitter feeds with Hadoop Real
[Hadoop, Storm and Couchbase: Faster Big Data]
[Hadoop, Storm and Couchbase: Faster Big Data] With over 8,500 clients, LivePerson is the global leader in intelligent online customer engagement. With an increasing amount of agent/customer engagements,
Can the Elephants Handle the NoSQL Onslaught?
Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented
NoSQL: Going Beyond Structured Data and RDBMS
NoSQL: Going Beyond Structured Data and RDBMS Scenario Size of data >> disk or memory space on a single machine Store data across many machines Retrieve data from many machines Machine = Commodity machine
NoSQL Databases. Nikos Parlavantzas
!!!! NoSQL Databases Nikos Parlavantzas Lecture overview 2 Objective! Present the main concepts necessary for understanding NoSQL databases! Provide an overview of current NoSQL technologies Outline 3!
SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford
SQL VS. NO-SQL Adapted Slides from Dr. Jennifer Widom from Stanford 55 Traditional Databases SQL = Traditional relational DBMS Hugely popular among data analysts Widely adopted for transaction systems
ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat
ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web
NoSQL. Thomas Neumann 1 / 22
NoSQL Thomas Neumann 1 / 22 What are NoSQL databases? hard to say more a theme than a well defined thing Usually some or all of the following: no SQL interface no relational model / no schema no joins,
NOSQL INTRODUCTION WITH MONGODB AND RUBY GEOFF LANE <[email protected]> @GEOFFLANE
NOSQL INTRODUCTION WITH MONGODB AND RUBY GEOFF LANE @GEOFFLANE WHAT IS NOSQL? NON-RELATIONAL DATA STORAGE USUALLY SCHEMA-FREE ACCESS DATA WITHOUT SQL (THUS... NOSQL) WIDE-COLUMN / TABULAR
Preview of Oracle Database 12c In-Memory Option. Copyright 2013, Oracle and/or its affiliates. All rights reserved.
Preview of Oracle Database 12c In-Memory Option 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any
Preparing Your Data For Cloud
Preparing Your Data For Cloud Narinder Kumar Inphina Technologies 1 Agenda Relational DBMS's : Pros & Cons Non-Relational DBMS's : Pros & Cons Types of Non-Relational DBMS's Current Market State Applicability
NoSQL web apps. w/ MongoDB, Node.js, AngularJS. Dr. Gerd Jungbluth, NoSQL UG Cologne, 4.9.2013
NoSQL web apps w/ MongoDB, Node.js, AngularJS Dr. Gerd Jungbluth, NoSQL UG Cologne, 4.9.2013 About us Passionate (web) dev. since fallen in love with Sinclair ZX Spectrum Academic background in natural
An Approach to Implement Map Reduce with NoSQL Databases
www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 13635-13639 An Approach to Implement Map Reduce with NoSQL Databases Ashutosh
Big Data for everyone Democratizing big data with the cloud. Steffen Krause Technical Evangelist @AWS_Aktuell [email protected]
Big Data for everyone Democratizing big data with the cloud Steffen Krause Technical Evangelist @AWS_Aktuell [email protected] Does this Data make me look big? Overview Designing big data solutions in
NoSQL Databases. Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015
NoSQL Databases Institute of Computer Science Databases and Information Systems (DBIS) DB 2, WS 2014/2015 Database Landscape Source: H. Lim, Y. Han, and S. Babu, How to Fit when No One Size Fits., in CIDR,
THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES
THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES Vincent Garonne, Mario Lassnig, Martin Barisits, Thomas Beermann, Ralph Vigne, Cedric Serfon [email protected] [email protected] XLDB
GAIN BETTER INSIGHT FROM BIG DATA USING JBOSS DATA VIRTUALIZATION
GAIN BETTER INSIGHT FROM BIG DATA USING JBOSS DATA VIRTUALIZATION Syed Rasheed Solution Manager Red Hat Corp. Kenny Peeples Technical Manager Red Hat Corp. Kimberly Palko Product Manager Red Hat Corp.
Comparing SQL and NOSQL databases
COSC 6397 Big Data Analytics Data Formats (II) HBase Edgar Gabriel Spring 2015 Comparing SQL and NOSQL databases Types Development History Data Storage Model SQL One type (SQL database) with minor variations
MULTICULTURAL CONTENT MANAGEMENT SYSTEM
MULTICULTURAL CONTENT MANAGEMENT SYSTEM AT A GLANCE Language Partner s Multilingual Content Management System Meridium is multilingual content management system designed to fast track the process of multilingual
L7_L10. MongoDB. Big Data and Analytics by Seema Acharya and Subhashini Chellappan Copyright 2015, WILEY INDIA PVT. LTD.
L7_L10 MongoDB Agenda What is MongoDB? Why MongoDB? Using JSON Creating or Generating a Unique Key Support for Dynamic Queries Storing Binary Data Replication Sharding Terms used in RDBMS and MongoDB Data
Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software
WHITEPAPER Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software SanDisk ZetaScale software unlocks the full benefits of flash for In-Memory Compute and NoSQL applications
PHP and MongoDB Web Development Beginners Guide by Rubayeet Islam
PHP and MongoDB Web Development Beginners Guide by Rubayeet Islam Projects-Oriented Book Combine the power of PHP and MongoDB to build dynamic web 2.0 applications Learn to build PHP-powered dynamic web
MySQL for Beginners Ed 3
Oracle University Contact Us: 1.800.529.0165 MySQL for Beginners Ed 3 Duration: 4 Days What you will learn The MySQL for Beginners course helps you learn about the world's most popular open source database.
INTRODUCING DRUID: FAST AD-HOC QUERIES ON BIG DATA MICHAEL DRISCOLL - CEO ERIC TSCHETTER - LEAD ARCHITECT @ METAMARKETS
INTRODUCING DRUID: FAST AD-HOC QUERIES ON BIG DATA MICHAEL DRISCOLL - CEO ERIC TSCHETTER - LEAD ARCHITECT @ METAMARKETS MICHAEL E. DRISCOLL CEO @ METAMARKETS - @MEDRISCOLL Metamarkets is the bridge from
Current Data Security Issues of NoSQL Databases
1 Current Data Security Issues of NoSQL Databases January 2014 PAGE 1 PAGE 1 1 Fidelis Cybersecurity 1601 Trapelo Road, Suite 270 Waltham, MA 02451 Abstract NoSQL databases, sometimes referred as Not--
A Distributed Storage Schema for Cloud Computing based Raster GIS Systems. Presented by Cao Kang, Ph.D. Geography Department, Clark University
A Distributed Storage Schema for Cloud Computing based Raster GIS Systems Presented by Cao Kang, Ph.D. Geography Department, Clark University Cloud Computing and Distributed Database Management System
Real World Big Data Architecture - Splunk, Hadoop, RDBMS
Copyright 2015 Splunk Inc. Real World Big Data Architecture - Splunk, Hadoop, RDBMS Raanan Dagan, Big Data Specialist, Splunk Disclaimer During the course of this presentagon, we may make forward looking
NoSQL Database Systems and their Security Challenges
NoSQL Database Systems and their Security Challenges Morteza Amini [email protected] Data & Network Security Lab (DNSL) Department of Computer Engineering Sharif University of Technology September 25 2
Oracle Database - Engineered for Innovation. Sedat Zencirci Teknoloji Satış Danışmanlığı Direktörü Türkiye ve Orta Asya
Oracle Database - Engineered for Innovation Sedat Zencirci Teknoloji Satış Danışmanlığı Direktörü Türkiye ve Orta Asya Oracle Database 11g Release 2 Shipping since September 2009 11.2.0.3 Patch Set now
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
these three NoSQL databases because I wanted to see a the two different sides of the CAP
Michael Sharp Big Data CS401r Lab 3 For this paper I decided to do research on MongoDB, Cassandra, and Dynamo. I chose these three NoSQL databases because I wanted to see a the two different sides of the
Mule Enterprise Service Bus (ESB) Hosting
Enterprise web solutions G7 Service Definition Mule Enterprise Service Bus (ESB) Hosting t: 0845 519 5465 e: [email protected] w: www.axistwelve.com Page 1 of 7 Table of contents Overview... 3 Service...
Evaluation of NoSQL databases for large-scale decentralized microblogging
Evaluation of NoSQL databases for large-scale decentralized microblogging Cassandra & Couchbase Alexandre Fonseca, Anh Thu Vu, Peter Grman Decentralized Systems - 2nd semester 2012/2013 Universitat Politècnica
Real Time Big Data Processing
Real Time Big Data Processing Cloud Expo 2014 Ian Meyers Amazon Web Services Global Infrastructure Deployment & Administration App Services Analytics Compute Storage Database Networking AWS Global Infrastructure
The Cloud to the rescue!
The Cloud to the rescue! What the Google Cloud Platform can make for you Aja Hammerly, Developer Advocate twitter.com/thagomizer_rb So what is the cloud? The Google Cloud Platform The Google Cloud Platform
Learning Web App Development
Learning Web App Development Semmy Purewal Beijing Cambridge Farnham Kbln Sebastopol Tokyo O'REILLY Table of Contents Preface xi 1. The Workflow 1 Text Editors 1 Installing Sublime Text 2 Sublime Text
OBSERVEIT DEPLOYMENT SIZING GUIDE
OBSERVEIT DEPLOYMENT SIZING GUIDE The most important number that drives the sizing of an ObserveIT deployment is the number of Concurrent Connected Users (CCUs) you plan to monitor. This document provides
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 12
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases Lecture 12 Big Data Management II (NoSQL Databases / CouchDB) Chapter 20: Abiteboul et. Al. + http://guide.couchdb.org/
Making Sense ofnosql A GUIDE FOR MANAGERS AND THE REST OF US DAN MCCREARY MANNING ANN KELLY. Shelter Island
Making Sense ofnosql A GUIDE FOR MANAGERS AND THE REST OF US DAN MCCREARY ANN KELLY II MANNING Shelter Island contents foreword preface xvii xix acknowledgments xxi about this book xxii Part 1 Introduction
MongoDB: document-oriented database
MongoDB: document-oriented database Software Languages Team University of Koblenz-Landau Ralf Lämmel, Sebastian Jackel and Andrei Varanovich Motivation Need for a flexible schema High availability Scalability
Big Data Success Step 1: Get the Technology Right
Big Data Success Step 1: Get the Technology Right TOM MATIJEVIC Director, Business Development ANDY MCNALIS Director, Data Management & Integration MetaScale is a subsidiary of Sears Holdings Corporation
Scaling out a SharePoint Farm and Configuring Network Load Balancing on the Web Servers. Steve Smith Combined Knowledge MVP SharePoint Server
Scaling out a SharePoint Farm and Configuring Network Load Balancing on the Web Servers Steve Smith Combined Knowledge MVP SharePoint Server Scaling out a SharePoint Farm and Configuring Network Load Balancing
the missing log collector Treasure Data, Inc. Muga Nishizawa
the missing log collector Treasure Data, Inc. Muga Nishizawa Muga Nishizawa (@muga_nishizawa) Chief Software Architect, Treasure Data Treasure Data Overview Founded to deliver big data analytics in days
Cloud Big Data Architectures
Cloud Big Data Architectures Lynn Langit QCon Sao Paulo, Brazil 2016 About this Workshop Real-world Cloud Scenarios w/aws, Azure and GCP 1. Big Data Solution Types 2. Data Pipelines 3. ETL and Visualization
Apache HBase. Crazy dances on the elephant back
Apache HBase Crazy dances on the elephant back Roman Nikitchenko, 16.10.2014 YARN 2 FIRST EVER DATA OS 10.000 nodes computer Recent technology changes are focused on higher scale. Better resource usage
NoSQL Data Base Basics
NoSQL Data Base Basics Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu HDFS
Can Flash help you ride the Big Data Wave? Steve Fingerhut Vice President, Marketing Enterprise Storage Solutions Corporation
Can Flash help you ride the Big Data Wave? Steve Fingerhut Vice President, Marketing Enterprise Storage Solutions Corporation Forward-Looking Statements During our meeting today we may make forward-looking
Informatica Data Director Performance
Informatica Data Director Performance 2011 Informatica Abstract A variety of performance and stress tests are run on the Informatica Data Director to ensure performance and scalability for a wide variety
Introduction to Hbase Gkavresis Giorgos 1470
Introduction to Hbase Gkavresis Giorgos 1470 Agenda What is Hbase Installation About RDBMS Overview of Hbase Why Hbase instead of RDBMS Architecture of Hbase Hbase interface Summarise What is Hbase Hbase
Harnessing the Potential Raj Nair
Linking Structured and Unstructured Data Harnessing the Potential Raj Nair AGENDA Structured and Unstructured Data What s the distinction? The rise of Unstructured Data What s driving this? Big Data Use
Unlocking The Value of the Deep Web. Harvesting Big Data that Google Doesn t Reach
Unlocking The Value of the Deep Web Harvesting Big Data that Google Doesn t Reach Introduction Every day, untold millions search the web with Google, Bing and other search engines. The volumes truly are
Bigtable is a proven design Underpins 100+ Google services:
Mastering Massive Data Volumes with Hypertable Doug Judd Talk Outline Overview Architecture Performance Evaluation Case Studies Hypertable Overview Massively Scalable Database Modeled after Google s Bigtable
MongoDB. Or how I learned to stop worrying and love the database. Mathias Stearn. N*SQL Berlin October 22th, 2009. 10gen
What is? Or how I learned to stop worrying and love the database 10gen N*SQL Berlin October 22th, 2009 What is? 1 What is? Document Oriented JavaScript Enabled Fast, Scalable, Available, and Reliable 2
Big Data and Fast Data combined is it possible?
Big Data and Fast Data combined is it possible? Ulises Fasoli DBTA Workshop 2014 - Bern BASEL BERN BRUGG LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MÜNCHEN STUTTGART WIEN 1 Ulises
Moving From Hadoop to Spark
+ Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com [email protected] Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee
Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: [email protected] Website: www.qburst.com
Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...
CAPTURING & PROCESSING REAL-TIME DATA ON AWS
CAPTURING & PROCESSING REAL-TIME DATA ON AWS @ 2015 Amazon.com, Inc. and Its affiliates. All rights reserved. May not be copied, modified, or distributed in whole or in part without the express consent
PLATFORA INTERACTIVE, IN-MEMORY BUSINESS INTELLIGENCE FOR HADOOP
PLATFORA INTERACTIVE, IN-MEMORY BUSINESS INTELLIGENCE FOR HADOOP Your business is swimming in data, and your business analysts want to use it to answer the questions of today and tomorrow. YOU LOOK TO
Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB
Overview of Databases On MacOS Karl Kuehn Automation Engineer RethinkDB Session Goals Introduce Database concepts Show example players Not Goals: Cover non-macos systems (Oracle) Teach you SQL Answer what
Sisense. Product Highlights. www.sisense.com
Sisense Product Highlights Introduction Sisense is a business intelligence solution that simplifies analytics for complex data by offering an end-to-end platform that lets users easily prepare and analyze
API Analytics with Redis and Google Bigquery. javier ramirez @supercoco9
API Analytics with Redis and Google Bigquery REST API + AngularJS web as an API client obvious solution: use a ready-made service as 3scale or apigee 1. non intrusive metrics 2. keep the history
Sentimental Analysis using Hadoop Phase 2: Week 2
Sentimental Analysis using Hadoop Phase 2: Week 2 MARKET / INDUSTRY, FUTURE SCOPE BY ANKUR UPRIT The key value type basically, uses a hash table in which there exists a unique key and a pointer to a particular
Hurtownie Danych i Business Intelligence: Big Data
Hurtownie Danych i Business Intelligence: Big Data Robert Wrembel Politechnika Poznańska Instytut Informatyki [email protected] www.cs.put.poznan.pl/rwrembel Outline Introduction to Big Data
Primex Wireless OneVue Architecture Statement
Primex Wireless OneVue Architecture Statement Secure, cloud-based workflow, alert, and notification platform built on top of Amazon Web Services (AWS) 2015 Primex Wireless, Inc. The Primex logo is a registered
Vector Web Mapping Past, Present and Future. Jing Wang MRF Geosystems Corporation
Vector Web Mapping Past, Present and Future Jing Wang MRF Geosystems Corporation Oct 27, 2014 Terms Raster and Vector [1] Cells and Pixel Geometrical primitives 2 Early 2000s From static to interactive
August 2014 San Antonio Texas The Power of Embedded Analytics with SAP BusinessObjects
August 2014 San Antonio Texas The Power of Embedded Analytics with SAP BusinessObjects Speaker: Kevin McManus Founder, LaunchWorks Learning Points Eliminate effort and delay of moving data to the cloud
Comparing Scalable NOSQL Databases
Comparing Scalable NOSQL Databases Functionalities and Measurements Dory Thibault UCL Contact : [email protected] Sponsor : Euranova Website : nosqlbenchmarking.com February 15, 2011 Clarications
Not Relational Models For The Management of Large Amount of Astronomical Data. Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF)
Not Relational Models For The Management of Large Amount of Astronomical Data Bruno Martino (IASI/CNR), Memmo Federici (IAPS/INAF) What is a DBMS A Data Base Management System is a software infrastructure
RazorSafe Mail Archiving Appliances
RazorSafe Mail Archiving Appliances Product Overview Oct 2012 INTRODUCING RAZORSAFE Copyright (C) 2012 2 RAZORSAFE Overview Our fastest, most scalable and HIGHEST CAPACITY mail archiving appliances ever!
Big Data on AWS. Services Overview. Bernie Nallamotu Principle Solutions Architect
on AWS Services Overview Bernie Nallamotu Principle Solutions Architect \ So what is it? When your data sets become so large that you have to start innovating around how to collect, store, organize, analyze
HYPER-CONVERGED INFRASTRUCTURE STRATEGIES
1 HYPER-CONVERGED INFRASTRUCTURE STRATEGIES MYTH BUSTING & THE FUTURE OF WEB SCALE IT 2 ROADMAP INFORMATION DISCLAIMER EMC makes no representation and undertakes no obligations with regard to product planning
Cost-Effective Business Intelligence with Red Hat and Open Source
Cost-Effective Business Intelligence with Red Hat and Open Source Sherman Wood Director, Business Intelligence, Jaspersoft September 3, 2009 1 Agenda Introductions Quick survey What is BI?: reporting,
API documentation - 1 -
API documentation - 1 - Table of Contents 1. Introduction 1.1. What is an API 2. API Functions 2.1. Purge list of files 2.1.1 Description 2.1.2 Implementation 2.2. Purge of whole cache (all files on all
How To Choose Between A Relational Database Service From Aws.Com
The following text is partly taken from the Oracle book Middleware and Cloud Computing It is available from Amazon: http://www.amazon.com/dp/0980798000 Cloud Databases and Oracle When designing your cloud
SECURE Web Gateway Sizing Guide
Technical Guide Version 02 26/02/2015 Contents Introduction... 3 Overview... 3 Example one... 4 Example two... 4 Maximum throughput... 4 Gateway Reporter... 4 Gateway Reporter server specification... 5
Log Analysis: Overall Issues p. 1 Introduction p. 2 IT Budgets and Results: Leveraging OSS Solutions at Little Cost p. 2 Reporting Security
Foreword p. xvii Log Analysis: Overall Issues p. 1 Introduction p. 2 IT Budgets and Results: Leveraging OSS Solutions at Little Cost p. 2 Reporting Security Information to Management p. 5 Example of an
Ad Hoc Analysis of Big Data Visualization
Ad Hoc Analysis of Big Data Visualization Dean Yao Director of Marketing Greg Harris Systems Engineer Follow us @Jinfonet #BigDataWebinar JReport Highlights Advanced, Embedded Data Visualization Platform:
IBM Data Retrieval Technologies: RDBMS, BLU, IBM Netezza, and Hadoop
IBM Data Retrieval Technologies: RDBMS, BLU, IBM Netezza, and Hadoop Frank C. Fillmore, Jr. The Fillmore Group, Inc. Session Code: E13 Wed, May 06, 2015 (02:15 PM - 03:15 PM) Platform: Cross-platform Objectives
