Electrical Engineering
|
|
|
- Elfreda Hopkins
- 10 years ago
- Views:
Transcription
1 College of Science, Engineering and Technology Department of Electrical & Computer Engineering and Technology 242 Trafton Science Center N Website: Chair: Vincent Winstead, P.E., Ph.D. Program Coordinator: Harry Jones, Ph.D. Gale Allen, Nannan He, Tom Hendrickson, Han-Way Huang, Harry Jones, Rajiv Kapadia, Muhammad Khaliq, Julio Mandojana, Vincent Winstead, Qun Zhang Accreditation. The Electrical Engineering program is accredited by the Engineering Accreditation Commission of ABET, Electrical Engineering (EE) encompasses research, development, design and operation of electrical and electronic systems and their components. This program leads to a Bachelor of Science in Electrical Engineering (BSEE). The primary objective of the Electrical Engineering program is to educate engineering professionals who possess a sound design and analytical background coupled with a strong laboratory experience. This means that the department prepares its Electrical Engineering graduates for: 1. Entry into the engineering work environment with well developed design and laboratory skills. 2. Further study toward advanced degrees in engineering and other related disciplines. 3. Advancement into managerial ranks and/or entrepreneurial endeavors. The educational objectives for our Bachelor of Science in Electrical Engineering degree are to prepare our graduates to: 1. Function as responsible members of society with an awareness of the social, ethical, and economic ramifications of their work. 2. Become successful practitioners in engineering and other diverse careers. 3. Succeed in full time graduate and professional studies. 4. Pursue continuing and life-long learning opportunities. 5. Pursue professional registration. 6. Provide foundational education that allows for personal growth and flexibility through their career. Our metrics for determining success in meeting these objectives will include: 1. Assessment of societal, economic awareness, and ethical performance of our graduates by the graduate and employer. 2. Monitoring of the success of our graduates in the work force. 3. Monitoring of the success of our graduates in graduate and professional programs. 4. Assessment of continuing and life-long learning by the graduate (and their employer as applicable). 5. Reviewing the number and success of our students completing professional registration to advance their careers. The Electrical Engineering degree curriculum includes the following components: 1. A strong background in the physical sciences, mathematics, and the engineering sciences including extensive hands-on laboratory instruction. 2. An integrated design component including instruction in basic practices and procedures, creativity, control, economics, and synthesis. The process begins with basic instruction during the first year and concludes with a capstone design project. 3. A choice of several sub-disciplines in their senior level elective offerings (digital, controls, communications, microelectronics design and fabrication). 4. Opportunities for students to develop sensitivity to the social and humanistic implications of technology and motivate them to make worth while contributions to the profession and society, while upholding the highest standards of professional ethics. 5. Courses in business and economics to promote awareness of management and the economic aspects of engineering. 6. Preparation for continuing study and professional development. The curriculum offers students the opportunity to emphasize a number of specialized areas including digital systems, communications, controls, and microelectronic design and fabrication. During the senior year, students must take the first step toward registration as a professional engineer by taking the Fundamentals of Engineering, (FE) examination as described in the GPA Policy below. Minnesota State Mankato offers a 3/2 program with regional Liberal Arts colleges. Contact the department for more information. Recommended high school preparation is two years of algebra, one year of geometry, one-half year of trigonometry, one-half year of college algebra, and a year each of physics and chemistry. Without this background it may take longer than four years to earn the degree. The first two years students take science and mathematics courses common to all branches of engineering (pre-engineering), as well as supporting work in English, humanities and social sciences. Secondyear electrical engineering students complete physics, mathematics and 200-level engineering science courses. Some specialization for a particular engineering major occurs in the second year. Admission to Major. Admission to the college is necessary before enrolling in 300- and 400-level courses. Minimum college requirements are: - a minimum of 32 earned semester credit hours. - a minimum cumulative GPA of 2.00 ( C ). Electrical Engineering Please contact the department for application procedures. During the spring semester of the sophomore year, students should submit an application form for admission to the Electrical Engineering program. Admission to the program is selective and, following applications to the department, subject to approval from the faculty. The department makes a special effort to accommodate transfer students. Only students admitted to the program are permitted to enroll in upper-division electrical engineering courses. No transfer credits are allowed for upper-division engineering courses except by faculty review followed by written permission. Before being accepted into the program and admitted to 300-level engineering courses (typically in the fall semester), a student must complete a minimum of 62 semester credits including the following: - General Physics (calculus-based) (12 credits) - Calculus and Differential Equations (16 credits) - Electrical Engineering Circuit Analysis I and II (including lab) (7 credits) - Chemistry (3 credits) - English Composition (4 credits) - Statics (3 credits) - Introduction to Electrical and Computer Engineering (6 credits) - Technical Communication (4 credits) - Microprocessor course and lab (3 credits) - Digital Systems and Test (including lab) (4 credits) A cumulative GPA of 2.5 for all science and math courses must have been achieved for program admittance. Grades must be 1.65 ( C- ) or better for courses to be accepted. GPA Policy. Students graduating with a degree in Electrical Engineering must have: 1. completed a minimum of 20 semester credit hours of upper division EE course work; 2. have a cumulative GPA of 2.25 or higher in all upper division Minnesota State Mankato EE coursework; 3. have completed their senior design sequence at Minnesota State Mankato; and 4. have taken the FE exam and achieved the competency level set by the department. 5. Grades must be 1.65 ( C- ) or better for courses taken at Minnesota State Mankato to be accepted Undergraduate Bulletin 129
2 Petition to evaluate transfer credits must occur no later than the first semester the student is enrolled at Minnesota State Mankato. All international students wishing to have transfer credits granted from non-u.s. schools will be required to use the ECE evaluation service to be completed no later than first semester at Minnesota State Mankato. P/N Grading Policy. A student who majors in EE must elect the grade option for all courses even if offered by another department. ELECTRICAL ENGINEERING BSEE Degree completion = 128 credits Required General Education CHEM 191 Chemistry Applications (3) ENG 101 Composition (4) ENG 271W Technical Communication (4) MATH 121 Calculus I (4) PHYS 221 General Physics I (4) Economics (choose 3 credits from one of the following) ECON 201 Principles of Macroeconomics (3) ECON 202 Principles of Microeconomics (3) Prerequisites to the Major EE 106 Introduction to Electrical/Computer Eng. I (3) EE 107 Introduction to Electrical/Computer Eng. II (3) EE 230 Circuit Analysis I (3) EE 231 Circuit Analysis II (3) EE 234 Microprocessor I (2) EE 235 Microprocessor Engineering Laboratory I (1) EE 240 Evaluation of Circuits (1) EE 281 Digital System Design with Testability (3) EE 282 Digital System Design with Testability Lab (1) MATH 122 Calculus II (4) MATH 223 Calculus III (4) MATH 321 Ordinary Differential Equations (4) ME 212 Statics (3) PHYS 222 General Physics II (3) PHYS 223 General Physics III (3) PHYS 232 General Physics II Lab (1) PHYS 233 General Physics III Lab (1) Major Common Core EE 303 Introduction to Solid State Devices (3) EE 304 Lab: Introduction to Solid State Devices (1) EE 332 Electronics I (3) EE 333 Electronics II (3) EE 336 Principles of Engineering Design I (1) EE 337 Principles of Engineering Design II (1) EE 341 Signals and Systems (3) EE 342 Electronics Laboratory (1) EE 350 Engineering Electromagnetics (3) EE 353 Communications Systems Engineering (3) EE 358 Control Systems (3) EE 363 Communication Systems Laboratory (1) EE 368 Control Systems Laboratory (1) EE 450 Engineering Economics (3) EE 467 Principles of Engineering Design III (1) EE 477 Principles of Engineering Design IV (1) EE 482 Electromechanics (3) ME 299 Thermal Analysis (2) Major Restricted Electives (choose seven (7) credits from the following list) EE 334 Microprocessor Engineering II (3) EE 344 Microprocessor II Laboratory (1) EE 453 Advanced Communications Systems Engineering (3) EE 471 Advanced Control Systems (3) EE 472 Digital Signal Processing (3) EE 473 Electrical Power Systems Analysis and Design (3) EE 475 Integrated Circuit Engineering (3) EE 476 Antennas, Propagation & Microwave Engineering (3) EE 479 Superconductive Devices (3) EE 480 Integrated Circuit Fabrication Lab (1) EE 481 VLSI Design Laboratory (1) EE 484 VLSI Design (3) EE 487 RF Systems Engineering (3) EE 489 Real-time Embedded Systems (4) Other Graduation Requirements Choose a minimum of twelve (12) credits from Humanities (6 credits) and Social Sciences (6 credits) courses. For a complete listing of approved Humanities and Social Science courses, please consult the department website. In general, graduation credit toward the Humanities requirement is not allowed for any course in subject areas such as communication studies, writing, art, music, or theatre that involve performance or practice of basic skills. At least three (3) credits of the courses selected to complete the above requirements must be 300-level or above. At least one 300-level course must follow a lower level course in the same subject area. Analysis/Probability & Statistics (choose 3 credits) MATH 354 Concepts of Probability & Statistics (3) ME 291 Engineering Analysis (3) Business/Finance (choose 3 credits) BLAW 200 Legal,Political,and Regulatory Environment of Business (3) FINA 362 Business Finance (3) MGMT 330 Principles of Management (3) MGMT 340 Human Resource Management (3) MRKT 310 Principles of Marketing (3) Required Minor: None. No minor or other major accepted toward degree. COURSE DESCRIPTIONS EE 100 (1) Explorarions in Engineering This course offers an introduction to the various disciplines of engineering and their relationship to the principles of physics and mathematics. Students are prepared for academic success and the transition into an engineering program. GE-12 EE 106 (3) Introduction to Electrical/Computer Engineering I This introductory course covers digital systems topics including binary numbers, logic gates, Boolean algebra, circuit simplification using Karnaugh maps, flipflops, counters, shift registers and arithmetic circuits. Problem solving methods, study skills and professional development will be addressed throughout the course. Pre: MATH 112 EE 107 (3) Introduction to Electrical/Computer Engineering II The course presents algorithmic approaches to problem solving and computer program design using the C language. Student will explore Boolean expressions, implement programs using control structures, modular code and file input/output, and interface with external hardware using robots and sensors. Pre: EE 106 EE 230 (3) Circuit Analysis I This course is meant to develop Electrical Engineering Circuit Analysis skills in DC and AC circuits. It includes circuit laws and theorems, mesh and node analysis. Natural and step response of RL, RC, and RLC circuits. Pre: PHYS 222 or concurrent, MATH 321 or concurrent Undergraduate Bulletin
3 EE 231 (3) Circuit Analysis II Continuation of Circuit Analysis I to include special topics in circuit analysis. Pre: EE 230 and EE 240, MATH 321, PHYS 222 EE 234 (2) Microprocessor Engineering I A course that teaches how to write computer assembly language programs, make subroutine calls, perform I/O operations, handle interrupts and resets, interface with a wide variety of peripheral chips to meet the requirements of applications. Coreq: EE 235 EE 235 (1) Microprocessor Engineering Laboratory I Use of development boards and assembly language programming to handle interrupts, interface with parallel I/O ports, memory, and timers. Experiments will involve signal and frequency measurements, data conversions, and interface design. Coreq: EE 234 EE 240 (1) Evaluation of Circuits Laboratory support for EE 230. Use of laboratory instrumentation to measure currents and voltages associated with DC and AC circuits. Statistical analysis of measurement data. Measurements of series, parallel and series-parallel DC and AC circuits. Measurement of properties for circuits using operational amplifiers. Measurement of transient responses for R-L and R-C circuits. Simulation of DC and AC circuits using PSPICE. Concepts covered in EE 230 will be veriied in the laboratory. Pre: Must be taken concurrently with EE 230. EE 244 (2) Introduction to Digital Systems Simple coding schemes, Boolean algebra fundamentals, elements of digital building blocks such as gates, flip-flops, shift registers, memories, etc.; basic engineering aspects of computer architecture. EE 253 (1) Logic Circuits Lab Laboratory support to complement EE 244. Use of laboratory instrumentation to measure characteristics of various logic circuits and digital subsystems. Experimental evaluation of digital logic devices and circuits including logic gates, flip-flops, and sequential machines. Pre: EE 230 and concurrent with EE 244. EE 254 (1) Digital and Circuits Lab Laboratory support for EE 231 and EE 244. Experimental evaluation of AC and transient circuits, digital logic devices including logic gates, flip flops, and sequential machines. Pre: EE 230, EE 240 and concurrently with EE 231 and EE 244 EE 281 (3) Digital System Design with Testability Introduction to representing digital hardware using a hardware description language. Introduction to implementation technologies such as PAL s, PLA S, FPGA s and Memories. Analysis, synthesis and design of sequential machines; synchronous, pulse mode, asynchronous and incompletely specified logic. EE 282 (1) Digital System Design with Testability Lab Laboratory support for EE 282 practical aspects of design and analysis of different types of sequential machines will be presented through laboratory experience. Coreq: EE 281 EE 298 (1-4) Topics Varied topics in Electrical and Computer Engineering. May be repeated as topics change. Pre: to be determined by course topic EE 303 (3) Introduction to Solid State Devices Introduction to crystal structure, energy band theory, conduction and optical phenomenon in semiconductors, metals and insulators. Study of equilibrium and nonequilibrium charge distribution, generation, injection, and recombination. Analysis and design of PN-junctions, (bipolar transistor, junction) and MOS field-effect transistors. Introduction to transferred electron devices and semiconductor diode laser. Pre: PHYS 222, and MATH 321 EE 304 (1) Lab: Introduction to Solid State Devices Laboratory support for EE 303. Experiments include resistivity and sheet resistance measurements of semiconductor material, probing material, probing of IC chips, PN-junction IV and CV measurements, BJT testing to extract its parameters, MOSFET testing and evaluating its parameters, cv-measurements of MOS structure, and familiarization with surface analysis tools. EE 332 (3) Electronics I Introduction to discrete and microelectronics circuits including analog and digital electronics. Device characteristics including diodes, BJT s, JFET s, and MOS- FET s will be studied. DC bias circuits, small and large signal SPICE modeling and analysis and amplifier design and analysis will be discussed. Pre: EE 231 EE 333 (3) Electronics II The second course of the electronics sequence presenting concepts of feedback, oscillators, filters, amplifiers, operational amplifiers, hysteresis, bi-stability, and non-linear functional circuits. MOS and bipolar digital electronic circuits, memory, electronic noise, and power switching devices will be studied. Pre: EE 332 EE 334 (3) Microprocessor Engineering II A more advanced study of microprocessors and microcontrollers in embedded system design. Use of C language in programming, interrupt interfaces such as SPI, I2C, and CAN. External memory design and on-chip program memory protection are also studied. EE 336 (1) Principles of Engineering Design I Electrical and computer engineering project and program management and evaluation techniques will be studied. Emphasis will be placed on the use of appropriate tools for planning, evaluation, and reporting on electrical and computer engineering projects. Pre: Junior Standing EE 337 (1) Principles of Engineering Design II Application of the design techniques in the engineering profession. Electrical engineering project and program management and evaluation including computer assisted tools for planning and reporting, design-to-specification techniques and economic constraints. Pre: EE 336 EE 341 (3) Signals & Systems Analysis of linear systems and signals in the time and frequency domain. Laplace and Fourier transforms. Z-transform and discrete Fourier transforms. Pre: EE 230, MATH 321 and PHYS 222 EE 342 (1) Electronics Laboratory This lab is designed to accompany EE 332. The lab covers the experimental measurement and evaluation of diode, BJT, and MOS characteristics; various feedback topologies; oscillator and op-amp circuits; and rectifiers and filter circuitry. Pre: EE 231 and EE 332 taken concurrently Undergraduate Bulletin 131
4 EE 344 (1) Microprocessor II Laboratory Laboratory support for EE 334. Use of development boards and C Programming language to handle I/O devices, interrupts, and all peripheral functions. Multiple functions such as timers, A/D converters, I/O devices, interrupts, and serial modules will be used together to perform desired operations. Pre: Concurrent with EE 334 EE 494 (1) Global Experience in Engineering and Technology This class provides students pursuing a minor in Global Solutions in Engineering and Technology with an opportunity to explore a set of topics related to achieving success in advance of and following an international experience (internship, study abroad, etc.). Speakers will include faculty, graduate students, visiting researchers and industry members as well as student participants. Returning students will be required to participate in mentoring of students preparing for their international experience and provide written and/or oral presentations of various topics during the semester. This course is required both before and after participation in the international experience (min. 2 cr.) EE 350 (3) Engineering Electromagnetics Vector fields. Electrostatic charges, potential and fields; displacement. Steady Current/current density; magnetostatic fields, flux density. Materials properties. Faraday s Law and Maxwell s equations. Skin effect. Wave propagation, plane waves, guided waves. Radiation and antennas. Transmission line theory. Pre: EE 231, MATH 223, MATH 321 and PHYS 222 EE 353 (3) Communications Systems Engineering Signals and Systems, Fourier transforms, Parseval s theorem. Autocorrelation functions and spectral density functions. Information theory. Noise and noise figure, probability and statistics. Transformation of random variables, probability of error and bit error rate. Modulation and demodulation. Overview of analog, sampled analog and digital communication systems. Spread spectrum systems. Pre: EE 341 & MATH 223 EE 358 (3) Control Systems Theory and principles of linear feedback control systems. Analysis of linear control systems using conventional techniques like block diagrams, Bode plots, Nyquist plots and root-locus plots. Introduction to cascade compensation: proportional, derivative and integral compensation. State space models. Pre: EE 341 EE 363 (1) Communication Systems Laboratory Measurement techniques using the oscilloscope, spectrum analyzer and network analyzer. Signals and spectra. Frequency response. Noise and noise figure measurements. Intermodulation products. Amplitude and frequency modulation/demodulation. Sampling, aliasing, and intersymbol interference. Bit error measurement. Pre: Concurrent with EE 353 EE 368 (1) Control Systems Laboratory Laboratory support for EE 358. Experimental evaluation of basic control system concepts including transient response and steady state performance. Analog and digital computers. Pre: EE 341 and concurrent with EE 358 EE 395 (3) Computer Hardware and Organization High-level language constructs using a selected assembly language, design alternatives of computer processor datapath and control, memory hierarchy/ management unit, use of HDL in describing and verifying combinational and sequential circuits. Design of Computer processor and memory system. Pre: EE 234, EE 235, EE 281 EE 398 (0) CPT: CO-Operative Experience Curricular Practical Training: Co-Operative Experience is a zero-credit full-time practical training experience for one summer and on adjacent fall or spring term. Special rules apply to preserve full-time student status. Please contact an advisor in your program for complete information. Pre: EE 235. At least 60 credits earned; in good standing; instructor permission; co-op contract; other prerequisites may also apply.,, Summer EE 450 (3) Engineering Economics Overview of accounting and finance and their interactions with engineering. Lectures include the development and analysis of inancial statements, time value of money, decision making tools, cost of capital, depreciation, project analysis and payback, replacement analysis, and other engineering decision making tools. Pre: Advanced standing in the program EE 453 (3) Advanced Communications Systems Engineering Behavior of analog systems and digital systems in the presence of noise, principles of digital data transmission, baseband digital modulation, baseband demondulation/detection, bandpass mondulation and demodulation of digital signals. Channel coding, modulation and coding trade-offs, spread spectrum techniques, probability and information theory. Pre: EE 353 and EE 363 EE 463 (3) Advanced Digital System Design Design of combinational and sequential systems and peripheral interfaces. Design techniques using MSI and LSI components in an algorithmic state machine; implementation will be stresses. Rigorous timing analysis transmission-line effects and metastability of digital systems will be studied. Pre: EE 244 EE 467 (1) Principles of Engineering Design III The design and organization of engineering projects. Project proposals, reporting, feasibility studies, and interpretation. Specification preparation, interpretation, and control. Issues involving creativity, project planning and control, and intellectual property rights. Students enrolled in this course must initiate and complete a design project in a small team format. Pre: EE 337 and senior standing EE 467W (1) Principles of Engineering Design III The design and organization of engineering projects. Project proposals, reporting, feasibility studies, and interpretation. Specification preparation, interpretation, and control. Issues involving creativity, project planning and control, and intellectual property rights. Students enrolled in this course must initiate and complete a design project in a small team format. Pre: EE 337 and senior standing WI EE 471 (3) Advanced Control Systems This course is a continuation of EE 358. Techniques for the analysis of continuous and discrete systems are developed. These techniques include pole placement, state estimation, and optimal control. Pre: EE 358 and EE 368 EE 472 (3) Digital Signal Processing Develop design and analysis techniques for discrete signals and systems via Z- transforms, Discrete Fourier Transforms, implementation of FIR and IIR filters. The various concepts will be introduced by the use of general and special purpose hardware and software for digital signal processing. Pre: EE Undergraduate Bulletin
5 Electronic Engineering EE 473 (3) Electrical Power Systems Analysis and Design Power generation, transmission and consumption concepts, electrical grid modeling, transmission line modeling, electric network power flow and stability, fault tolerance and fault recovery, economic dispatch, synchronous machines, renewable energy sources and grid interfacing. Pre: EE 231 or via permission from instructor EE 474 (4) Power Electronics This course is designed to provide students with knowledge of the design and analysis of static power conversion and control systems. The course will cover the electrical characteristics and properties of power semiconductor switching devices, converter power circuit topologies, and the control techniques used in the applications of power electronic systems. Laboratories consist of computer-based modeling and simulation exercises, as well as hands-on laboratory experiments on basic converter circuits and control schemes. Pre: EE 333 EE 475 (3) Integrated Circuit Engineering Introduction to theory and techniques of integrated circuit fabrication processes, oxidation, photolithography, etching, diffusion of impurities, ion implantation, epitaxy, metallization, material characterization techniques, and VLSI process integration, their design and simulation by SUPREM. Pre: EE 303 and EE 332 EE 476 (3) Antennas, Propagation, & Microwave Engineering Principles of electromagnetic radiation, antenna parameters, dipoles, antenna arrays, long wire antennas, microwave antennas, mechanisms of radiowave propagation, scattering by rain, sea water propagation, guided wave propagation, periodic structures, transmission lines, microwave/millimeter wave amplifiers and oscillators, MIC & MMIC technology. Pre: EE 350 EE 477 (1) Principles of Engineering Design IV Completion of design projects and reports. Lectures on ethics, issues in contracting and liability, concurrent engineering, ergonomics and environmental issues, economics and manufacturability, reliability and product lifetimes. Lectures by faculty and practicing engineers. Pre: EE 467 and Senior Standing EE 477W (1) Principles of Engineering Design IV Completion of design projects and reports. Lectures on ethics, issues in contracting and liability, concurrent engineering, ergonomics and environmental issues, economics and manufacturability, reliability and product lifetimes. Lectures by faculty and practicing engineers. Pre: EE 467 and Senior Standing WI EE 479 (3) Superconductive Devices Magnetic and superconducting properties of materials, microscopic theory of superconductivity and tunneling phenomenon. Josephson and SQUID devices, survey of computer memories, memory cell and shift register, A/D converters and microwave amplifiers. Integrated circuit technology and high temperature superconductors. Pre: EE 303 EE 480 (1) Integrated Circuit Fabrication Lab Introduction to integrated circuit fabrication processes, device layout, mask design, and experiments related to wafer cleaning, etching, thermal oxidation, thermal diffusion, photolithography, and metallization. Fabrication of basic integrated circuit elements pn junction, resistors, MOS capacitors, BJT and MOSFET in integrated form. Use of analytic tools for in process characterization and simulation of the fabrication process by SUPREM. Pre: Concurrent with EE 475 EE 481 (1) VLSI Design Laboratory This laboratory accompanies EE 484. The laboratory covers the basics of layout rules, chip floor planning, the structure of standard cells and hierarchical design, parasitic elements, routing, and loading. Students will learn to design and layout standard cells as well as how to use these cells to produce complex circuits. The laboratory culminates with the individual design and layout of a circuit. Pre: Concurrent with EE 484 EE 482 (3) Electromechanics Electrical power and magnetic circuit concepts, switch-mode converters, mechanical electromechanical energy conversion, DC motor drives, feedback controllers, AC machines and space vectors, permanent magnet AC machines and drives, induction motors and speed control of induction motors, stepper motors. Pre: EE 230 EE 484 (3) VLSI Design The basics of digital VLSI technology. Bipolar and MOS modeling for digital circuits. Physical transistor layout structure and IC process flow and design rules. Custom CMOS/BICMOS static and dynamic logic styles, design and analysis. Clock generation, acquisition, and synchronization procedures. Special purpose digital structures including memory, Schmitt triggers, and oscillators. Individual design projects assigned. Pre: EE 333 EE 487 (3) RF Systems Engineering Overview of wireless communication and control systems. Characterization and measurements of two-port RF/IF networks. Transmission lines. Smith chart. Scattering parameters. Antenna-preselector-preamplifier interface. Radio wave propagation. Fading. RF transistor amplifiers, oscillators, and mixer/modulator circuits. Multiple access techniques. Transmitter/receiver design considerations. SAW matched filters. Pre: EE 353 and EE 363 EE 489 (4) Real-time Embedded Systems This course introduces students the recent advances in real-time embedded systems design. Topics cover real-time scheduling approaches such as clock-driven scheduling and static and dynamic priority driven scheduling, resource handling, timing analysis, inter-task communication and synchronization, real-time operating systems (RTOS), hard and soft real-time systems, distributed real-time systems, concepts and software tools involved in the modeling, design, analysis and verification of real-time systems. Pre: EE 107, EE 334, EE 395 EE 491 (1-4) In-Service EE 497 (1-6) Internship EE 498 (1-4) Topics Varied topics in Electrical and Computer Engineering. May be repeated as topics change. Prerequisite: to be determined by course topic EE 499 (1-6) Individual Study Undergraduate Bulletin 133
Undergraduate Degree Map for Completion in Four Years
Page 1 of 8 Undergraduate Degree Map for Completion in Four Years College: College of Science, Engineering & Technology Department: Elec. & Computer Engineering Name of Program: ELECTRICAL ENGINEERING
Undergraduate Degree Map for Completion in Four Years
Page 1 of 7 Undergraduate Degree Map for Completion in Four Years College: College of Science, Engineering & Technology Department: Elec. & Computer Engineering Name of Program: COMPUTER ENGINEERING Degree
BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16
BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16 Freshman Year ENG 1003 Composition I 3 ENG 1013 Composition II 3 ENGR 1402 Concepts of Engineering 2 PHYS 2034 University Physics
ELECTRICAL ENGINEERING
EE ELECTRICAL ENGINEERING See beginning of Section H for abbreviations, course numbers and coding. The * denotes labs which are held on alternate weeks. A minimum grade of C is required for all prerequisite
DISTANCE DEGREE PROGRAM CURRICULUM NOTE:
Bachelor of Science in Electrical Engineering DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Some Courses May Not Be Offered At A Distance Every Semester. Chem 121C General Chemistry I 3 Credits Online Fall
Electrical Engineering
306 Electrical Engineering Paul Neudorfer, Ph.D., Chair Objectives Electrical engineering is concerned with the use of electrical energy for the benefit of society. The profession of electrical engineering
Department of Electrical and Computer Engineering
Department of Electrical and Computer Engineering Brian K. Johnson, Dept. Chair (214 Buchanan Engr. Lab. 83844-1023; phone 208/885-6554; www.ece.uidaho.edu). Faculty: Touraj Assefi, David H. Atkinson,
ENEE Electrical & Computer Engineering Summer 2015
This printed version of the Schedule of Classes is current as of 12/14/15 10:19 PM. ENEE Electrical & Computer Engineering Summer 2015 ENEE200 Social and Ethical Dimensions of Engineering Technology Credits:
2. EXPLAIN CHANGE TO DEGREE PROGRAM AND GIVE A DETAILED RATIONALE FOR EACH INDIVIDUAL CHANGE:
PROPOSED CHANGES TO THE BACHELOR OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING DEGREE PROGRAM IN THE COCKRELL SCHOOL OF ENGINEERING CHAPTER IN THE UNDERGRADUATE CATALOG 2016-2018 or LAW SCHOOL CATALOG
SECOND YEAR. Major Subject 3 Thesis (EE 300) 3 Thesis (EE 300) 3 TOTAL 3 TOTAL 6. MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING (MEng EE) FIRST YEAR
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING (MS EE) FIRST YEAR Elective 3 Elective 3 Elective 3 Seminar Course (EE 296) 1 TOTAL 12 TOTAL 10 SECOND YEAR Major Subject 3 Thesis (EE 300) 3 Thesis (EE 300)
PROPOSED CHANGES TO THE ELECTRICAL ENGINEERING DEGREE PROGRAM IN THE COLLEGE OF ENGINEERING SECTION IN THE UNDERGRADUATE CATALOG 2014-2016
PROPOSED CHANGES TO THE ELECTRICAL ENGINEERING DEGREE PROGRAM IN THE COLLEGE OF ENGINEERING SECTION IN THE UNDERGRADUATE CATALOG 2014-2016 Type of Change Academic Change 1. IF THE ANSWER TO ANY OF THE
Metropolitan State University of Denver
ELECTRICAL ENGINEERING TECHNOLOGY Electrical Engineering Technology (EET) graduates have much of the know-why of the engineer and much of the knowhow of the technician. The EET curriculum combines theory
Electrical and Computer Engineering Undergraduate Advising Manual
Electrical and Computer Engineering Undergraduate Advising Manual Department of Engineering University of Massachusetts Boston Revised: October 5, 2015 Table of Contents 1. Introduction... 3 2. Mission
Graduation Check Off Sheet, Electrical Engineering, Year 2013-2014 (Class of 2017)
Graduation Check Off Sheet, Electrical, Year 201-201 (Class of 2017) Student: Advisor: 1. Total credit hours 12. Overall GPA 2.0 2. Passing grade in all courses. Department GPA 2.0 Required Courses (enter
A bachelor of science degree in electrical engineering with a cumulative undergraduate GPA of at least 3.0 on a 4.0 scale
What is the University of Florida EDGE Program? EDGE enables engineering professional, military members, and students worldwide to participate in courses, certificates, and degree programs from the UF
The syllabus applies to students admitted in the academic year 2014-15 and thereafter under the fouryear
COMPUTER ENGINEERING SYLLABUS The syllabus applies to students admitted in the academic year 2014-15 and thereafter under the fouryear curriculum. Definition and Terminology Each course offered by the
Computer Science and Electrical Engineering
Department of Computer Science & Electrical Engineering Computer Science and Electrical Engineering Computer Science As a computer scientist, imagine creating the next search engine, the next social web
ANALOG & DIGITAL ELECTRONICS
ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH-218 3-1-0-8 Dr. A.P. Vajpeyi E-mail: [email protected] Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,
Undergraduate Major in Computer Science and Engineering
University of California, Irvine 2015-2016 1 Undergraduate Major in Computer Science and Engineering On This Page: Overview Admissions Requirements for the B.S. in Computer Science and Engineering Sample
ELECTRICAL ENGINEERING Electrical Engineering
ELECTRICAL ENGINEERING Electrical Engineering Electrical Engineering Major - Required Courses and Recommended Course Sequence First Semester MTH- Calculus I CHM- Introductory Chemistry Lab for Engineers
DEPARTMENT OF MATHEMATICS & COMPUTING
DEPARTMENT OF MATHEMATICS & COMPUTING The Department of Mathematics and Computing provides students with opportunities to earn Bachelor of Science degrees in computer information systems or in mathematics.
M.S. in Electrical Engineering
1 M.S. in Electrical Engineering Degree Requirements Bridge Program Students who have earned a Bachelor of Science in Engineering Technology (B.S.E.T.) degree, or who lack an appropriate background may
ELECTRICAL ENGINEERING TECHNOLOGY (EET) TRANSFER ASSURANCE GUIDE (TAG) April 22, 2008
ELECTRICAL ENGINEERING TECHNOLOGY (EET) TRANSFER ASSURANCE GUIDE (TAG) April 22, 2008 Ohio Transfer Module: Ohio Transfer Module (OTM) Requirements: 36-40 semester hours / 54-60 quarter hours. Students
COURSE DESCRIPTION OF COMPUTER ENGINEERING SUBJECTS
SUMMARY OF COURSE DESCRIPTIONS BACHELOR OF SCIENCE IN COMPUTER ENGINEERING A. MATHEMATICS COURSE DESCRIPTION OF COMPUTER ENGINEERING SUBJECTS COLLEGE ALGEBRA - A course in algebra covering such topics
COLLEGE OF INFORMATION TECHNOLOGY
COLLEGE OF INFORMATION TECHNOLOGY COLLEGE OVERVIEW The College of Information Technology provides the structure and organization for male and female students to successfully pursue degree programs in Information
Computer Engineering as a Discipline
Computing Curriculum Computer Engineering Curriculum Report Chapter 2 Computer Engineering as a Discipline T his chapter presents some of the characteristics that distinguish computer engineering from
Content Map For Career & Technology
Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations
Master of Science in Electrical Engineering Graduate Program:
Master of Science in Electrical Engineering Graduate Program: A student may pursue a Master of Science in Electrical Engineering (M.Sc. EE) via one of the following three options: (i) M.Sc. with thesis,
Undergraduate Degree Map for Completion in Four Years
Page 1 of 6 Undergraduate Degree Map for Completion in Four Years College: College of Business Department: Finance Name of Program: FINANCE Degree Designation: BS Emphasis/Concentration: FINA: INSTITUTIONAL
Undergraduate Degree Map for Completion in Four Years
Page 1 of 7 Undergraduate Degree Map for Completion in Four Years College: College of Business Department: Finance Name of Program: FINANCE Degree Designation: BS Emphasis/Concentration: FINANCE: GENERAL
ELECTRICAL and COMPUTER ENGINEERING
ELECTRICAL and COMPUTER ENGINEERING Undergraduate Program Guide Bachelor of Science in Electrical Engineering Bachelor of Science in Computer Engineering Supplement to 2013-2014 GMU Catalog Last Updated:
Bachelor of Science in Computer Engineering (BSCoE) Essential Ideas
Mission Statement Bachelor of Science in Computer Engineering (BSCoE) Essential Ideas The mission statement for the Computer Engineering program as modified and adopted by the engineering faculty on July
Master of Science in Engineering (MSE)
Electrical and Computer Engineering (ECE) Department Master of Science in Engineering (MSE) Electrical Engineering (EE) Option Computer Engineering (CompE) Option Graduate Program Handbook 2014-2015 Academic
TEC 327 Electronic Devices Lab (1) Corequisite: TEC 326. Three hours lab per week. Experiments involving basic electronic devices.
TEC 201 Microcomputers Applications and Techniques (3) Two hours lecture and two hours lab per week. An introduction to microcomputer hardware and applications of the microcomputer in industry. Hands-on
Computer Science/Software Engineering
292 School of Science and Engineering Computer Science/Software Engineering Everald E. Mills, PhD, Chair Objectives The computer science program seeks to prepare students for careers that require sophisticated
Undergraduate Degree Map for Completion in Four Years
Page 1 of 6 Undergraduate Degree Map for Completion in Four Years College: College of Business Department: Management Name of Program: MANAGEMENT Degree Designation: BS Emphasis/Concentration: MGMT: BUSINESS
Computer and Systems Engineering (CSE) Master of Science Programs
Computer and Systems Engineering (CSE) Master of Science Programs The Computer and Systems Engineering (CSE) degree offered by the University of Houston (UH) is a graduate level interdisciplinary program
The Emerging Trends in Electrical and Computer Engineering
18-200 Fall 2006 The Emerging Trends in Electrical and Computer Engineering Hosting instructor: Prof. Jimmy Zhu; Time: Thursdays 3:30-4:20pm; Location: DH 2210 Date Lecturer Lecture Contents L01 08/31
Undergraduate Degree Map for Completion in Four Years
Page 1 of 6 Undergraduate Degree Map for Completion in Four Years College: College of Business Department: Accounting and Business Law Name of Program: ACCOUNTING Degree Designation: BS Emphasis/Concentration:
DIVISION OF SCIENCES AND ENGINEERING
2011-2012 ACADEMIC CATALOG DIVISION OF SCIENCES AND ENGINEERING DIVISION HEAD: DR. SHEREEF ABU AL-MAATI 135 AMERICAN UNIVERSITY of KUWAIT MAJOR DEGREE PROGRAMS The Division of Sciences and Engineering
How To Learn To Understand And Understand The Physics Of Chemistry
What will I learn as an Electrical Engineering student? Department of Electrical and Computer Engineering Tufts School of Engineering Trying to decide on a major? Most college course descriptions are full
The Master s Degree Program in Electrical and Computer Engineering
The Master s Degree Program in Electrical and Computer Engineering M. Lee Edwards and Dexter G. Smith The Master s of Science in Electrical and Computer Engineering, the first Johns Hopkins degree to be
Digital Signal Processing
School Major School of Engineering Electrical Engineering General Education Requirements ARAB200 Arabic Language and Literature This course is a comprehensive review of Arabic Grammar, Syntax, major literature
Combined BS/MS Degree Program in the Department of Electrical Engineering at Wright State University
Combined BS/MS Degree Program in the Department of Electrical Engineering at Wright State University Approved by: Dept Graduate Studies Committee January 20, 2011 Approved by: EE Dept Faculty February
HANDBOOK FOR THE APPLIED AND COMPUTATIONAL MATHEMATICS OPTION. Department of Mathematics Virginia Polytechnic Institute & State University
HANDBOOK FOR THE APPLIED AND COMPUTATIONAL MATHEMATICS OPTION Department of Mathematics Virginia Polytechnic Institute & State University Revised June 2013 2 THE APPLIED AND COMPUTATIONAL MATHEMATICS OPTION
School of Engineering Electronics Engineering General Education Requirements Code Title Credits CULT200 Introduction to Arab - Islamic Civilization
School Major School of Engineering Electronics Engineering General Education Requirements CULT200 Introduction to Arab - Islamic Civilization The purpose of this course is to acquaint students with the
Computer Engineering
Undergraduate Program Guide Bachelor of Science in Computer Engineering 2014-2015 DEPARTMENT OF COMPUTER SCIENCE and ENGINEERING The University of Texas at Arlington 500 UTA Blvd. Engineering Research
What will I learn as an Electrical Engineering student?
What will I learn as an Electrical Engineering student? Department of Electrical and Computer Engineering Tu5s School of Engineering Trying to decide on a major? Most college course descrip>ons are full
School of Science and Engineering Department of Electrical and Computer Engineering Resnick Engineering Hall
School of Science and Engineering Department of Electrical and Computer Engineering Resnick Engineering Hall Daniel Jelski, Dean REH 114 845 257 3728 Julio Gonzalez, Associate Dean REH 114 845 257 3724
Undergraduate Curriculum Manual
Undergraduate Curriculum Manual for the Bachelor of Science Degree in Civil Engineering University of Kansas June 2014 THE UNIVERSITY OF KANSAS DEPARTMENT OF CIVIL, ENVIRONMENTAL AND ARCHITECTURAL ENGINEERING
Study Program Handbook Electrical and Computer Engineering
Study Program Handbook Electrical and Computer Engineering Bachelor of Science Jacobs University Undergraduate Handbook ECE - Matriculation Fall 2015 Page: ii Contents 1 The Electrical and Computer Engineering
CIVIL ENGINEERING UNDERGRADUATE GUIDE
CIVIL ENGINEERING UNDERGRADUATE GUIDE BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BS CE) THE UNIVERSITY OF KANSAS CEAE DEPARTMENT Revised August 2015 THE UNIVERSITY OF KANSAS DEPARTMENT OF CIVIL, ENVIRONMENTAL
AC 2009-2024: STUDENT OUTLOOK TOWARD MEDIA-BASED MODULES IN ELECTRONICS AND NETWORK ANALYSIS
AC 2009-2024: STUDENT OUTLOOK TOWARD MEDIA-BASED MODULES IN ELECTRONICS AND NETWORK ANALYSIS Jean-Claude Thomassian, State University of New York, Maritime College Dr. Jean-Claude Thomassian received his
Computer Engineering Technology
Computer Engineering Technology Dr. Adam Filios, Chair Electrical & Computer Engineering Technology Dept. [email protected] 631-420-2084 School of Engineering Technology Bachelor of Science Degree
DEPARTMENT OF PHYSICS 65-30 KISSENA BOULEVARD FLUSHING, NEW YORK 11367-1597 TEL.: (718) 997-3174/FAX: (718) 997-3349 E-MAIL: [email protected].
DEPARTMENT OF 65-30 KISSENA BOULEVARD FLUSHING, NEW YORK 11367-1597 TEL.: (718) 997-3174/FAX: (718) 997-3349 E-MAIL: [email protected] August 1, 2015 Subject: Pre-Engineering Program Dear Prospective
The mission of the School of Electronic and Computing Systems 3 is to provide:
BSCOMPE-COMP Computer Engineering Assessment Plan Missions and Outcomes Three mission statements are provided below for the University of Cincinnati, the College of Engineering and Applied Science, and
Software Engineering
Undergraduate Program Guide Bachelor of Science in Software Engineering 2014-2015 DEPARTMENT OF COMPUTER SCIENCE and ENGINEERING The University of Texas at Arlington 500 UTA Blvd. Engineering Research
Undergraduate Degree Map for Completion in Four Years
Page 1 of 5 Undergraduate Degree Map for Completion in Four Years College: College of Science, Engineering & Technology Department: Computer Information Science Name of Program: INFORMATION SYSTEMS Degree
The Department of Electrical Engineering
The Department of Electrical Engineering 517 Nedderman Hall Box 19016 817-272-2671 www.uta.edu/ee 501 Nedderman Hall Student Advising Office [email protected] Accreditation Accreditation is an assurance
Computer Science & Electrical Engineering
Computer Science and Electrical Engineering Department of A.A.S. in Electrical and Computer Engineering (84) Computer Science & Electrical Engineering The A.A.S. in Electrical and Computer Engineering
168 UNDERGRADUATE CATALOG 2005-2007 NEW JERSEY CITY UNIVERSITY
168 UNDERGRADUATE CATALOG 2005-2007 NEW JERSEY CITY UNIVERSITY PHYSICS Grossnickle Hall, Rm. 327 201-200-3204 http://www.njcu.edu/dept/physics Dr. Alberto Pinkas, Chairperson [email protected] Associate
School of Management and Information Systems
School of Management and Information Systems Business and Management Systems Information Science and Technology 176 Business and Management Systems Business and Management Systems Bachelor of Science Business
CSEN301 Embedded Systems Trimester 1
Victoria University of Wellington (VUW) course offering for NZ-EU Joint Mobility Project Novel Sensing Technologies and Instrumentation in Environmental Climate Change Monitoring 1. General The Victoria
FACULTY OF POSTGRADUATESTUDIES Master of Science in Computer Engineering The Future University
FACULTY OF POSTGRADUATESTUDIES Master of Science in Computer Engineering The Future University 2 Table of Contents: Page I. Introduction 1 II. Philosophy of the Program 2 III. Aims of the Program 2 IV.
Electrical Engineering Technology - Process Automation
Electrical Engineering Technology - Process Automation Ontario College Advanced Diploma (3 Years - 6 Semesters ) (4029) 705.759.6700 : 1.800.461.2260 : www.saultcollege.ca : Sault Ste. Marie, ON, Canada
ELECTRICAL ENGINEERING
ELECTRICAL ENGINEERING UNDERGRADUATE STUDENT HANDBOOK For Academic Year 2011 2012 Department of Electrical Engineering and Computer Science L.C. Smith College of Engineering and Computer Science Syracuse
COMPUTER SCIENCE AND ENGINEERING
The University of Connecticut School of Engineering COMPUTER SCIENCE AND ENGINEERING GUIDE TO COURSE SELECTION AY 2013-2014 Revised May 23, 2013 for Computer Science and Engineering (CSE) Majors in the
Electronic Engineering
Electronic Engineering Electronic engineering is concerned with the generation, transmission and utilization of electrical energy and with the transmitting and processing of information. Electronic engineers
Master of Science (Electrical Engineering) MS(EE)
Master of Science (Electrical Engineering) MS(EE) 1. Mission Statement: The mission of the Electrical Engineering Department is to provide quality education to prepare students who will play a significant
MASTER OF SCIENCE IN APPLIED PHYSICS AND COMPUTER SCIENCE FIVE-YEAR PROGRAM
M.S. - APCS FIVE-YEAR PROGRAM 2016-2017 MASTER OF SCIENCE IN APPLIED PHYSICS AND COMPUTER SCIENCE FIVE-YEAR PROGRAM This five-year program leads to both a Bachelor of Science degree and a Master of Science
Fault Modeling. Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults. Transistor faults Summary
Fault Modeling Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults Single stuck-at faults Fault equivalence Fault dominance and checkpoint theorem Classes of stuck-at
ELECTRICAL ENGINEERING
ELECTRICAL ENGINEERING The master degree programme of Teacher Training in Electronical Engineering is designed to develop graduates competencies in the field of Curriculum Development and Instructional
DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING
SESSION WEEK COURSE: Electronic Technology in Biomedicine DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING DESCRIPTION GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class
Study Guide for the Electronics Technician Pre-Employment Examination
Bay Area Rapid Transit District Study Guide for the Electronics Technician Pre-Employment Examination INTRODUCTION The Bay Area Rapid Transit (BART) District makes extensive use of electronics technology
Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B.
Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology Electronics & Communication Engineering B.Tech III Semester 1. Electronic Devices Laboratory 2. Digital Logic Circuit Laboratory 3.
Electrical Engineering and Computer Science
Electrical Engineering and Computer Science Bachelor s Degree Program (BSc) SES UG Handbook EECS Fall 2012 02 Page: ii Contents 1 Electrical Engineering and Computer Science 1 1.1 Concept......................................
Department of Mechanical Engineering University of Rochester UNDERGRADUATE COORDINATOR Ruth Eberlin 585-275-4753 [email protected].
Mechanical Engineers THIS IS MEANT TO BE A GUIDE ONLY MECHANICAL ENGINEERING STUDENTS SHOULD ALWAYS CONSULT WITH THEIR ME FACULTY ADVISORS REGARDING COURSE WORK. Department of Mechanical Engineering University
DEPARTMENT OF MATHEMATICS & COMPUTING
DEPARTMENT OF MATHEMATICS & COMPUTING The Department of Mathematics and Computing provides students with opportunities to earn Bachelor of Science degrees in computer information systems or in mathematics.
Undergraduate Degree Map for Completion in Four Years
Page 1 of 6 Undergraduate Degree Map for Completion in Four Years College: College of Business Department: Marketing & International Business Name of Program: MARKETING Degree Designation: BS Emphasis/Concentration:
Electronics Technology
Job Ready Assessment Blueprint Electronics Technology Test Code: 4035 / Version: 01 Copyright 2010. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information
Rules of the program leading to Bachelor of Science in Computer Science
University of Colorado Denver Department of Computer Science and Engineering Rules of the program leading to Bachelor of Science in Computer Science These degree requirements are in effect starting from
Electronics Technology
Teacher Assessment Blueprint Electronics Technology Test Code: 5907 / Version: 01 Copyright 2011 NOCTI. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information
* For transfer students, any ELEC course may be substituted for ELEC 1201.
DEPARTMENT OF ELECTRICAL ENGINEERING College of Engineering and Applied Science University of Colorado Denver North Classroom 2615 Telephone: (303) 556-2872 http://www.ucdenver.edu/academics/colleges/engineering/programs/electrical-engineering/
engineering electrical and electronic
engineering electrical and electronic e engineering electrical and electronic bachelor of science master of science Program Description Electrical Engineering (power distribution, motors, generators) and
NATIONAL SUN YAT-SEN UNIVERSITY
NATIONAL SUN YAT-SEN UNIVERSITY Department of Electrical Engineering (Master s Degree, Doctoral Program Course, International Master's Program in Electric Power Engineering) Course Structure Course Structures
Undergraduate Degree Map for Completion in Four Years
Page 1 of 5 Undergraduate Degree Map for Completion in Four Years College: College of Social & Behavioral Sciences Department: Economics Name of Program: OMICS Degree Designation: BS Emphasis/Concentration:
EE411: Introduction to VLSI Design Course Syllabus
: Introduction to Course Syllabus Dr. Mohammad H. Awedh Spring 2008 Course Overview This is an introductory course which covers basic theories and techniques of digital VLSI design in CMOS technology.
EE 210 Introduction to Electrical Engineering Fall 2009 COURSE SYLLABUS. Massimiliano Laddomada, PhD Assistant Professor
1 Texas A&M University-Texarkana College of Science, Technology, Engineering, and Mathematics Department of Electrical Engineering Bachelor of Science in Electrical Engineering EE 210 Introduction to Electrical
Department of Computer Science
82 Advanced Biochemistry Lab II. (2-8) The second of two laboratory courses providing instruction in the modern techniques of biochemistry. Experiments are performed on the isolation, manipulation and
Bachelor of Science in Electrical Engineering
1 Bachelor of Science in Electrical Engineering Undergraduate Programs in Engineering Freshman applicants have completed four years of high school mathematics, one year of high school chemistry, and one
Erik Jonsson School of Engineering and Computer Science Interdisciplinary Programs
Erik Jonsson School of Engineering and Computer Science Interdisciplinary Programs Software Engineering (B.S.S.E.) Goals of the Software Engineering Program The focus of the Software Engineering degree
Engineering ENGINEERING. 168 2015-16 Sacramento City College Catalog
Engineering ENGR Degrees: A.S. Civil Engineering A.S. Electrical/Computer Engineering A.S. Engineering General A.S. Mechanical/Aeronautical Engineering Civil Engineering Division of Mathematics/Statistics
Assessment Processes. Department of Electrical and Computer Engineering. Fall 2014
Assessment Processes Department of Electrical and Computer Engineering Fall 2014 Introduction The assessment process in the Electrical and Computer Engineering (ECE) Department at Utah State University
Coursework for MS leading to PhD in Electrical Engineering. 1 Courses for Digital Systems and Signal Processing
work for MS leading to PhD in Electrical Engineering 1 s for Digital Systems and Signal Processing EE 801 Analysis of Stochastic Systems EE 802 Advanced Digital Signal Processing EE 80 Advanced Digital
STUDENT HANDBOOK WKU/UK JOINT BACHELOR OF SCIENCE PROGRAM IN MECHANICAL ENGINEERING AUGUST 2010
STUDENT HANDBOOK WKU/UK JOINT BACHELOR OF SCIENCE PROGRAM IN MECHANICAL ENGINEERING DEPARTMENT OF ENGINEERING WESTERN KENTUCKY UNIVERSITY EBS 2101 BOWLING GREEN, KY 42101 WWW.WKU.EDU/ENGINEERING AUGUST
Teaching optics in electrical engineering curriculums
Teaching optics in electrical engineering curriculums by Alexander D Poularikas and Samuel Seely University of Alabama in Huntsville Electrical and Computer Engineering Department Huntsville, Alabama 35899
CATALOG CHANGES - F13. The Department of Ocean and Mechanical Engineering offers programs of study leading to the following degrees:
CATALOG CHANGES - F13 Ocean and Mechanical Engineering Department: The following changes are necessary to update the catalog. The first change is to include the combined BSME to MS degree program in the
