Statistical Tools for Nonlinear Regression
|
|
|
- Roderick Hall
- 10 years ago
- Views:
Transcription
1 S. Huet A. Bouvier M.-A. Poursat E. Jolivet Statistical Tools for Nonlinear Regression A Practical Guide With S-PLUS and R Examples Second Edition Springer
2 Preface to the Second Edition Preface to the First Edition XI XIII 1 Nonlinear Regression Model and Parameter Estimation Examples Pasture Regrowth: Estimating a Growth Curve Radioimmunological Assay of Cortisol: Estimating a Calibration Curve Antibodies Anticoronavirus Assayed by an ELISA Test: Comparing Several Response Curves Comparison of Immature and Mature Goat Ovocytes: Comparing Parameters Isomerization: More than One Independent Variable The Parametric Nonlinear Regression Model Estimation Applications Pasture Regrowth: Parameter Estimation and Graph of Observed and Adjusted Response Values Cortisol Assay: Parameter Estimation and Graph of Observed and Adjusted Response Values ELISA Test: Parameter Estimation and Graph of Observed and Adjusted Curves for May and June Ovocytes: Parameter Estimation and Graph of Observed and Adjusted Volume of Mature and Immature Ovocytes in Propane-Diol Isomerization: Parameter Estimation and Graph of Adjusted versus Observed Values Conclusion and References Using nls2 18
3 Accuracy of Estimators, Confidence Intervals and Tests Examples Problem Formulation Solutions Classical Asymptotic Results Asymptotic Confidence Intervals for A Asymptotic Tests of A = Ao against A ^ Ao Asymptotic Tests of A6 = Lo against AO ^ L Bootstrap Estimations Applications Pasture Regrowth: Calculation of a Confidence Interval for the Maximum Yield Cortisol Assay: Estimation of the Accuracy of the Estimated Dose D ELISA Test: Comparison of Curves Ovocytes: Calculation of Confidence Regions Isomerization: An Awkward Example Pasture Regrowth: Calculation of a Confidence Interval for A = exp Conclusion Using nls2 49 Variance Estimation Examples Growth of Winter Wheat Tillers: Few Replications Solubility of Peptides in Trichloacetic Acid Solutions: No Replications Parametric Modeling of the Variance Estimation Maximum Likelihood Estimation Quasi-Likelihood Estimation Three-Step Estimation Tests and Confidence Regions The Wald Test The Likelihood Ratio Test Bootstrap Estimations Links Between Testing Procedures and Confidence Region Computations Confidence Regions Applications Growth of Winter Wheat Tillers Solubility of Peptides in Trichloacetic Acid Solutions Using nls2 83
4 VII Diagnostics of Model Misspecification Problem Formulation Diagnostics of Model Misspecincations with Graphics Pasture Regrowth Example: Estimation Using a Concave-Shaped Curve and Plot for Diagnostics Isomerization Example: Graphics for Diagnostic Peptides Example: Graphics for Diagnostic Cortisol Assay Example: How to Choose the Variance Function Using Replications Trajectory of Roots of Maize: How to Detect Correlations in Errors What Can We Say About the Experimental Design? Diagnostics of Model Misspecincations with Tests RIA of Cortisol: Comparison of Nested Models Tests Using Replications Cortisol Assay Example: Misspecification Tests Using Replications Ovocytes Example: Graphics of Residuais and Misspecification Tests Using Replications Numerical Troubles During the Estimation Process: Peptides Example Peptides Example: Concluded Using nls2 119 Calibration and Prediction Examples Problem Formulation Confidence Intervals Prediction of a Response Calibration with Constant Variances Calibration with Nonconstant Variances Applications Pasture Regrowth Example: Prediction of the Yield at Time x 0 = Cortisol Assay Example Nasturtium Assay Example i References Using nls2 145 Binomial Nonlinear Models Examples Assay of an Insecticide with a Synergist: A Binomial Nonlinear Model Vaso-Constriction in the Skin of the Digits: The Case of Binary Response Data 155
5 VIII Contents Mortality of Confused Flour Beetles: The Choice of a Link Function in a Binomial Linear Model Mortality of Confused Flour Beetles 2: Survival Analysis Using a Binomial Nonlinear Model Germination of Orobranche: Overdispersion The Parametric Binomial Nonlinear Model Overdispersion, Underdispersion Estimation Case of Binomial Nonlinear Models Case of Overdispersion or Underdispersion Tests and Confidence Regions Applications Assay of an Insecticide with a Synergist: Estimating the Parameters Vaso-Constriction in the Skin of the Digits: Estimation and Test of Nested Models Mortality of Confused Flour Beetles: Estimating the Link Function and Calculating Confidence Intervals for the LD Mortality of Confused Flour Beetles 2: Comparison of Curves and Confidence Intervals for the ED Germination of Orobranche: Estimating Overdispersion Using the Quasi-Likelihood Estimation Method Using nls Multinomial and Poisson Nonlinear Models Multinomial Model Pneumoconiosis among Coal Miners: An Example of Multicategory Response Data A Cheese Tasting Experiment The Parametric Multinomial Model Estimation in the Multinomial Model Tests and Confidence Intervals Pneumoconiosis among Coal Miners: The Multinomial Logit Model Cheese Tasting Example: Model Based on Cumulative Probabilities Using nls Poisson Model The Parametric Poisson Model Estimation in the Poisson Model Cortisol Assay Example: The Poisson Nonlinear Model Using nls2 225
6 IX References 227 Index 231 \
Statistical Rules of Thumb
Statistical Rules of Thumb Second Edition Gerald van Belle University of Washington Department of Biostatistics and Department of Environmental and Occupational Health Sciences Seattle, WA WILEY AJOHN
Regression Modeling Strategies
Frank E. Harrell, Jr. Regression Modeling Strategies With Applications to Linear Models, Logistic Regression, and Survival Analysis With 141 Figures Springer Contents Preface Typographical Conventions
SAS Software to Fit the Generalized Linear Model
SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
Statistics Graduate Courses
Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.
Adequacy of Biomath. Models. Empirical Modeling Tools. Bayesian Modeling. Model Uncertainty / Selection
Directions in Statistical Methodology for Multivariable Predictive Modeling Frank E Harrell Jr University of Virginia Seattle WA 19May98 Overview of Modeling Process Model selection Regression shape Diagnostics
Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i.
New York, NY, USA: Basic Books, 2013. p i. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=2 New York, NY, USA: Basic Books, 2013. p ii. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=3 New
QUANTITATIVE METHODS. for Decision Makers. Mik Wisniewski. Fifth Edition. FT Prentice Hall
Fifth Edition QUANTITATIVE METHODS for Decision Makers Mik Wisniewski Senior Research Fellow, Department of Management Science, University of Strathclyde Business School FT Prentice Hall FINANCIAL TIMES
Overview Classes. 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7)
Overview Classes 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7) 2-4 Loglinear models (8) 5-4 15-17 hrs; 5B02 Building and
Methods for Meta-analysis in Medical Research
Methods for Meta-analysis in Medical Research Alex J. Sutton University of Leicester, UK Keith R. Abrams University of Leicester, UK David R. Jones University of Leicester, UK Trevor A. Sheldon University
CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS
Examples: Regression And Path Analysis CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS Regression analysis with univariate or multivariate dependent variables is a standard procedure for modeling relationships
CHAPTER 8 EXAMPLES: MIXTURE MODELING WITH LONGITUDINAL DATA
Examples: Mixture Modeling With Longitudinal Data CHAPTER 8 EXAMPLES: MIXTURE MODELING WITH LONGITUDINAL DATA Mixture modeling refers to modeling with categorical latent variables that represent subpopulations
Software and Hardware Solutions for Accurate Data and Profitable Operations. Miguel J. Donald J. Chmielewski Contributor. DuyQuang Nguyen Tanth
Smart Process Plants Software and Hardware Solutions for Accurate Data and Profitable Operations Miguel J. Bagajewicz, Ph.D. University of Oklahoma Donald J. Chmielewski Contributor DuyQuang Nguyen Tanth
Assumptions. Assumptions of linear models. Boxplot. Data exploration. Apply to response variable. Apply to error terms from linear model
Assumptions Assumptions of linear models Apply to response variable within each group if predictor categorical Apply to error terms from linear model check by analysing residuals Normality Homogeneity
List of Examples. Examples 319
Examples 319 List of Examples DiMaggio and Mantle. 6 Weed seeds. 6, 23, 37, 38 Vole reproduction. 7, 24, 37 Wooly bear caterpillar cocoons. 7 Homophone confusion and Alzheimer s disease. 8 Gear tooth strength.
USE OF ARIMA TIME SERIES AND REGRESSORS TO FORECAST THE SALE OF ELECTRICITY
Paper PO10 USE OF ARIMA TIME SERIES AND REGRESSORS TO FORECAST THE SALE OF ELECTRICITY Beatrice Ugiliweneza, University of Louisville, Louisville, KY ABSTRACT Objectives: To forecast the sales made by
SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing [email protected]
SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing [email protected] IN SPSS SESSION 2, WE HAVE LEARNT: Elementary Data Analysis Group Comparison & One-way
Delme John Pritchard
THE GENETICS OF ALZHEIMER S DISEASE, MODELLING DISABILITY AND ADVERSE SELECTION IN THE LONGTERM CARE INSURANCE MARKET By Delme John Pritchard Submitted for the Degree of Doctor of Philosophy at HeriotWatt
Real-time PCR: Understanding C t
APPLICATION NOTE Real-Time PCR Real-time PCR: Understanding C t Real-time PCR, also called quantitative PCR or qpcr, can provide a simple and elegant method for determining the amount of a target sequence
Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus
Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives
How To Understand The Theory Of Probability
Graduate Programs in Statistics Course Titles STAT 100 CALCULUS AND MATR IX ALGEBRA FOR STATISTICS. Differential and integral calculus; infinite series; matrix algebra STAT 195 INTRODUCTION TO MATHEMATICAL
Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.
Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are
MANAGEMENT STUDIES (MBA) DETAILED SYLLABUS FOR PART A & B PART A GENERAL PAPER ON TEACHING AND RESEARCH APTITUDE
MANAGEMENT STUDIES (MBA) DETAILED SYLLABUS FOR PART A & B PART A GENERAL PAPER ON TEACHING AND RESEARCH APTITUDE PART-B I - Managerial Economics Nature and scope of Managerial Economics. Importance of
STAT 360 Probability and Statistics. Fall 2012
STAT 360 Probability and Statistics Fall 2012 1) General information: Crosslisted course offered as STAT 360, MATH 360 Semester: Fall 2012, Aug 20--Dec 07 Course name: Probability and Statistics Number
Analytical Test Method Validation Report Template
Analytical Test Method Validation Report Template 1. Purpose The purpose of this Validation Summary Report is to summarize the finding of the validation of test method Determination of, following Validation
2.500 Threshold. 2.000 1000e - 001. Threshold. Exponential phase. Cycle Number
application note Real-Time PCR: Understanding C T Real-Time PCR: Understanding C T 4.500 3.500 1000e + 001 4.000 3.000 1000e + 000 3.500 2.500 Threshold 3.000 2.000 1000e - 001 Rn 2500 Rn 1500 Rn 2000
SUMAN DUVVURU STAT 567 PROJECT REPORT
SUMAN DUVVURU STAT 567 PROJECT REPORT SURVIVAL ANALYSIS OF HEROIN ADDICTS Background and introduction: Current illicit drug use among teens is continuing to increase in many countries around the world.
Automated Biosurveillance Data from England and Wales, 1991 2011
Article DOI: http://dx.doi.org/10.3201/eid1901.120493 Automated Biosurveillance Data from England and Wales, 1991 2011 Technical Appendix This online appendix provides technical details of statistical
CONTENTS PREFACE 1 INTRODUCTION 1 2 DATA VISUALIZATION 19
PREFACE xi 1 INTRODUCTION 1 1.1 Overview 1 1.2 Definition 1 1.3 Preparation 2 1.3.1 Overview 2 1.3.2 Accessing Tabular Data 3 1.3.3 Accessing Unstructured Data 3 1.3.4 Understanding the Variables and Observations
STATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
THE CERTIFIED SIX SIGMA BLACK BELT HANDBOOK
THE CERTIFIED SIX SIGMA BLACK BELT HANDBOOK SECOND EDITION T. M. Kubiak Donald W. Benbow ASQ Quality Press Milwaukee, Wisconsin Table of Contents list of Figures and Tables Preface to the Second Edition
Statistics for Experimenters
Statistics for Experimenters Design, Innovation, and Discovery Second Edition GEORGE E. P. BOX J. STUART HUNTER WILLIAM G. HUNTER WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION FACHGEBIETSBGCHEREI
Applying Statistics Recommended by Regulatory Documents
Applying Statistics Recommended by Regulatory Documents Steven Walfish President, Statistical Outsourcing Services [email protected] 301-325 325-31293129 About the Speaker Mr. Steven
business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar
business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel
Linda K. Muthén Bengt Muthén. Copyright 2008 Muthén & Muthén www.statmodel.com. Table Of Contents
Mplus Short Courses Topic 2 Regression Analysis, Eploratory Factor Analysis, Confirmatory Factor Analysis, And Structural Equation Modeling For Categorical, Censored, And Count Outcomes Linda K. Muthén
EVALUATION OF PROBABILITY MODELS ON INSURANCE CLAIMS IN GHANA
EVALUATION OF PROBABILITY MODELS ON INSURANCE CLAIMS IN GHANA E. J. Dadey SSNIT, Research Department, Accra, Ghana S. Ankrah, PhD Student PGIA, University of Peradeniya, Sri Lanka Abstract This study investigates
Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES
Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations
ACTUARIAL MATHEMATICS FOR LIFE CONTINGENT RISKS
ACTUARIAL MATHEMATICS FOR LIFE CONTINGENT RISKS DAVID C. M. DICKSON University of Melbourne MARY R. HARDY University of Waterloo, Ontario V HOWARD R. WATERS Heriot-Watt University, Edinburgh CAMBRIDGE
Computer-Aided Multivariate Analysis
Computer-Aided Multivariate Analysis FOURTH EDITION Abdelmonem Af if i Virginia A. Clark and Susanne May CHAPMAN & HALL/CRC A CRC Press Company Boca Raton London New York Washington, D.C Contents Preface
L3: Statistical Modeling with Hadoop
L3: Statistical Modeling with Hadoop Feng Li [email protected] School of Statistics and Mathematics Central University of Finance and Economics Revision: December 10, 2014 Today we are going to learn...
Multinomial and Ordinal Logistic Regression
Multinomial and Ordinal Logistic Regression ME104: Linear Regression Analysis Kenneth Benoit August 22, 2012 Regression with categorical dependent variables When the dependent variable is categorical,
Elements of statistics (MATH0487-1)
Elements of statistics (MATH0487-1) Prof. Dr. Dr. K. Van Steen University of Liège, Belgium December 10, 2012 Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis -
APPLIED MISSING DATA ANALYSIS
APPLIED MISSING DATA ANALYSIS Craig K. Enders Series Editor's Note by Todd D. little THE GUILFORD PRESS New York London Contents 1 An Introduction to Missing Data 1 1.1 Introduction 1 1.2 Chapter Overview
Local classification and local likelihoods
Local classification and local likelihoods November 18 k-nearest neighbors The idea of local regression can be extended to classification as well The simplest way of doing so is called nearest neighbor
Bootstrapping Big Data
Bootstrapping Big Data Ariel Kleiner Ameet Talwalkar Purnamrita Sarkar Michael I. Jordan Computer Science Division University of California, Berkeley {akleiner, ameet, psarkar, jordan}@eecs.berkeley.edu
Multilevel Modelling of medical data
Statistics in Medicine(00). To appear. Multilevel Modelling of medical data By Harvey Goldstein William Browne And Jon Rasbash Institute of Education, University of London 1 Summary This tutorial presents
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences Third Edition Jacob Cohen (deceased) New York University Patricia Cohen New York State Psychiatric Institute and Columbia University
Multinomial Logistic Regression
Multinomial Logistic Regression Dr. Jon Starkweather and Dr. Amanda Kay Moske Multinomial logistic regression is used to predict categorical placement in or the probability of category membership on a
Using Repeated Measures Techniques To Analyze Cluster-correlated Survey Responses
Using Repeated Measures Techniques To Analyze Cluster-correlated Survey Responses G. Gordon Brown, Celia R. Eicheldinger, and James R. Chromy RTI International, Research Triangle Park, NC 27709 Abstract
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different
Guidance for Industry
Guidance for Industry Q2B Validation of Analytical Procedures: Methodology November 1996 ICH Guidance for Industry Q2B Validation of Analytical Procedures: Methodology Additional copies are available from:
PROBABILITY AND STATISTICS. Ma 527. 1. To teach a knowledge of combinatorial reasoning.
PROBABILITY AND STATISTICS Ma 527 Course Description Prefaced by a study of the foundations of probability and statistics, this course is an extension of the elements of probability and statistics introduced
Probit Analysis By: Kim Vincent
Probit Analysis By: Kim Vincent Quick Overview Probit analysis is a type of regression used to analyze binomial response variables. It transforms the sigmoid dose-response curve to a straight line that
2015 TUHH Online Summer School: Overview of Statistical and Path Modeling Analyses
: Overview of Statistical and Path Modeling Analyses Prof. Dr. Christian M. Ringle (Hamburg Univ. of Tech., TUHH) Prof. Dr. Jӧrg Henseler (University of Twente) Dr. Geoffrey Hubona (The Georgia R School)
Customer and Business Analytic
Customer and Business Analytic Applied Data Mining for Business Decision Making Using R Daniel S. Putler Robert E. Krider CRC Press Taylor &. Francis Group Boca Raton London New York CRC Press is an imprint
From the help desk: Bootstrapped standard errors
The Stata Journal (2003) 3, Number 1, pp. 71 80 From the help desk: Bootstrapped standard errors Weihua Guan Stata Corporation Abstract. Bootstrapping is a nonparametric approach for evaluating the distribution
Poisson Regression or Regression of Counts (& Rates)
Poisson Regression or Regression of (& Rates) Carolyn J. Anderson Department of Educational Psychology University of Illinois at Urbana-Champaign Generalized Linear Models Slide 1 of 51 Outline Outline
Generalized Linear Models
Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the
Multivariate Statistical Inference and Applications
Multivariate Statistical Inference and Applications ALVIN C. RENCHER Department of Statistics Brigham Young University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim
Regression with a Binary Dependent Variable
Regression with a Binary Dependent Variable Chapter 9 Michael Ash CPPA Lecture 22 Course Notes Endgame Take-home final Distributed Friday 19 May Due Tuesday 23 May (Paper or emailed PDF ok; no Word, Excel,
Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 )
Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 ) and Neural Networks( 類 神 經 網 路 ) 許 湘 伶 Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) LR Chap 10 1 / 35 13 Examples
SP10 From GLM to GLIMMIX-Which Model to Choose? Patricia B. Cerrito, University of Louisville, Louisville, KY
SP10 From GLM to GLIMMIX-Which Model to Choose? Patricia B. Cerrito, University of Louisville, Louisville, KY ABSTRACT The purpose of this paper is to investigate several SAS procedures that are used in
11. Analysis of Case-control Studies Logistic Regression
Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:
Efficient and Practical Econometric Methods for the SLID, NLSCY, NPHS
Efficient and Practical Econometric Methods for the SLID, NLSCY, NPHS Philip Merrigan ESG-UQAM, CIRPÉE Using Big Data to Study Development and Social Change, Concordia University, November 2103 Intro Longitudinal
PREDICTIVE DISTRIBUTIONS OF OUTSTANDING LIABILITIES IN GENERAL INSURANCE
PREDICTIVE DISTRIBUTIONS OF OUTSTANDING LIABILITIES IN GENERAL INSURANCE BY P.D. ENGLAND AND R.J. VERRALL ABSTRACT This paper extends the methods introduced in England & Verrall (00), and shows how predictive
CERTIFIED QUALITY ENGINEER (CQE) BODY OF KNOWLEDGE
CERTIFIED QUALITY ENGINEER (CQE) BODY OF KNOWLEDGE The topics in this Body of Knowledge include subtext explanations and the cognitive level at which the questions will be written. This information will
Applied Statistics. J. Blanchet and J. Wadsworth. Institute of Mathematics, Analysis, and Applications EPF Lausanne
Applied Statistics J. Blanchet and J. Wadsworth Institute of Mathematics, Analysis, and Applications EPF Lausanne An MSc Course for Applied Mathematicians, Fall 2012 Outline 1 Model Comparison 2 Model
Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing
15.1 The Structure of Generalized Linear Models
15 Generalized Linear Models Due originally to Nelder and Wedderburn (1972), generalized linear models are a remarkable synthesis and extension of familiar regression models such as the linear models described
Chapter 12 Discovering New Knowledge Data Mining
Chapter 12 Discovering New Knowledge Data Mining Becerra-Fernandez, et al. -- Knowledge Management 1/e -- 2004 Prentice Hall Additional material 2007 Dekai Wu Chapter Objectives Introduce the student to
Online Appendix to Are Risk Preferences Stable Across Contexts? Evidence from Insurance Data
Online Appendix to Are Risk Preferences Stable Across Contexts? Evidence from Insurance Data By LEVON BARSEGHYAN, JEFFREY PRINCE, AND JOSHUA C. TEITELBAUM I. Empty Test Intervals Here we discuss the conditions
Logistic regression modeling the probability of success
Logistic regression modeling the probability of success Regression models are usually thought of as only being appropriate for target variables that are continuous Is there any situation where we might
LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE
LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE MAT 119 STATISTICS AND ELEMENTARY ALGEBRA 5 Lecture Hours, 2 Lab Hours, 3 Credits Pre-
LOGIT AND PROBIT ANALYSIS
LOGIT AND PROBIT ANALYSIS A.K. Vasisht I.A.S.R.I., Library Avenue, New Delhi 110 012 [email protected] In dummy regression variable models, it is assumed implicitly that the dependent variable Y
Logistic Regression (a type of Generalized Linear Model)
Logistic Regression (a type of Generalized Linear Model) 1/36 Today Review of GLMs Logistic Regression 2/36 How do we find patterns in data? We begin with a model of how the world works We use our knowledge
Appendix H: Probability of Detection (POD) as a Statistical Model for the Validation of Qualitative Methods
Appendix H: Probability of Detection (POD) as a Statistical Model for the Validation of Qualitative Methods European validation organizations utilize ISO standard 16140:003(E), Protocol for the Validation
Third Edition. Philippe Jorion GARP. WILEY John Wiley & Sons, Inc.
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Third Edition Philippe Jorion GARP WILEY John Wiley & Sons, Inc.
Advanced Topics in Statistical Process Control
Advanced Topics in Statistical Process Control The Power of Shewhart s Charts Second Edition Donald J. Wheeler SPC Press Knoxville, Tennessee Contents Preface to the Second Edition Preface The Shewhart
Developing Risk Adjustment Techniques Using the SAS@ System for Assessing Health Care Quality in the lmsystem@
Developing Risk Adjustment Techniques Using the SAS@ System for Assessing Health Care Quality in the lmsystem@ Yanchun Xu, Andrius Kubilius Joint Commission on Accreditation of Healthcare Organizations,
NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
Economic Statistics (ECON2006), Statistics and Research Design in Psychology (PSYC2010), Survey Design and Analysis (SOCI2007)
COURSE DESCRIPTION Title Code Level Semester Credits 3 Prerequisites Post requisites Introduction to Statistics ECON1005 (EC160) I I None Economic Statistics (ECON2006), Statistics and Research Design
ACC 121 PRINCIPLES OF MANAGERIAL ACCOUNTING
PRINCIPLES OF MANAGERIAL ACCOUNTING COURSE DESCRIPTION: Prerequisites: ACC 120 Corequisites: None This course includes a greater emphasis on managerial and cost accounting skills. Emphasis is on managerial
UNDERGRADUATE DEGREE DETAILS : BACHELOR OF SCIENCE WITH
QATAR UNIVERSITY COLLEGE OF ARTS & SCIENCES Department of Mathematics, Statistics, & Physics UNDERGRADUATE DEGREE DETAILS : Program Requirements and Descriptions BACHELOR OF SCIENCE WITH A MAJOR IN STATISTICS
Introduction to Multilevel Modeling Using HLM 6. By ATS Statistical Consulting Group
Introduction to Multilevel Modeling Using HLM 6 By ATS Statistical Consulting Group Multilevel data structure Students nested within schools Children nested within families Respondents nested within interviewers
Probability and Statistics
Probability and Statistics Syllabus for the TEMPUS SEE PhD Course (Podgorica, April 4 29, 2011) Franz Kappel 1 Institute for Mathematics and Scientific Computing University of Graz Žaneta Popeska 2 Faculty
Using the Delta Method to Construct Confidence Intervals for Predicted Probabilities, Rates, and Discrete Changes
Using the Delta Method to Construct Confidence Intervals for Predicted Probabilities, Rates, Discrete Changes JunXuJ.ScottLong Indiana University August 22, 2005 The paper provides technical details on
ANNUITY LAPSE RATE MODELING: TOBIT OR NOT TOBIT? 1. INTRODUCTION
ANNUITY LAPSE RATE MODELING: TOBIT OR NOT TOBIT? SAMUEL H. COX AND YIJIA LIN ABSTRACT. We devise an approach, using tobit models for modeling annuity lapse rates. The approach is based on data provided
Validation of Internal Rating and Scoring Models
Validation of Internal Rating and Scoring Models Dr. Leif Boegelein Global Financial Services Risk Management [email protected] 07.09.2005 2005 EYGM Limited. All Rights Reserved. Agenda 1. Motivation
Statistics 3202 Introduction to Statistical Inference for Data Analytics 4-semester-hour course
Statistics 3202 Introduction to Statistical Inference for Data Analytics 4-semester-hour course Prerequisite: Stat 3201 (Introduction to Probability for Data Analytics) Exclusions: Class distribution:
A Bayesian hierarchical surrogate outcome model for multiple sclerosis
A Bayesian hierarchical surrogate outcome model for multiple sclerosis 3 rd Annual ASA New Jersey Chapter / Bayer Statistics Workshop David Ohlssen (Novartis), Luca Pozzi and Heinz Schmidli (Novartis)
Introduction to Financial Models for Management and Planning
CHAPMAN &HALL/CRC FINANCE SERIES Introduction to Financial Models for Management and Planning James R. Morris University of Colorado, Denver U. S. A. John P. Daley University of Colorado, Denver U. S.
VETERINARY SERVICES MEMORANDUM NO. 800.90
August 5, 1998 VETERINARY SERVICES MEMORANDUM NO. 800.90 Subject: To: Guidelines for Veterinary Biological Relative Potency Assays and Reference Preparations Based on ELISA Antigen Quantification Veterinary
It is important to bear in mind that one of the first three subscripts is redundant since k = i -j +3.
IDENTIFICATION AND ESTIMATION OF AGE, PERIOD AND COHORT EFFECTS IN THE ANALYSIS OF DISCRETE ARCHIVAL DATA Stephen E. Fienberg, University of Minnesota William M. Mason, University of Michigan 1. INTRODUCTION
ECON 523 Applied Econometrics I /Masters Level American University, Spring 2008. Description of the course
ECON 523 Applied Econometrics I /Masters Level American University, Spring 2008 Instructor: Maria Heracleous Lectures: M 8:10-10:40 p.m. WARD 202 Office: 221 Roper Phone: 202-885-3758 Office Hours: M W
