Network Management Quality of Service I

Size: px
Start display at page:

Download "Network Management Quality of Service I"

Transcription

1 Network Management Quality of Service I Patrick J. Stockreisser p.j.stockreisser@cs.cardiff.ac.uk

2 Lecture Outline Basic Network Management (Recap) Introduction to QoS Packet Switched Networks (Recap) Common QoS approaches Best Effort Service (Integrated Service) (Differentiated Service) Common QoS Principles

3 Network Management Network management means different things to different people. Network management is the execution of a set of functions required for controlling, planning, allocating, deploying, coordinating, and monitoring the resources of a network. Generally it is a service that employs a variety of tools, applications, and devices to assist human network managers in monitoring and maintaining networks.

4 History Early 1980s Great expansion in the area of network deployment. Cost benefits Productivity Gains By mid-1980s, Growing difficulties in management of the networks A result of deploying many different (and sometimes incompatible) network technologies By late-1990s Wireless technologies emerge (standards agreed) A new range of issues arise Existing network management technologies unsuitable

5 Network Management Automation The problems associated with network expansion affect both day-to-day network operation management and strategic network growth planning. Each new network technology requires its own set of experts. In the early 1980s, the staffing requirements alone for managing large, heterogeneous networks created a crisis for many organizations. An urgent need arose for automated network management.

6 Some Network Management Functions Security: Ensuring that the network is protected from unauthorized users. Performance: Eliminating bottlenecks in the network. Reliability: Making sure the network is reliable to users and responding to hardware and software malfunctions. Availability:

7 Quality of Service In computer networking, the traffic engineering term Quality of Service (QoS) refers to control mechanisms that can provide different priority to different users or data flows, or guarantee a certain level of performance to a data flow in accordance with requests from the application program.

8 An Analogy for Quality of Service Consider two competing cargo airlines (A and B) operating out of New York JFK airport with a service to London Heathrow. Both airlines have the same aircraft, both airlines charge the same rate per package shipped Both airlines offer seven flights a week. There is little to differentiate the service offered by these two companies. These competing airlines offer the same throughput capacity in terms of packages shipped per week.

9 Same Service? Same QoS? Imagine this: Airline A offers one flight per day for each day of the week Airline B offers all of its seven flights on a single day of the week. So while both airlines provide the same throughput capacity over the weekly period, they differ greatly in the actual service provided. Depending on your delivery needs these different airline service models will succeed or fail in quite dramatic fashion. Eg: an online real-time mail order business Eg: stock supply for a for a large warehouse Obviously, the business requirements for delivery define which service model works best. Real-time (daily) demand needs a very regular and consistent service whereas irregular (weekly) batch demand does not.

10 Some other QoS definitions QoS is described in terms of a set of user perceived characteristics of the performance of a service. It is expressed in user-understandable language and manifests itself as a number of parameters, all of which have either a subjective or objective values QoS refers to the capability of a network to provide better service to selected network traffic over various technologies QoS is the collective effect of service performance which determine the degree of satisfaction of a user of the service

11 OSI End to End QoS

12 The simplest of networks Network Client Server Packets are sent between nodes.

13 Network Basics Computers running on the Internet communicate to each other using either the Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP) When you write programs that communicate over a network, you are programming at the application layer. Typically, you don't need to concern yourself with the TCP and UDP layers.

14 Packet Review (Packet) (frame) (block) (cell) (segment) A network breaks a message into parts of a certain size in bytes. These are the packets Each packet carries the information that will help it get to its destination: the sender's IP address, the intended receiver's IP address, something that tells the network how many packets this message has been broken into and the number of this particular packet. The packets carry the data in the protocols that the Internet uses: Transmission Control Protocol/Internet Protocol (TCP/IP). Each packet contains part of the body of your message. A typical packet contains perhaps 1,000 or 1,500 bytes.

15 Packet Sending Each packet is then sent off to its destination by the best available route A route that might be taken by all the other packets in the message or by none of the other packets in the message. This makes the network more efficient. Load balancing Problem Avoidance

16 Networks

17 Packet Structure Most packets are split into three parts: 1. Header - The header contains instructions about the data carried by the packet. These instructions may include: Length of packet (some networks have fixed-length packets, while others rely on the header to contain this information) Synchronization (a few bits that help the packet match up to the network) Packet number (which packet this is in a sequence of packets) Protocol (on networks that carry multiple types of information, the protocol defines what type of packet is being transmitted: , Web page, streaming video) Destination address (where the packet is going) Originating address (where the packet came from) 2. Payload - Also called the body or data of a packet. This is the actual data that the packet is delivering to the destination. If a packet is fixed-length, then the payload may be padded with blank information to make it the right size. 3. Trailer - The trailer, sometimes called the footer, typically contains a couple of bits that tell the receiving device that it has reached the end of the packet. It may also have some type of error checking. The most common error checking used in packets is Cyclic Redundancy Check (CRC). CRC is pretty neat. Here is how it works in certain computer networks: It takes the sum of all the 1s in the payload and adds them together. The result is stored as a hexadecimal value in the trailer. The receiving device adds up the 1s in the payload and compares the result to the value stored in the trailer. If the values match, the packet is good. But if the values do not match, the receiving device sends a request to the originating device to resend the packet.

18 A Packet Header Example

19 Network Problems Dropped packets The routers might fail to deliver (drop) some packets if they arrive when their buffers are already full. Some, none, or all of the packets might be dropped, depending on the state of the network, and it is impossible to determine what will happen in advance. The receiving application must ask for this information to be retransmitted, possibly causing severe delays in the overall transmission. Delay It might take a long time for a packet to reach its destination, because it gets held up in long queues, or takes a less direct route to avoid congestion. Alternatively, it might follow a fast, direct route. Thus delay is very unpredictable. Jitter Packets from source will reach the destination with different delays. This variation in delay is known as jitter and can seriously affect the quality of streaming audio and/or video. Out-of-order delivery When a collection of related packets is routed through the Internet, different packets may take different routes, each resulting in a different delay. The result is that the packets arrive in a different order to the one with which they were sent. This problem necessitates special additional protocols responsible for rearranging out-of-order packets to an isochronous state once they reach their destination. This is especially important for video and VoIP streams where quality is dramatically impacted by both latency or lack of isochronicity. Error Sometimes packets are misdirected, or combined together, or corrupted, while en route. The receiver has to detect this and, just as if the packet was dropped, ask the sender to repeat itself.

20 Internet Problems The Internet today does not make any promises about QoS an application will receive. An application will receive whatever level of performance (e.g. end-to-end packet delay and loss) that the network is able to provide at that moment. Delay-sensitive multimedia applications cannot request any special treatment. All packets are treated equal at the routers, including delaysensitive audio and video packets. Network congestion (or interfering traffic) can severally limit the performance of an application (especially audio-video streaming, Multimedia, VoIP and other new applications).

21 QoS Question Hence, what new architectural components can be added to the Internet architecture to shield an application from such congestion and thus make high-quality networked multimedia applications a reality? Guarantees for: low latency high bandwidth real-time performance

22 Common QoS Approaches Best Effort Services (no guarantees) The network does not provide any guarantees that data is delivered or that a user is given a guaranteed quality of service level or a certain priority. Integrated Services (resource reservation) The network resources are assigned according to the application QoS request and subject to the bandwidth management policy Differentiated Services (prioritisation) Network traffic is classified and network elements give preferential treatment to classifications identified having more demanding requirements.

23 Best Effort In a best effort network all users obtain best effort service Each service obtains variable bit rate and delay. Removing features such as recovery of lost or corrupted data and pre allocation of resources, the network operates more efficiently, and the network nodes are inexpensive. Application sends data whenever it feels like, as much as it feels like without requiring any permission. Network elements try their best to deliver the packets to the destination without any bounds on delay, latency, jitter, etc. Network elements can give up to deliver without informing either the sender or the receiver. Conventional IP routers only provide best-effort service. The simplicity of routers is a key factor why IP has been much more successful than more complex protocols such as X.25 and ATM.

24 Best-Effort Post Office Analogy The post office service delivers letters using a best effort delivery approach. The delivery of a certain letter is not scheduled in advance no resources are pre allocated by the post office The postman will make his "best effort" to try to deliver a message but may be delayed if: All of a sudden, too many letters arrive at the post office The postal address is incomplete The postman s van breaks down The sender is not informed if a letter has been delivered successfully. However, the sender can pay extra for a delivery confirmation receipt, This requires that the carrier get a signature from the recipient to prove the successful delivery

25 Scenario Example: Consider two hosts H1, H2 sending packets via router R1 to R2, and subsequently to hosts H3 and H4 Let us assume the LAN speeds are significantly higher than 1.5 Mbps, and focus on the output queue of router R1; Where and why could we encounter packet delay?

26 Packet Delay Demand > Capacity? Packet delay and packet loss will occur if the aggregate sending rate of the H1 and H2 exceeds 1.5 Mbps.

27 QoS: Four Principles To tackle the problems which may arise in such scenarios we will look at 4 QoS Principles: Packet Classification Isolation Scheduling and Policing High Resource Utilisation Call Admission and Blocking

28 Another Problem A 1 Mbps audio application (e.g. a CD-quality audio call) shares the 1.5 Mbps link between R1 and R2 with an FTP application that is transferring a file from H2 to H4 In the best-effort Internet, the audio and FTP packets are mixed in the output queue R1 and (typically) transmitted in a first-in-first-out (FIFO) order Burst of packets from FTP source could potentially fill up the queue, causing IP audio packets to be excessively delayed or lost to buffer overflow at R1

29 Packet Marking A solution is to give priority to audio packets, as FTP does not have timing constraints hence the notion of distinguishing the types of packets via Traffic Class field in IPv6. Principle 1: Packet marking allows a router to distinguish among packets belonging to different classes or traffic.

30 Another Scenario Imagine the FTP user has purchased platinum service (i.e. high priced) Internet access from its ISP, while the audio user has purchased a cheap, low-budget Internet service. Should the cheap user s audio packets be given priority over FTP packets in this case?

31 Packet Classification A more reasonable solution is to distinguish packets on the basis of the sender s IP address. More generally, we see that it is necessary for a router to classify packets according to some criteria. A router must be able to distinguish between packets according to a policy decision One way to achieve this is through marking the packets, however, this does not mandate that a certain QoS will be given. Principle 1 (new): Packet classification allows router to distinguish among packets belonging to different classes of traffic.

32 Another Scenario Suppose the outer knows it should give priority to packets from the 1 Mbps audio application Since outgoing link is 1.5 Mbps, FTP packets receive lower priority, they will still, on average, receive 0.5 Mbps of transmission service Suppose audio applications starts transmitting at greater than 1.5 Mbps (link capacity) This may lead to starvation of FTP packets Similarly for multiple audio applications sharing a link A non-compliant flow could degrade performance

33 Flow Isolation There is a need for a degree of isolation among flows, in order to protect one flow from another misbehaving flow Principle 2: It is desirable to provide a degree of isolation among traffic flows, so that one flow is not adversely affected by another misbehaving flow

34 Policing Policing Mechanism: A monitoring (policing) mechanism put in place to ensure that traffic flows meet some predefined criteria If a policed application misbehaves, the policing mechanism will take some action e.g., drop or delay packets that are in violation of the criteria so that the traffic actually entering the network conforms to the criteria Packet classification and marking mechanism (principle 1) and the policing mechanism (principle 2) are co-located at the edge of the network, either in the end system, or at an edge route.

35 Bandwidth Enforcement Traffic isolation can also be achieved by the link level protocol providing fixed bandwidth to each application flow Audio - 1 Mbps FTP Mbps Here, audio and FTP flows see a logical link with capacity 1.0 and 0.5 Mbps, respectively

36 Enforcement Issues When bandwidth is enforced, a given flow cannot use bandwidth not being used by another application (it can only use a maximum of its own limit) For example, if the audio flow goes silent (e.g., if the speaker pauses and generates no audio packets), the FTP flow would still not be able to transmit more than 0.5 Mbps over the R1-to- R2 link this is clearly wasteful Principle 3: While providing isolation among flows, it is desirable to use resources (e.g., link bandwidth and buffers) as efficiently as possible.

37 Another Example Consider two competing applications transmitting at 1 Mbps, with a link capacity (R1-to-R2) of 1.5 Mbps In this case the combined rate for the two applications is 2 Mbps (higher than link capacity) No marking, isolation or classification will help solve this problem Each app gets 0.75 Mbps of link (half of link capacity) Each app gets 25% packet loss This quality is unacceptable So its better not to transmit any packet at all

38 QoS Guarantees The network should provide the minimum quality of service to enable an application to run, or block the application example callblocking on a telephone network (where endto-end quality of service is necessary) Hence, in the previous case either the minimum QoS is guaranteed, or the application is stopped, as it would not be usable.

39 QoS Requirements Implicit with the need to provide a guaranteed QoS to a flow is the need for the flow to declare its QoS requirements This process of having a flow declare its QoS requirement, and then having the network either accept the flow (at the required QoS) or block the flow (because the resources needed to meet the declared QoS requirements can not be provided) is referred to as the call admission process Principle 4: A call admission process is needed in which flows declare their QoS requirements and are then either admitted to the network (at the required QoS) or blocked from the network (if required QoS can not be provided by the network)

40 Scheduling and Policing Mechanisms Packets from various sources are multiplexed together and queue for transmission at the output buffer of a link A Link Scheduling Policy determines how these packets are then selected for transmission The plays an important role in providing QoS guarantees First-In-First-Out: Packets arriving at link output queue are buffered if link is busy transmitting. If not sufficient buffering space, then invoke a Packet Discarding Policy. In FIFO policy, packet departure from buffer is based on time of arrival first packet to arrive is the first to leave Packet Discarding Policy: determines whether packets will be dropped (lost) when queue is full can be based on removing already buffered packets

41 Scheduling Priority and Round Robin Priority: packets arriving at output link are classified into one of two more priority classes priority value is based on information carried in packet header (such as the Traffic Class field in IPv6) A different queue is maintained for each priority class with the highest priority queue given preference when transmitting packets. Round Robin: assumes existence of queues, but a round robin scheduler alternated service between classes. A work-conserving scheduler based on the round-robin strategy will keep the link busy, always checking for low priority (class) packets when the high priority (class) queue is empty Weighted Fair Queuing (WFQ): similar to round robin, except that each class may receive a differentiated amount of service in any interval of time. Each class i is assigned a weight w i

42 Weighted Fair Queuing In WFQ, during any interval of time, if there are class i packets to send, class i will be guaranteed to receive a fraction of service equal to: w i /Σw i where the sum in the denominator is taken over all classes that also have packets queued for transmission Alternatively, we can say that with WFQ queues, a link with transmission rate R, class i will always achieve a throughput of at least R x w i / Σ w i WFQ plays an essential role in guaranteeing of QoS

43 Policing Policing is used to regulate the rate at which packets can be inserted into a network An important part of a QoS architecture Three important policing criteria: Average rate: limit the long-term average rate (packets per time period) at which a flow s packets can be sent into the network. Must determine time interval over which the average value is calculated. For instance, average rate of 100 packets/sec is more constrained than 6000 packets/minute Peak rate: constrains the maximum number of packets that can be sent over relatively short period of time (compared to average rate) Burst size: the number of packets that can be sent instantaneously into the network a limit case of the peak rate

44 Leaky Bucket A Leaky Bucket algorithm can be used to characterise these policing limits It consists of a bucket that can hold up to b tokens which determines the burst size New tokens added to bucket at r tokens/sec if bucket is full, a newly generated token is ignored Max number of packets that can enter the network within any time interval t, is rt+b Can use multiple Leaky buckets in series Leaky Bucket Game Demo

45 Leaky Bucket Analogy Leaky bucket Wireless networks Bucket size Water drops from the tap Water drops leaking from the bottom Water drops prevented from entering the bucket by the tap Water from an extra pipe Water drops overflowing The task: to maintain a high water level in the bucket, while restricting the overflow rate to 1% or below Bandwidth Capacity New Packet to Send Packets Sending Completed Blocked Packets (terminated before the service starts) Hand over packets (switching from a neighbouring wireless port) Dropped Packets (terminated in the middle of a packet flow, service very annoying*) The task: to maintain a high level of channel utilization in the router, while restricting the dropping probability to 1% or below

46 Lecture Review In this lecture we have: Looked at the primary principles behind QoS Looked at the existing best effort approach A brief look at scheduling and policing techniques Round Robin Leaky Bucket

Sources: Chapter 6 from. Computer Networking: A Top-Down Approach Featuring the Internet, by Kurose and Ross

Sources: Chapter 6 from. Computer Networking: A Top-Down Approach Featuring the Internet, by Kurose and Ross M ultimedia Communication Multimedia Systems(Module 5 Lesson 3) Summary: Beyond Best-Effort Motivating QoS Q uality of Service (QoS) Scheduling and Policing Sources: Chapter 6 from Computer Networking:

More information

6.6 Scheduling and Policing Mechanisms

6.6 Scheduling and Policing Mechanisms 02-068 C06 pp4 6/14/02 3:11 PM Page 572 572 CHAPTER 6 Multimedia Networking 6.6 Scheduling and Policing Mechanisms In the previous section, we identified the important underlying principles in providing

More information

The network we see so far. Internet Best Effort Service. Is best-effort good enough? An Audio Example. Network Support for Playback

The network we see so far. Internet Best Effort Service. Is best-effort good enough? An Audio Example. Network Support for Playback The network we see so far CSE56 - Lecture 08 QoS Network Xiaowei Yang TCP saw-tooth FIFO w/ droptail or red Best-effort service Web-surfing, email, ftp, file-sharing Internet Best Effort Service Our network

More information

Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS?

Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS? 18-345: Introduction to Telecommunication Networks Lectures 20: Quality of Service Peter Steenkiste Spring 2015 www.cs.cmu.edu/~prs/nets-ece Overview What is QoS? Queuing discipline and scheduling Traffic

More information

Distributed Systems 3. Network Quality of Service (QoS)

Distributed Systems 3. Network Quality of Service (QoS) Distributed Systems 3. Network Quality of Service (QoS) Paul Krzyzanowski pxk@cs.rutgers.edu 1 What factors matter for network performance? Bandwidth (bit rate) Average number of bits per second through

More information

Chapter 7 outline. 7.5 providing multiple classes of service 7.6 providing QoS guarantees RTP, RTCP, SIP. 7: Multimedia Networking 7-71

Chapter 7 outline. 7.5 providing multiple classes of service 7.6 providing QoS guarantees RTP, RTCP, SIP. 7: Multimedia Networking 7-71 Chapter 7 outline 7.1 multimedia networking applications 7.2 streaming stored audio and video 7.3 making the best out of best effort service 7.4 protocols for real-time interactive applications RTP, RTCP,

More information

Real-time apps and Quality of Service

Real-time apps and Quality of Service Real-time apps and Quality of Service Focus What transports do applications need? What network mechanisms provide which kinds of quality assurances? Topics Real-time versus Elastic applications Adapting

More information

Improving Quality of Service

Improving Quality of Service Improving Quality of Service Using Dell PowerConnect 6024/6024F Switches Quality of service (QoS) mechanisms classify and prioritize network traffic to improve throughput. This article explains the basic

More information

16/5-05 Datakommunikation - Jonny Pettersson, UmU 2. 16/5-05 Datakommunikation - Jonny Pettersson, UmU 4

16/5-05 Datakommunikation - Jonny Pettersson, UmU 2. 16/5-05 Datakommunikation - Jonny Pettersson, UmU 4 Multimedia Networking Principles Last time Classify multimedia Multimedia Networking Applications Streaming stored audio and video Identify the network Real-time Multimedia: Internet Phone services the

More information

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Improving QOS in IP Networks. Principles for QOS Guarantees. Principles for QOS Guarantees (more) Principles for QOS Guarantees (more)

Improving QOS in IP Networks. Principles for QOS Guarantees. Principles for QOS Guarantees (more) Principles for QOS Guarantees (more) Improving QOS in IP Networks Thus far: making the best of best effort Future: next generation Internet with QoS guarantees RSVP: signaling for resource reservations Differentiated Services: differential

More information

Multimedia Requirements. Multimedia and Networks. Quality of Service

Multimedia Requirements. Multimedia and Networks. Quality of Service Multimedia Requirements Chapter 2: Representation of Multimedia Data Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Transfer/Control Protocols Quality of Service

More information

Lecture 16: Quality of Service. CSE 123: Computer Networks Stefan Savage

Lecture 16: Quality of Service. CSE 123: Computer Networks Stefan Savage Lecture 16: Quality of Service CSE 123: Computer Networks Stefan Savage Final Next week (trust Blink wrt time/location) Will cover entire class Style similar to midterm I ll post a sample (i.e. old) final

More information

Analysis of IP Network for different Quality of Service

Analysis of IP Network for different Quality of Service 2009 International Symposium on Computing, Communication, and Control (ISCCC 2009) Proc.of CSIT vol.1 (2011) (2011) IACSIT Press, Singapore Analysis of IP Network for different Quality of Service Ajith

More information

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Requirements of Voice in an IP Internetwork

Requirements of Voice in an IP Internetwork Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.

More information

Per-Flow Queuing Allot's Approach to Bandwidth Management

Per-Flow Queuing Allot's Approach to Bandwidth Management White Paper Per-Flow Queuing Allot's Approach to Bandwidth Management Allot Communications, July 2006. All Rights Reserved. Table of Contents Executive Overview... 3 Understanding TCP/IP... 4 What is Bandwidth

More information

How To Provide Qos Based Routing In The Internet

How To Provide Qos Based Routing In The Internet CHAPTER 2 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 22 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 2.1 INTRODUCTION As the main emphasis of the present research work is on achieving QoS in routing, hence this

More information

Quality of Service. Traditional Nonconverged Network. Traditional data traffic characteristics:

Quality of Service. Traditional Nonconverged Network. Traditional data traffic characteristics: Quality of Service 1 Traditional Nonconverged Network Traditional data traffic characteristics: Bursty data flow FIFO access Not overly time-sensitive; delays OK Brief outages are survivable 2 1 Converged

More information

Optimizing Converged Cisco Networks (ONT)

Optimizing Converged Cisco Networks (ONT) Optimizing Converged Cisco Networks (ONT) Module 3: Introduction to IP QoS Introducing QoS Objectives Explain why converged networks require QoS. Identify the major quality issues with converged networks.

More information

Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control?

Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control? Congestion Control Review What is congestion control? 15-441 Computer Networking What is the principle of TCP? Lecture 22 Queue Management and QoS 2 Traffic and Resource Management Resource Management

More information

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

This topic lists the key mechanisms use to implement QoS in an IP network.

This topic lists the key mechanisms use to implement QoS in an IP network. IP QoS Mechanisms QoS Mechanisms This topic lists the key mechanisms use to implement QoS in an IP network. QoS Mechanisms Classification: Each class-oriented QoS mechanism has to support some type of

More information

CS640: Introduction to Computer Networks. Why a New Service Model? Utility curve Elastic traffic. Aditya Akella. Lecture 20 QoS

CS640: Introduction to Computer Networks. Why a New Service Model? Utility curve Elastic traffic. Aditya Akella. Lecture 20 QoS CS640: Introduction to Computer Networks Aditya Akella Lecture 20 QoS Why a New Service Model? Best effort clearly insufficient Some applications need more assurances from the network What is the basic

More information

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman A Preferred Service Architecture for Payload Data Flows Ray Gilstrap, Thom Stone, Ken Freeman NASA Research and Engineering Network NASA Advanced Supercomputing Division NASA Ames Research Center Outline

More information

18: Enhanced Quality of Service

18: Enhanced Quality of Service 18: Enhanced Quality of Service Mark Handley Traditional best-effort queuing behaviour in routers Data transfer: datagrams: individual packets no recognition of flows connectionless: no signalling Forwarding:

More information

Quality of Service (QoS) on Netgear switches

Quality of Service (QoS) on Netgear switches Quality of Service (QoS) on Netgear switches Section 1 Principles and Practice of QoS on IP networks Introduction to QoS Why? In a typical modern IT environment, a wide variety of devices are connected

More information

Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions

Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Steve Gennaoui, Jianhua Yin, Samuel Swinton, and * Vasil Hnatyshin Department of Computer Science Rowan University

More information

Management of Telecommunication Networks. Prof. Dr. Aleksandar Tsenov akz@tu-sofia.bg

Management of Telecommunication Networks. Prof. Dr. Aleksandar Tsenov akz@tu-sofia.bg Management of Telecommunication Networks Prof. Dr. Aleksandar Tsenov akz@tu-sofia.bg Part 1 Quality of Services I QoS Definition ISO 9000 defines quality as the degree to which a set of inherent characteristics

More information

Protocols. Packets. What's in an IP packet

Protocols. Packets. What's in an IP packet Protocols Precise rules that govern communication between two parties TCP/IP: the basic Internet protocols IP: Internet Protocol (bottom level) all packets shipped from network to network as IP packets

More information

Quality of Service Analysis of site to site for IPSec VPNs for realtime multimedia traffic.

Quality of Service Analysis of site to site for IPSec VPNs for realtime multimedia traffic. Quality of Service Analysis of site to site for IPSec VPNs for realtime multimedia traffic. A Network and Data Link Layer infrastructure Design to Improve QoS in Voice and video Traffic Jesús Arturo Pérez,

More information

Motivation. QoS Guarantees. Internet service classes. Certain applications require minimum level of network performance:

Motivation. QoS Guarantees. Internet service classes. Certain applications require minimum level of network performance: QoS Guarantees Motivation introduction call admission traffic specification link-level scheduling call setup protocol reading: Tannenbaum, 393-395, 458-471 Ch 6 in Ross/Kurose Certain applications require

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION

Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012 Network Chapter# 19 INTERNETWORK OPERATION Review Questions ٢ Network Chapter# 19 INTERNETWORK OPERATION 19.1 List

More information

MULTIMEDIA NETWORKING

MULTIMEDIA NETWORKING MULTIMEDIA NETWORKING AND QOS PROVISION A note on the use of these ppt slides: The notes used in this course are substantially based on powerpoint slides developed and copyrighted by J.F. Kurose and K.W.

More information

AN OVERVIEW OF QUALITY OF SERVICE COMPUTER NETWORK

AN OVERVIEW OF QUALITY OF SERVICE COMPUTER NETWORK Abstract AN OVERVIEW OF QUALITY OF SERVICE COMPUTER NETWORK Mrs. Amandeep Kaur, Assistant Professor, Department of Computer Application, Apeejay Institute of Management, Ramamandi, Jalandhar-144001, Punjab,

More information

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed.

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed. Congestion Control When one part of the subnet (e.g. one or more routers in an area) becomes overloaded, congestion results. Because routers are receiving packets faster than they can forward them, one

More information

Voice over IP: RTP/RTCP The transport layer

Voice over IP: RTP/RTCP The transport layer Advanced Networking Voice over IP: /RTCP The transport layer Renato Lo Cigno Requirements For Real-Time Transmission Need to emulate conventional telephone system Isochronous output timing same with input

More information

Mixer/Translator VOIP/SIP. Translator. Mixer

Mixer/Translator VOIP/SIP. Translator. Mixer Mixer/Translator VOIP/SIP RTP Mixer, translator A mixer combines several media stream into a one new stream (with possible new encoding) reduced bandwidth networks (video or telephone conference) appears

More information

APPLICATION NOTE 209 QUALITY OF SERVICE: KEY CONCEPTS AND TESTING NEEDS. Quality of Service Drivers. Why Test Quality of Service?

APPLICATION NOTE 209 QUALITY OF SERVICE: KEY CONCEPTS AND TESTING NEEDS. Quality of Service Drivers. Why Test Quality of Service? QUALITY OF SERVICE: KEY CONCEPTS AND TESTING NEEDS By Thierno Diallo, Product Specialist With the increasing demand for advanced voice and video services, the traditional best-effort delivery model is

More information

Lecture 33. Streaming Media. Streaming Media. Real-Time. Streaming Stored Multimedia. Streaming Stored Multimedia

Lecture 33. Streaming Media. Streaming Media. Real-Time. Streaming Stored Multimedia. Streaming Stored Multimedia Streaming Media Lecture 33 Streaming Audio & Video April 20, 2005 Classes of applications: streaming stored video/audio streaming live video/audio real-time interactive video/audio Examples: distributed

More information

QoS issues in Voice over IP

QoS issues in Voice over IP COMP9333 Advance Computer Networks Mini Conference QoS issues in Voice over IP Student ID: 3058224 Student ID: 3043237 Student ID: 3036281 Student ID: 3025715 QoS issues in Voice over IP Abstract: This

More information

4 Internet QoS Management

4 Internet QoS Management 4 Internet QoS Management Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology stadler@ee.kth.se September 2008 Overview Network Management Performance Mgt QoS Mgt Resource Control

More information

CS/ECE 438: Communication Networks. Internet QoS. Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE

CS/ECE 438: Communication Networks. Internet QoS. Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE CS/ECE 438: Communication Networks Internet QoS Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE Introduction The Internet only provides a best effort service

More information

COMPARATIVE ANALYSIS OF DIFFERENT QUEUING MECHANISMS IN HETROGENEOUS NETWORKS

COMPARATIVE ANALYSIS OF DIFFERENT QUEUING MECHANISMS IN HETROGENEOUS NETWORKS COMPARATIVE ANALYSIS OF DIFFERENT QUEUING MECHANISMS IN HETROGENEOUS NETWORKS Shubhangi Rastogi 1, Samir Srivastava 2 M.Tech Student, Computer Science and Engineering, KNIT, Sultanpur, India 1 Associate

More information

Advanced Networking Voice over IP: RTP/RTCP The transport layer

Advanced Networking Voice over IP: RTP/RTCP The transport layer Advanced Networking Voice over IP: RTP/RTCP The transport layer Renato Lo Cigno Requirements For Real-Time Transmission Need to emulate conventional telephone system Isochronous output timing same with

More information

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages

More information

5 Performance Management for Web Services. Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology. stadler@ee.kth.

5 Performance Management for Web Services. Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology. stadler@ee.kth. 5 Performance Management for Web Services Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology stadler@ee.kth.se April 2008 Overview Service Management Performance Mgt QoS Mgt

More information

Smart Queue Scheduling for QoS Spring 2001 Final Report

Smart Queue Scheduling for QoS Spring 2001 Final Report ENSC 833-3: NETWORK PROTOCOLS AND PERFORMANCE CMPT 885-3: SPECIAL TOPICS: HIGH-PERFORMANCE NETWORKS Smart Queue Scheduling for QoS Spring 2001 Final Report By Haijing Fang(hfanga@sfu.ca) & Liu Tang(llt@sfu.ca)

More information

Communications and Computer Networks

Communications and Computer Networks SFWR 4C03: Computer Networks and Computer Security January 5-8 2004 Lecturer: Kartik Krishnan Lectures 1-3 Communications and Computer Networks The fundamental purpose of a communication system is the

More information

BCS THE CHARTERED INSTITUTE FOR IT. BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 5 Diploma in IT COMPUTER NETWORKS

BCS THE CHARTERED INSTITUTE FOR IT. BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 5 Diploma in IT COMPUTER NETWORKS BCS THE CHARTERED INSTITUTE FOR IT BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 5 Diploma in IT COMPUTER NETWORKS Friday 2 nd October 2015 Morning Answer any FOUR questions out of SIX. All questions carry

More information

Clearing the Way for VoIP

Clearing the Way for VoIP Gen2 Ventures White Paper Clearing the Way for VoIP An Alternative to Expensive WAN Upgrades Executive Overview Enterprises have traditionally maintained separate networks for their voice and data traffic.

More information

How To Solve A Network Communication Problem

How To Solve A Network Communication Problem A White Paper by NEC Unified Solutions, Inc. What VoIP Requires From a Data Network Introduction Here is a very common story. A customer has a data network based on TCP/IP that is working well. He can

More information

Understanding Latency in IP Telephony

Understanding Latency in IP Telephony Understanding Latency in IP Telephony By Alan Percy, Senior Sales Engineer Brooktrout Technology, Inc. 410 First Avenue Needham, MA 02494 Phone: (781) 449-4100 Fax: (781) 449-9009 Internet: www.brooktrout.com

More information

Network Simulation Traffic, Paths and Impairment

Network Simulation Traffic, Paths and Impairment Network Simulation Traffic, Paths and Impairment Summary Network simulation software and hardware appliances can emulate networks and network hardware. Wide Area Network (WAN) emulation, by simulating

More information

Internet Quality of Service

Internet Quality of Service Internet Quality of Service Weibin Zhao zwb@cs.columbia.edu 1 Outline 1. Background 2. Basic concepts 3. Supporting mechanisms 4. Frameworks 5. Policy & resource management 6. Conclusion 2 Background:

More information

EXPERIMENTAL STUDY FOR QUALITY OF SERVICE IN VOICE OVER IP

EXPERIMENTAL STUDY FOR QUALITY OF SERVICE IN VOICE OVER IP Scientific Bulletin of the Electrical Engineering Faculty Year 11 No. 2 (16) ISSN 1843-6188 EXPERIMENTAL STUDY FOR QUALITY OF SERVICE IN VOICE OVER IP Emil DIACONU 1, Gabriel PREDUŞCĂ 2, Denisa CÎRCIUMĂRESCU

More information

Quality of Service in ATM Networks

Quality of Service in ATM Networks Quality of Service in ATM Networks Components of a QoS Network 1. At network entrance: Policing and Shaping 2. Somewhere in the network: Admission Control 3. At switches: Classification, Scheduling 4.

More information

Chapter 3 ATM and Multimedia Traffic

Chapter 3 ATM and Multimedia Traffic In the middle of the 1980, the telecommunications world started the design of a network technology that could act as a great unifier to support all digital services, including low-speed telephony and very

More information

TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

More information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information Introduction Computer Network. Interconnected collection of autonomous computers that are able to exchange information No master/slave relationship between the computers in the network Data Communications.

More information

Per-Flow Queuing Allot s Approach to Bandwidth Management

Per-Flow Queuing Allot s Approach to Bandwidth Management Allot s Approach to Bandwidth Management February 2002 Table of Contents Introduction...3 An Overview of TCP/IP...3 What is Bandwidth Management?...4 Allot s Per-Flow Queuing...5 How It Works... 5 Per-Flow

More information

Three Key Design Considerations of IP Video Surveillance Systems

Three Key Design Considerations of IP Video Surveillance Systems Three Key Design Considerations of IP Video Surveillance Systems 2012 Moxa Inc. All rights reserved. Three Key Design Considerations of IP Video Surveillance Systems Copyright Notice 2012 Moxa Inc. All

More information

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science Examination Computer Networks (2IC15) on Monday, June 22 nd 2009, 9.00h-12.00h. First read the entire examination. There

More information

Ethernet. Ethernet. Network Devices

Ethernet. Ethernet. Network Devices Ethernet Babak Kia Adjunct Professor Boston University College of Engineering ENG SC757 - Advanced Microprocessor Design Ethernet Ethernet is a term used to refer to a diverse set of frame based networking

More information

Protocol Data Units and Encapsulation

Protocol Data Units and Encapsulation Chapter 2: Communicating over the 51 Protocol Units and Encapsulation For application data to travel uncorrupted from one host to another, header (or control data), which contains control and addressing

More information

STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT

STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT 1. TIMING ACCURACY The accurate multi-point measurements require accurate synchronization of clocks of the measurement devices. If for example time stamps

More information

VoIP QoS. Version 1.0. September 4, 2006. AdvancedVoIP.com. sales@advancedvoip.com support@advancedvoip.com. Phone: +1 213 341 1431

VoIP QoS. Version 1.0. September 4, 2006. AdvancedVoIP.com. sales@advancedvoip.com support@advancedvoip.com. Phone: +1 213 341 1431 VoIP QoS Version 1.0 September 4, 2006 AdvancedVoIP.com sales@advancedvoip.com support@advancedvoip.com Phone: +1 213 341 1431 Copyright AdvancedVoIP.com, 1999-2006. All Rights Reserved. No part of this

More information

CHAPTER 1 ATM TRAFFIC MANAGEMENT

CHAPTER 1 ATM TRAFFIC MANAGEMENT CHAPTER 1 ATM TRAFFIC MANAGEMENT Webster s New World Dictionary defines congestion as filled to excess, or overcrowded; for example, highway congestion. Although, the best solution of congestion is to

More information

Question: 3 When using Application Intelligence, Server Time may be defined as.

Question: 3 When using Application Intelligence, Server Time may be defined as. 1 Network General - 1T6-521 Application Performance Analysis and Troubleshooting Question: 1 One component in an application turn is. A. Server response time B. Network process time C. Application response

More information

Modeling and Simulation of Queuing Scheduling Disciplines on Packet Delivery for Next Generation Internet Streaming Applications

Modeling and Simulation of Queuing Scheduling Disciplines on Packet Delivery for Next Generation Internet Streaming Applications Modeling and Simulation of Queuing Scheduling Disciplines on Packet Delivery for Next Generation Internet Streaming Applications Sarhan M. Musa Mahamadou Tembely Matthew N. O. Sadiku Pamela H. Obiomon

More information

"Charting the Course... ... to Your Success!" QOS - Implementing Cisco Quality of Service 2.5 Course Summary

Charting the Course... ... to Your Success! QOS - Implementing Cisco Quality of Service 2.5 Course Summary Course Summary Description Implementing Cisco Quality of Service (QOS) v2.5 provides learners with in-depth knowledge of QoS requirements, conceptual models such as best effort, IntServ, and DiffServ,

More information

How To Analyze The Security On An Ipa Wireless Sensor Network

How To Analyze The Security On An Ipa Wireless Sensor Network Throughput Analysis of WEP Security in Ad Hoc Sensor Networks Mohammad Saleh and Iyad Al Khatib iitc Stockholm, Sweden {mohsaleh, iyad}@iitc.se ABSTRACT This paper presents a performance investigation

More information

Quality of Service. Translation of QoS Parameters. Quality of Service

Quality of Service. Translation of QoS Parameters. Quality of Service Quality of Service Chapter 2: Basics Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Multimedia Transfer and Control Protocols Quality of Service

More information

Indepth Voice over IP and SIP Networking Course

Indepth Voice over IP and SIP Networking Course Introduction SIP is fast becoming the Voice over IP protocol of choice. During this 3-day course delegates will examine SIP technology and architecture and learn how a functioning VoIP service can be established.

More information

VOIP QOS. Thomas Mangin. ITSPA - Autumn Seminar 11th October 2012 LEEDS. Technical Director IXLeeds AND THE IXP THE CORE THE EDGE

VOIP QOS. Thomas Mangin. ITSPA - Autumn Seminar 11th October 2012 LEEDS. Technical Director IXLeeds AND THE IXP THE CORE THE EDGE VOIP QOS ITSPA - Autumn Seminar 11th October 2012 LEEDS THE EDGE THE CORE AND THE IXP Thomas Mangin Technical Director IXLeeds AGENDA NO AGENDA Agenda are good to let you known when to doze off There is

More information

920-803 - technology standards and protocol for ip telephony solutions

920-803 - technology standards and protocol for ip telephony solutions 920-803 - technology standards and protocol for ip telephony solutions 1. Which CODEC delivers the greatest compression? A. B. 711 C. D. 723.1 E. F. 726 G. H. 729 I. J. 729A Answer: C 2. To achieve the

More information

Integrated Service (IntServ) versus Differentiated Service (Diffserv)

Integrated Service (IntServ) versus Differentiated Service (Diffserv) Integrated Service (IntServ) versus Differentiated Service (Diffserv) Information taken from Kurose and Ross textbook Computer Networking A Top- Down Approach Featuring the Internet ACN: IntServ and DiffServ

More information

Chapter 3. TCP/IP Networks. 3.1 Internet Protocol version 4 (IPv4)

Chapter 3. TCP/IP Networks. 3.1 Internet Protocol version 4 (IPv4) Chapter 3 TCP/IP Networks 3.1 Internet Protocol version 4 (IPv4) Internet Protocol version 4 is the fourth iteration of the Internet Protocol (IP) and it is the first version of the protocol to be widely

More information

UPPER LAYER SWITCHING

UPPER LAYER SWITCHING 52-20-40 DATA COMMUNICATIONS MANAGEMENT UPPER LAYER SWITCHING Gilbert Held INSIDE Upper Layer Operations; Address Translation; Layer 3 Switching; Layer 4 Switching OVERVIEW The first series of LAN switches

More information

10CS64: COMPUTER NETWORKS - II

10CS64: COMPUTER NETWORKS - II QUESTION BANK 10CS64: COMPUTER NETWORKS - II Part A Unit 1 & 2: Packet-Switching Networks 1 and Packet-Switching Networks 2 1. Mention different types of network services? Explain the same. 2. Difference

More information

Scheduling for QoS Management

Scheduling for QoS Management Scheduling for QoS Management Domenico Massimo Parrucci Condello isti information science Facoltà and di Scienze technology e Tecnologie institute 1/number 1 Outline What is Queue Management and Scheduling?

More information

Technote. SmartNode Quality of Service for VoIP on the Internet Access Link

Technote. SmartNode Quality of Service for VoIP on the Internet Access Link Technote SmartNode Quality of Service for VoIP on the Internet Access Link Applies to the following products SmartNode 1000 Series SmartNode 2000 Series SmartNode 4520 Series Overview Initially designed

More information

The Conversion Technology Experts. Quality of Service (QoS) in High-Priority Applications

The Conversion Technology Experts. Quality of Service (QoS) in High-Priority Applications The Conversion Technology Experts Quality of Service (QoS) in High-Priority Applications Abstract It is apparent that with the introduction of new technologies such as Voice over IP and digital video,

More information

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software Local Area What s a LAN? A transmission system, usually private owned, very speedy and secure, covering a geographical area in the range of kilometres, comprising a shared transmission medium and a set

More information

1-800-CALL-H.E.P. - Experiences on a Voice-over-IP Test Bed.

1-800-CALL-H.E.P. - Experiences on a Voice-over-IP Test Bed. SLAC-PUB-8384 February 2000 1-800-CALL-H.E.P. - Experiences on a Voice-over-IP Test Bed. W. Matthews, L. Cottrell, R. Nitzan Presented at International Conference On Computing In High Energy Physics And

More information

Nortel - 920-803. Technology Standards and Protocol for IP Telephony Solutions

Nortel - 920-803. Technology Standards and Protocol for IP Telephony Solutions 1 Nortel - 920-803 Technology Standards and Protocol for IP Telephony Solutions QUESTION: 1 To achieve the QoS necessary to deliver voice between two points on a Frame Relay network, which two items are

More information

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak Packet Switching and Computer Networks Switching As computer networks became more pervasive, more and more data and also less voice was transmitted over telephone lines. Circuit Switching The telephone

More information

The Network Layer Functions: Congestion Control

The Network Layer Functions: Congestion Control The Network Layer Functions: Congestion Control Network Congestion: Characterized by presence of a large number of packets (load) being routed in all or portions of the subnet that exceeds its link and

More information

AERONAUTICAL COMMUNICATIONS PANEL (ACP) ATN and IP

AERONAUTICAL COMMUNICATIONS PANEL (ACP) ATN and IP AERONAUTICAL COMMUNICATIONS PANEL (ACP) Working Group I - 7 th Meeting Móntreal, Canada 2 6 June 2008 Agenda Item x : ATN and IP Information Paper Presented by Naoki Kanada Electronic Navigation Research

More information

IMPLEMENTING CISCO QUALITY OF SERVICE V2.5 (QOS)

IMPLEMENTING CISCO QUALITY OF SERVICE V2.5 (QOS) IMPLEMENTING CISCO QUALITY OF SERVICE V2.5 (QOS) COURSE OVERVIEW: Implementing Cisco Quality of Service (QOS) v2.5 provides learners with in-depth knowledge of QoS requirements, conceptual models such

More information

Voice over IP. Overview. What is VoIP and how it works. Reduction of voice quality. Quality of Service for VoIP

Voice over IP. Overview. What is VoIP and how it works. Reduction of voice quality. Quality of Service for VoIP Voice over IP Andreas Mettis University of Cyprus November 23, 2004 Overview What is VoIP and how it works. Reduction of voice quality. Quality of Service for VoIP 1 VoIP VoIP (voice over IP - that is,

More information

The need for bandwidth management and QoS control when using public or shared networks for disaster relief work

The need for bandwidth management and QoS control when using public or shared networks for disaster relief work International Telecommunication Union The need for bandwidth management and QoS control when using public or shared networks for disaster relief work Stephen Fazio Chief, Global Telecommunications Officer

More information

Implementing Cisco Quality of Service QOS v2.5; 5 days, Instructor-led

Implementing Cisco Quality of Service QOS v2.5; 5 days, Instructor-led Implementing Cisco Quality of Service QOS v2.5; 5 days, Instructor-led Course Description Implementing Cisco Quality of Service (QOS) v2.5 provides learners with in-depth knowledge of QoS requirements,

More information

5. DEPLOYMENT ISSUES Having described the fundamentals of VoIP and underlying IP infrastructure, let s address deployment issues.

5. DEPLOYMENT ISSUES Having described the fundamentals of VoIP and underlying IP infrastructure, let s address deployment issues. 5. DEPLOYMENT ISSUES Having described the fundamentals of VoIP and underlying IP infrastructure, let s address deployment issues. 5.1 LEGACY INTEGRATION In most cases, enterprises own legacy PBX systems,

More information

Digital Audio and Video Data

Digital Audio and Video Data Multimedia Networking Reading: Sections 3.1.2, 3.3, 4.5, and 6.5 CS-375: Computer Networks Dr. Thomas C. Bressoud 1 Digital Audio and Video Data 2 Challenges for Media Streaming Large volume of data Each

More information

Module 7 Internet And Internet Protocol Suite

Module 7 Internet And Internet Protocol Suite Module 7 Internet And Internet Protocol Suite Lesson 21 Internet and IPv4 LESSON OBJECTIVE General The lesson will discuss a popular network layer protocol, i.e. the Internet Protocol Specific The focus

More information

12 Quality of Service (QoS)

12 Quality of Service (QoS) Burapha University ก Department of Computer Science 12 Quality of Service (QoS) Quality of Service Best Effort, Integrated Service, Differentiated Service Factors that affect the QoS Ver. 0.1 :, prajaks@buu.ac.th

More information

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages

More information

Is Your Network Ready for VoIP? > White Paper

Is Your Network Ready for VoIP? > White Paper > White Paper Tough Questions, Honest Answers For many years, voice over IP (VoIP) has held the promise of enabling the next generation of voice communications within the enterprise. Unfortunately, its

More information