Data Mining: STATISTICA
|
|
|
- Vivien Gallagher
- 10 years ago
- Views:
Transcription
1 Data Mining: STATISTICA Outline Prepare the data Classification and regression 1
2 Prepare the Data Statistica can read from Excel,.txt and many other types of files Compared with WEKA, Statistica is much easier in terms of data preparing Open an Excel File Click the Import selected sheet to Spreadsheet Select the desired Excel sheet where your data is stored Get variable names from the first row 2
3 Open an Excel File Change variable type Open an Excel File Change variable type 3
4 Classification and Regression C&RT Boosting tree Neural Networks C&RT Classification Iris data is used as a example data set 4
5 C&RT Classification Click Data Mining menu and find the Interactive Trees C&RT Classification View the final tree and understand the results 5
6 C&RT---Regression Use the CPU data set and select the regression analysis Don t check it Regression tree structure C&RT---Regression 6
7 C&RT---Regression Predicted values Boosting tree Classification In Data Mining menu and find the Boosted Trees 7
8 Boosting tree Classification See the results and predictor s importance Boosting tree Classification See the results and predictor s importance 8
9 CPU data set Boosting tree Regression Boosting tree Regression See the results and predictor s importance Predicted values 9
10 Boosting tree Regression See the results of Observed values vs. Predicted values Boosting tree Regression See the results and predictor s importance 10
11 Neural Networks Classification In Data Mining menu and find the Automated Neural Networks Neural Networks Classification Choose Classification, then select variables 11
12 Neural Networks Classification Statistica will try a set of different neural networks and keep the best ones Neural Networks Classification See the classification results 12
13 Neural Networks Classification See the classification results---predictions Neural Networks Classification See the classification results---predictions 13
14 Neural Networks Classification See the classification results---confusion matrix Neural Networks Regression CPU data set 14
15 Neural Networks Regression CPU data set, select variables Neural Networks Regression Training and results 15
16 Neural Networks Regression Predictions Neural Networks Regression Some statistics about the predictions 16
Example 3: Predictive Data Mining and Deployment for a Continuous Output Variable
Página 1 de 6 Example 3: Predictive Data Mining and Deployment for a Continuous Output Variable STATISTICA Data Miner includes a complete deployment engine with various options for deploying solutions
STATISTICA. Financial Institutions. Case Study: Credit Scoring. and
Financial Institutions and STATISTICA Case Study: Credit Scoring STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table of Contents INTRODUCTION: WHAT
How to Deploy Models using Statistica SVB Nodes
How to Deploy Models using Statistica SVB Nodes Abstract Dell Statistica is an analytics software package that offers data preparation, statistics, data mining and predictive analytics, machine learning,
Data Mining III: Numeric Estimation
Data Mining III: Numeric Estimation Computer Science 105 Boston University David G. Sullivan, Ph.D. Review: Numeric Estimation Numeric estimation is like classification learning. it involves learning a
COC131 Data Mining - Clustering
COC131 Data Mining - Clustering Martin D. Sykora [email protected] Tutorial 05, Friday 20th March 2009 1. Fire up Weka (Waikako Environment for Knowledge Analysis) software, launch the explorer window
Predicting Student Persistence Using Data Mining and Statistical Analysis Methods
Predicting Student Persistence Using Data Mining and Statistical Analysis Methods Koji Fujiwara Office of Institutional Research and Effectiveness Bemidji State University & Northwest Technical College
In this presentation, you will be introduced to data mining and the relationship with meaningful use.
In this presentation, you will be introduced to data mining and the relationship with meaningful use. Data mining refers to the art and science of intelligent data analysis. It is the application of machine
Data Mining Part 5. Prediction
Data Mining Part 5. Prediction 5.7 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Linear Regression Other Regression Models References Introduction Introduction Numerical prediction is
2 Decision tree + Cross-validation with R (package rpart)
1 Subject Using cross-validation for the performance evaluation of decision trees with R, KNIME and RAPIDMINER. This paper takes one of our old study on the implementation of cross-validation for assessing
not possible or was possible at a high cost for collecting the data.
Data Mining and Knowledge Discovery Generating knowledge from data Knowledge Discovery Data Mining White Paper Organizations collect a vast amount of data in the process of carrying out their day-to-day
from Larson Text By Susan Miertschin
Decision Tree Data Mining Example from Larson Text By Susan Miertschin 1 Problem The Maximum Miniatures Marketing Department wants to do a targeted mailing gpromoting the Mythic World line of figurines.
The Predictive Data Mining Revolution in Scorecards:
January 13, 2013 StatSoft White Paper The Predictive Data Mining Revolution in Scorecards: Accurate Risk Scoring via Ensemble Models Summary Predictive modeling methods, based on machine learning algorithms
Deployment of Predictive Models. Sumit Kumar Bardhan
Deployment of Predictive Models Sumit Kumar Bardhan For more Information about Predictive Analytics Software, please visit our web site http://www.predictiveanalytics.in or contact Predictive Analytics
2. A typical business process
I. Basic Concepts on ERP 1. Enterprise resource planning (ERP) Enterprise resource planning (ERP) is the planning of how business resources (materials, employees, customers etc.) are acquired and moved
Data Mining with Weka
Data Mining with Weka Class 1 Lesson 1 Introduction Ian H. Witten Department of Computer Science University of Waikato New Zealand weka.waikato.ac.nz Data Mining with Weka a practical course on how to
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
Data Mining. Nonlinear Classification
Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15
EXCEL XML SPREADSHEET TUTORIAL
EXCEL XML SPREADSHEET TUTORIAL In this document we are going to work with our Excel XML spreadsheet that we used in Video 1. You have now identified your shoe products and have one image of each of these
Predictive Modeling and Big Data
Predictive Modeling and Presented by Eileen Burns, FSA, MAAA Milliman Agenda Current uses of predictive modeling in the life insurance industry Potential applications of 2 1 June 16, 2014 [Enter presentation
Predictive Analytics: The Postsecondary Use Case
Predictive Analytics: The Postsecondary Use Case The Association Conference August 2, 2013 Heidi Hiemstra, Ph.D. Associate Director, Research [email protected] What is Predictive Analytics?
Community College Transfer Students Persistence at University
Community College Transfer Students Persistence at University Alexandra List Denise Nadasen University of Maryland University College Presented at Northeast Association for Institutional Research, November
How To Understand How Weka Works
More Data Mining with Weka Class 1 Lesson 1 Introduction Ian H. Witten Department of Computer Science University of Waikato New Zealand weka.waikato.ac.nz More Data Mining with Weka a practical course
Predictive Analytics Techniques: What to Use For Your Big Data. March 26, 2014 Fern Halper, PhD
Predictive Analytics Techniques: What to Use For Your Big Data March 26, 2014 Fern Halper, PhD Presenter Proven Performance Since 1995 TDWI helps business and IT professionals gain insight about data warehousing,
Data Mining. SPSS Clementine 12.0. 1. Clementine Overview. Spring 2010 Instructor: Dr. Masoud Yaghini. Clementine
Data Mining SPSS 12.0 1. Overview Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Types of Models Interface Projects References Outline Introduction Introduction Three of the common data mining
Data Mining Part 5. Prediction
Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification
Knowledge Discovery and Data Mining
Knowledge Discovery and Data Mining Unit # 11 Sajjad Haider Fall 2013 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right
Data Mining for Customer Service Support. Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin
Data Mining for Customer Service Support Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin Traditional Hotline Services Problem Traditional Customer Service Support (manufacturing)
ID-Spec Large boosts your performance in electrical distribution design :
Large V2.0 Software for Electrical Distribution Installation Design in Industrial and Tertiary Buildings Part of of Schneider Electric software series for Designers ID-Spec Large boosts your performance
testo dello schema Secondo livello Terzo livello Quarto livello Quinto livello
Extracting Knowledge from Biomedical Data through Logic Learning Machines and Rulex Marco Muselli Institute of Electronics, Computer and Telecommunication Engineering National Research Council of Italy,
Index Contents Page No. Introduction . Data Mining & Knowledge Discovery
Index Contents Page No. 1. Introduction 1 1.1 Related Research 2 1.2 Objective of Research Work 3 1.3 Why Data Mining is Important 3 1.4 Research Methodology 4 1.5 Research Hypothesis 4 1.6 Scope 5 2.
What is Data Mining? Data Mining (Knowledge discovery in database) Data mining: Basic steps. Mining tasks. Classification: YES, NO
What is Data Mining? Data Mining (Knowledge discovery in database) Data Mining: "The non trivial extraction of implicit, previously unknown, and potentially useful information from data" William J Frawley,
Keywords Data mining, Classification Algorithm, Decision tree, J48, Random forest, Random tree, LMT, WEKA 3.7. Fig.1. Data mining techniques.
International Journal of Emerging Research in Management &Technology Research Article October 2015 Comparative Study of Various Decision Tree Classification Algorithm Using WEKA Purva Sewaiwar, Kamal Kant
Audit Analytics. --An innovative course at Rutgers. Qi Liu. Roman Chinchila
Audit Analytics --An innovative course at Rutgers Qi Liu Roman Chinchila A new certificate in Analytic Auditing Tentative courses: Audit Analytics Special Topics in Audit Analytics Forensic Accounting
Benchmarking of different classes of models used for credit scoring
Benchmarking of different classes of models used for credit scoring We use this competition as an opportunity to compare the performance of different classes of predictive models. In particular we want
Overview, Goals, & Introductions
Improving the Retail Experience with Predictive Analytics www.spss.com/perspectives Overview, Goals, & Introductions Goal: To present the Retail Business Maturity Model Equip you with a plan of attack
Promises and Pitfalls of Big-Data-Predictive Analytics: Best Practices and Trends
Promises and Pitfalls of Big-Data-Predictive Analytics: Best Practices and Trends Spring 2015 Thomas Hill, Ph.D. VP Analytic Solutions Dell Statistica Overview and Agenda Dell Software overview Dell in
Creating a Distribution List from an Excel Spreadsheet
Creating a Distribution List from an Excel Spreadsheet Create the list of information in Excel Create an excel spreadsheet. The following sample file has the person s first name, last name and email address
Welcome. Data Mining: Updates in Technologies. Xindong Wu. Colorado School of Mines Golden, Colorado 80401, USA
Welcome Xindong Wu Data Mining: Updates in Technologies Dept of Math and Computer Science Colorado School of Mines Golden, Colorado 80401, USA Email: xwu@ mines.edu Home Page: http://kais.mines.edu/~xwu/
Université de Montpellier 2 Hugo Alatrista-Salas : [email protected]
Université de Montpellier 2 Hugo Alatrista-Salas : [email protected] WEKA Gallirallus Zeland) australis : Endemic bird (New Characteristics Waikato university Weka is a collection
Deep Learning For Text Processing
Deep Learning For Text Processing Jeffrey A. Bilmes Professor Departments of Electrical Engineering & Computer Science and Engineering University of Washington, Seattle http://melodi.ee.washington.edu/~bilmes
Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features
Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features Charlie Berger, MS Eng, MBA Sr. Director Product Management, Data Mining and Advanced Analytics [email protected] www.twitter.com/charliedatamine
Using Microsoft Excel to Plot and Analyze Kinetic Data
Entering and Formatting Data Using Microsoft Excel to Plot and Analyze Kinetic Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page (Figure 1). Type
Creating an Excel Database for a Mail Merge on a PC. Excel Spreadsheet Mail Merge. 0 of 8 Mail merge (PC)
Creating an Excel Database for a Mail Merge on a PC Excel Spreadsheet Mail Merge 0 of 8 Creating an Excel Database for a Mail Merge on a PC 1. To create a database for a mail merge you will first need
DATA MINING TOOL FOR INTEGRATED COMPLAINT MANAGEMENT SYSTEM WEKA 3.6.7
DATA MINING TOOL FOR INTEGRATED COMPLAINT MANAGEMENT SYSTEM WEKA 3.6.7 UNDER THE GUIDANCE Dr. N.P. DHAVALE, DGM, INFINET Department SUBMITTED TO INSTITUTE FOR DEVELOPMENT AND RESEARCH IN BANKING TECHNOLOGY
Tutorial Segmentation and Classification
MARKETING ENGINEERING FOR EXCEL TUTORIAL VERSION 1.0.8 Tutorial Segmentation and Classification Marketing Engineering for Excel is a Microsoft Excel add-in. The software runs from within Microsoft Excel
Weight of Evidence Module
Formula Guide The purpose of the Weight of Evidence (WoE) module is to provide flexible tools to recode the values in continuous and categorical predictor variables into discrete categories automatically,
Oracle Data Miner (Extension of SQL Developer 4.0)
An Oracle White Paper October 2013 Oracle Data Miner (Extension of SQL Developer 4.0) Generate a PL/SQL script for workflow deployment Denny Wong Oracle Data Mining Technologies 10 Van de Graff Drive Burlington,
Data Mining and Visualization
Data Mining and Visualization Jeremy Walton NAG Ltd, Oxford Overview Data mining components Functionality Example application Quality control Visualization Use of 3D Example application Market research
Building In-Database Predictive Scoring Model: Check Fraud Detection Case Study
Building In-Database Predictive Scoring Model: Check Fraud Detection Case Study Jay Zhou, Ph.D. Business Data Miners, LLC 978-726-3182 [email protected] Web Site: www.businessdataminers.com
APPLICATION PROGRAMMING: DATA MINING AND DATA WAREHOUSING
Wrocław University of Technology Internet Engineering Henryk Maciejewski APPLICATION PROGRAMMING: DATA MINING AND DATA WAREHOUSING PRACTICAL GUIDE Wrocław (2011) 1 Copyright by Wrocław University of Technology
Record Keeping FOR A SMALL BUSINESS
Record Keeping FOR A SMALL BUSINESS Welcome 1. Agenda 2. Ground Rules 3. Introductions RECORD KEEPING 2 Objectives Explain the concept of record keeping and its importance to small businesses Identify
Quantrix & Excel: 3 Key Differences A QUANTRIX WHITE PAPER
Quantrix & Excel: 3 Key Differences A QUANTRIX WHITE PAPER Abstract This whitepaper is designed to educate spreadsheet users about three key conceptual and practical differences between Quantrix Modeler
Data Mining Applications in Higher Education
Executive report Data Mining Applications in Higher Education Jing Luan, PhD Chief Planning and Research Officer, Cabrillo College Founder, Knowledge Discovery Laboratories Table of contents Introduction..............................................................2
Using multiple models: Bagging, Boosting, Ensembles, Forests
Using multiple models: Bagging, Boosting, Ensembles, Forests Bagging Combining predictions from multiple models Different models obtained from bootstrap samples of training data Average predictions or
Introduction to Microsoft Access 2003
Introduction to Microsoft Access 2003 Zhi Liu School of Information Fall/2006 Introduction and Objectives Microsoft Access 2003 is a powerful, yet easy to learn, relational database application for Microsoft
Data analysis and regression in Stata
Data analysis and regression in Stata This handout shows how the weekly beer sales series might be analyzed with Stata (the software package now used for teaching stats at Kellogg), for purposes of comparing
Quality Control of National Genetic Evaluation Results Using Data-Mining Techniques; A Progress Report
Quality Control of National Genetic Evaluation Results Using Data-Mining Techniques; A Progress Report G. Banos 1, P.A. Mitkas 2, Z. Abas 3, A.L. Symeonidis 2, G. Milis 2 and U. Emanuelson 4 1 Faculty
Merging Labels, Letters, and Envelopes Word 2013
Merging Labels, Letters, and Envelopes Word 2013 Merging... 1 Types of Merges... 1 The Merging Process... 2 Labels - A Page of the Same... 2 Labels - A Blank Page... 3 Creating Custom Labels... 3 Merged
Equity forecast: Predicting long term stock price movement using machine learning
Equity forecast: Predicting long term stock price movement using machine learning Nikola Milosevic School of Computer Science, University of Manchester, UK [email protected] Abstract Long
Estimating a market model: Step-by-step Prepared by Pamela Peterson Drake Florida Atlantic University
Estimating a market model: Step-by-step Prepared by Pamela Peterson Drake Florida Atlantic University The purpose of this document is to guide you through the process of estimating a market model for the
Ensembles and PMML in KNIME
Ensembles and PMML in KNIME Alexander Fillbrunn 1, Iris Adä 1, Thomas R. Gabriel 2 and Michael R. Berthold 1,2 1 Department of Computer and Information Science Universität Konstanz Konstanz, Germany [email protected]
A Basic Guide to Modeling Techniques for All Direct Marketing Challenges
A Basic Guide to Modeling Techniques for All Direct Marketing Challenges Allison Cornia Database Marketing Manager Microsoft Corporation C. Olivia Rud Executive Vice President Data Square, LLC Overview
About Dell Statistica 12.6... 2
Complete Product Name with Trademarks Version Dell TM Statistica TM 12.6 Contents Dell TM Statistica TM... 1 About Dell Statistica 12.6... 2 New Features... 2 Workspace Enhancements: Statistica Enterprise
Chapter 6. The stacking ensemble approach
82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described
WPS USER GUIDE FOR TRAVEL AGENCIES
WPS USER GUIDE FOR TRAVEL AGENCIES A StarwoodPro.com and WPS resource www.wpsnetwork.com Index 1. WPS NETWORK INTRODUCTION 2. LOG IN AT WPS NETWORK 3. HOME- MAIN MENU 4. WPS NETWORK SERVICES: 4.1 Your
A Guide to Getting Started with the AmeriCorps VISTA Applicant Tracking Tool
A Guide to Getting Started with the AmeriCorps VISTA Applicant Tracking Tool The AmeriCorps VISTA Applicant Tracking Tool will help you stay organized, monitor all the necessary steps, and record applicant
A Case of Study on Hadoop Benchmark Behavior Modeling Using ALOJA-ML
www.bsc.es A Case of Study on Hadoop Benchmark Behavior Modeling Using ALOJA-ML Josep Ll. Berral, Nicolas Poggi, David Carrera Workshop on Big Data Benchmarks Toronto, Canada 2015 1 Context ALOJA: framework
Data mining techniques: decision trees
Data mining techniques: decision trees 1/39 Agenda Rule systems Building rule systems vs rule systems Quick reference 2/39 1 Agenda Rule systems Building rule systems vs rule systems Quick reference 3/39
Azure Machine Learning, SQL Data Mining and R
Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:
Budgeting in QuickBooks
Budgeting in QuickBooks Using a budget to plan the expenditure of wing funds helps the wing identify needs along with the ability to analyze the resources necessary to meet those needs. As with any plan,
Knowledge Discovery and Data Mining
Knowledge Discovery and Data Mining Unit # 10 Sajjad Haider Fall 2012 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right
BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376
Course Director: Dr. Kayvan Najarian (DCM&B, [email protected]) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.
Data Mining: Overview. What is Data Mining?
Data Mining: Overview What is Data Mining? Recently * coined term for confluence of ideas from statistics and computer science (machine learning and database methods) applied to large databases in science,
Data Mining with SQL Server Data Tools
Data Mining with SQL Server Data Tools Data mining tasks include classification (directed/supervised) models as well as (undirected/unsupervised) models of association analysis and clustering. 1 Data Mining
Qi Liu Rutgers Business School ISACA New York 2013
Qi Liu Rutgers Business School ISACA New York 2013 1 What is Audit Analytics The use of data analysis technology in Auditing. Audit analytics is the process of identifying, gathering, validating, analyzing,
Data Warehousing and Data Mining in Business Applications
133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business
Virginia s Department of Minority Business Enterprise
Virginia s Department of Minority Business Enterprise SWaM/SDV Dashboard User Manual Note: To view the expenditures and analysis on the Dashboard, a logon name and password is not required. It is required
How to Use the Cash Flow Template
How to Use the Cash Flow Template When you fill in your cash flow you are trying to predict the timing of cash in and out of your bank account to show the affect and timing for each transaction when it
2011 Data Miner Survey Highlights
Predictive Analytics World New York, NY October 2011 2011 Data Miner Survey Highlights The Views of 1,319 Data Miners Karl Rexer, PhD President Rexer Analytics www.rexeranalytics.com 2011 Data Miner Survey:
Excel Tutorial. Bio 150B Excel Tutorial 1
Bio 15B Excel Tutorial 1 Excel Tutorial As part of your laboratory write-ups and reports during this semester you will be required to collect and present data in an appropriate format. To organize and
New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction
Introduction New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.
Today's Topics. COMP 388/441: Human-Computer Interaction. simple 2D plotting. 1D techniques. Ancient plotting techniques. Data Visualization:
COMP 388/441: Human-Computer Interaction Today's Topics Overview of visualization techniques 1D charts, 2D plots, 3D+ techniques, maps A few guidelines for scientific visualization methods, guidelines,
Improving Demand Forecasting
Improving Demand Forecasting 2 nd July 2013 John Tansley - CACI Overview The ideal forecasting process: Efficiency, transparency, accuracy Managing and understanding uncertainty: Limits to forecast accuracy,
Chapter Quarterly Financial Report Instructions (Quarterly Format)
Chapter Quarterly Financial Report Instructions (Quarterly Format) Chapters are expected to maintain 100% compliance with reporting requirements to National. This is important because chapters are organized
Creating a Gradebook in Excel
Creating a Spreadsheet Gradebook 1 Creating a Gradebook in Excel Spreadsheets are a great tool for creating gradebooks. With a little bit of work, you can create a customized gradebook that will provide
Management Decision Making. Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011
Management Decision Making Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011 Management decision making Decision making Spreadsheet exercise Data visualization,
Lowering social cost of car accidents by predicting high-risk drivers
Lowering social cost of car accidents by predicting high-risk drivers Vannessa Peng Davin Tsai Shu-Min Yeh Why we do this? Traffic accident happened every day. In order to decrease the number of traffic
Studying Auto Insurance Data
Studying Auto Insurance Data Ashutosh Nandeshwar February 23, 2010 1 Introduction To study auto insurance data using traditional and non-traditional tools, I downloaded a well-studied data from http://www.statsci.org/data/general/motorins.
BOR 6335 Data Mining. Course Description. Course Bibliography and Required Readings. Prerequisites
BOR 6335 Data Mining Course Description This course provides an overview of data mining and fundamentals of using RapidMiner and OpenOffice open access software packages to develop data mining models.
EXCEL Tutorial: How to use EXCEL for Graphs and Calculations.
EXCEL Tutorial: How to use EXCEL for Graphs and Calculations. Excel is powerful tool and can make your life easier if you are proficient in using it. You will need to use Excel to complete most of your
In this tutorial, we try to build a roc curve from a logistic regression.
Subject In this tutorial, we try to build a roc curve from a logistic regression. Regardless the software we used, even for commercial software, we have to prepare the following steps when we want build
DECISION TREE ANALYSIS: PREDICTION OF SERIOUS TRAFFIC OFFENDING
DECISION TREE ANALYSIS: PREDICTION OF SERIOUS TRAFFIC OFFENDING ABSTRACT The objective was to predict whether an offender would commit a traffic offence involving death, using decision tree analysis. Four
