Problem set 2, Part 2: Generalized Roy Model 2 Factor, no normality

Size: px
Start display at page:

Download "Problem set 2, Part 2: Generalized Roy Model 2 Factor, no normality"

Transcription

1 Problem set 2, Part 2: Generalized Roy Model 2 Factor, no normality After doing this problem set you should be able to figure out how to include more factors (so you make the model more flexible) get rid of the normality assumptions (actually there is a paper by Ferguson (1983) that shows that a mixture of normals can aproximate almost any distribution arbitrarilly well so we are really being very flexible here. That the model does not depend on functional form or distributional assumptions can be seen in Carneiro, Hansen Heckman (2003)). Ok, so much for simple 1 factor models normality assumptions. Let usnowgotoamodeloftheform I = Zγ + V (1) Y t,1 = Xβ t,1 + ε t,1 (2) Y t,0 = Xβ t,0 + ε t,0 (3) D =1(I>0) (4) Assume that that Y t = DY t,1 +(1 D) Y t,0 V = f 1 α V1 + f 2 α V2 + U V (5) ε t,1 = f 1 α t,11 + f 2 α t,12 + U t,1 (6) ε t,0 = f 1 α t,01 + f 2 α t,02 + U t,0 (7) (U t,1,u t,0,u V ) mutually independent (U t,1 U t,0 U V ) for all t f 1 f 2 (f 1,f 2 ) (U t,0,u t,1,u V ) U t,1 N ³0,σ 2Ut,1 ³0,σ 2Ut,0 U t,0 N U V N 0,σ 2 U V 1

2 Suppose that additionaly, you have two external test equations which we observe regardless of D which only depend on f 1. The tests take the form T 1 = Qθ 1 + f 1 δ 11 + U T1 T 2 = Qθ 2 + f 1 δ 21 + U T2 U T1 N 0,σ 2 T 1 U T2 N 0,σ 2 T Write down the likelihood function for this problem assuming that f 1 f 2 have some distribution say Pr (f 1,f 2 )=Pr(f 1 )Pr(f 2 ). Notice that conditional on f everything is independent, so take advantage of this when writting the likelihood. Now assume that XK 1 f 1 p f1, kn µ f1,k,σ 2 f 1,k XK 1 p f1, kµ f1,k =0 XK 1 p f1, k =1 XK 2 f 2 p f2, kn µ f2,k,σ 2 f 2,k XK 2 p f2, kµ f2,k =0 XK 2 p f2, k =1 2

3 where I am abusing notation to let st for X Pr (X) = KX KX p k N µ k,σ 2 k ³ 1 p k p e 1 X µk 2 σ k 2. 2πσ 2 k Also impose the following normalizations: σ 2 U V =1,δ 11 =1α 1,02 =1. To keep it simple assume that K 1 =2K 2 =2,butyoucanwriteit as a general program that allows for more mixture components, more time periods, more test equations more factors (later you will write a program that allows for more choices too!). 2. Just to start your engines, what is the formula for the variance of a mixture of normals rom variable like X above? 3. Program either a Maximum Likelihood or MCMC version of this model. Notice that if you do an MLE version you are now going to have to integrate over 2 continuous distributions which is going to take a long time. I strongly recomend the MCMC version since extending it to more factorsisnaturalitisstillveryfastwhereasextendingthemleversion is not. You ll still have a chance to practice MLE on a dynamic program on PS8. If using an MCMC method put non-informative priors on γ,θ j,β t,1 β t,0.putnormal(0, 10.0) (proper but with little µ information) priors on α t,01,α t,11,α t,v1 δ 21 ;gamma(2, 1) priors on,,. σ 2 U σ 2 t,1 U σ 2 t,0 T j We are going to use dataset 2b for this part of the problem set for future problem sets. The way this dataset, again abusing notation for the mixtures, was generated is the following: f 1 0.5N (1, 2) + 0.5N ( 1, 2) f 2 0.3N (0.5, 0.5) + 0.7N ( , 0.1) U t,1 N (0, 1) U t,0 N (0, 1) U V N (0, 1) t = 1, 2, 3 3

4 Z 0 = X 0 are just a constant equal to 1. Next we generate X 1 N (0, 2) Z 1 N (0, 2) so we are in the case where Z =(Z 0,Z 1 )X =(X 0,X 1 ) are exogenous. We finally form Y t,1 =2X 0 + X 1 +2f 1 + f 2 + U t,1 Y t,0 = X 0 + X 1 + f 1 + f 2 + U t,0 I =0.5Z 0 + Z 1 + f 1 + f 2 + U V for t =1, 2, 3let D =1(I>0). so that the observed Y t is Y t = DY t,1 +(1 D) Y t,0. Finally the test equations were generated as U T1 N (0, 1), U T2 N (0, 1). Q 0 =1, Q 1 N (0, 1) T 1 = Q 0 + Q 1 + f 1 + U T1. T 2 = Q 0 +2Q f 1 + U T2 4. Run your program on this data. If you did it correctly your estimates should be close to the values we assigned when we built the dataset. Suppose we are interested in estimating mean treatment parameters (but see Carneiro, Hansen Heckman for the use of these methods in estimation of distributions) for present values, assume there is no discounting. That is, define 3X Y 1 = Y 0 = 4 Y t,1 t=1 3X Y t,0. t=1

5 5. (Derive analytically if you want, it is a very nice exercise to do you will not regret it since you will use something similar in PS8). Estimate from your results in the previous section the following: a) Average Treatment on the Treated b) Average Treatment effect c) Average effect of treatment for people at the margin of indiference between D =1D = 0 (a nice way to do this numerically is to change the intercept of I by very little take the average treatment on the treated effect for those persons who actually change choice). d) How would you estimate the Marginal Treatment Effect (Can you derive it?)? 6. Now let s look at the robustness of the method to changes in available information. This is going to be very important when making comparisons across methods. Suppose now that f 2 becomes available somehow so that now it is observed by you (the econometrician). This means we are back in a one factor model since f 2 is now like an X a Z. Reestimate the model. Do your results change? (hint: they shouldn t change much, to see why check Heckman Navarro-Lozano (2004)). In this final stage we are going to give names to things to make it easier to underst. In the previous model, suppose that the choice being made is schooling but that now there are 3 levels of schooling so now we have I 1 = U V1 I 2 = Zγ 2 + f 1 α 2,V1 + f 2 α 2,V2 + U V2 I 3 = Zγ 3 + f 1 α 3,V1 + f 2 α 3,V2 + U V3 U Vj N (0, 1). You should recognize the assumptions from problem set 1b. Now suppose that the outcomes you observe (i.e., the Y t,j ) in each schooling level are wages (now of course you only observe wages for the schooling level chosen, not for all 3). However we now add employment to the decisions being made. That is, not only do I only observe wages only for the schooling level chosen but at any given time period I only observe wages if Et = W t ρ t + f 1 π t,1 + f 2 π t,2 + η t > 0. η t N (0, 1). 5

6 That is I only observe wages for those who choose to be employed (we could easily allow the empoyment decision to depend on the schooling level chosen too). Assume as before that everything is independent conditional on the factor. 7. Can you write the likelihood for this model? 8. What about an algorithm? (you do not need to program it, just write how you would do it). By now, you should be able to see that extending the model (say for more time periods, other choices, more than 2 choices etc) is pretty straightforward under the factor structure assumption. This however, is only one way to do it. With what you have learned you should be able to figure out other methods program them since the principles are always the same. 6

Hidden Markov Models

Hidden Markov Models 8.47 Introduction to omputational Molecular Biology Lecture 7: November 4, 2004 Scribe: Han-Pang hiu Lecturer: Ross Lippert Editor: Russ ox Hidden Markov Models The G island phenomenon The nucleotide frequencies

More information

Call Price as a Function of the Stock Price

Call Price as a Function of the Stock Price Call Price as a Function of the Stock Price Intuitively, the call price should be an increasing function of the stock price. This relationship allows one to develop a theory of option pricing, derived

More information

From the help desk: Bootstrapped standard errors

From the help desk: Bootstrapped standard errors The Stata Journal (2003) 3, Number 1, pp. 71 80 From the help desk: Bootstrapped standard errors Weihua Guan Stata Corporation Abstract. Bootstrapping is a nonparametric approach for evaluating the distribution

More information

Statistical Models in R

Statistical Models in R Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova

More information

Handling attrition and non-response in longitudinal data

Handling attrition and non-response in longitudinal data Longitudinal and Life Course Studies 2009 Volume 1 Issue 1 Pp 63-72 Handling attrition and non-response in longitudinal data Harvey Goldstein University of Bristol Correspondence. Professor H. Goldstein

More information

problem arises when only a non-random sample is available differs from censored regression model in that x i is also unobserved

problem arises when only a non-random sample is available differs from censored regression model in that x i is also unobserved 4 Data Issues 4.1 Truncated Regression population model y i = x i β + ε i, ε i N(0, σ 2 ) given a random sample, {y i, x i } N i=1, then OLS is consistent and efficient problem arises when only a non-random

More information

REVIEW EXERCISES DAVID J LOWRY

REVIEW EXERCISES DAVID J LOWRY REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and

More information

One-Way Analysis of Variance

One-Way Analysis of Variance One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We

More information

Annuities. Lecture: Weeks 9-11. Lecture: Weeks 9-11 (STT 455) Annuities Fall 2014 - Valdez 1 / 43

Annuities. Lecture: Weeks 9-11. Lecture: Weeks 9-11 (STT 455) Annuities Fall 2014 - Valdez 1 / 43 Annuities Lecture: Weeks 9-11 Lecture: Weeks 9-11 (STT 455) Annuities Fall 2014 - Valdez 1 / 43 What are annuities? What are annuities? An annuity is a series of payments that could vary according to:

More information

Predicting Defaults of Loans using Lending Club s Loan Data

Predicting Defaults of Loans using Lending Club s Loan Data Predicting Defaults of Loans using Lending Club s Loan Data Oleh Dubno Fall 2014 General Assembly Data Science Link to my Developer Notebook (ipynb) - http://nbviewer.ipython.org/gist/odubno/0b767a47f75adb382246

More information

The Reinvestment Assumption Dallas Brozik, Marshall University

The Reinvestment Assumption Dallas Brozik, Marshall University The Reinvestment Assumption Dallas Brozik, Marshall University Every field of study has its little odd bits, and one of the odd bits in finance is the reinvestment assumption. It is an artifact of the

More information

PS 271B: Quantitative Methods II. Lecture Notes

PS 271B: Quantitative Methods II. Lecture Notes PS 271B: Quantitative Methods II Lecture Notes Langche Zeng [email protected] The Empirical Research Process; Fundamental Methodological Issues 2 Theory; Data; Models/model selection; Estimation; Inference.

More information

Sections 2.11 and 5.8

Sections 2.11 and 5.8 Sections 211 and 58 Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1/25 Gesell data Let X be the age in in months a child speaks his/her first word and

More information

Case Study in Data Analysis Does a drug prevent cardiomegaly in heart failure?

Case Study in Data Analysis Does a drug prevent cardiomegaly in heart failure? Case Study in Data Analysis Does a drug prevent cardiomegaly in heart failure? Harvey Motulsky [email protected] This is the first case in what I expect will be a series of case studies. While I mention

More information

Multivariate Normal Distribution

Multivariate Normal Distribution Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

More information

What s New in Econometrics? Lecture 8 Cluster and Stratified Sampling

What s New in Econometrics? Lecture 8 Cluster and Stratified Sampling What s New in Econometrics? Lecture 8 Cluster and Stratified Sampling Jeff Wooldridge NBER Summer Institute, 2007 1. The Linear Model with Cluster Effects 2. Estimation with a Small Number of Groups and

More information

Marginal Cost. Example 1: Suppose the total cost in dollars per week by ABC Corporation for 2

Marginal Cost. Example 1: Suppose the total cost in dollars per week by ABC Corporation for 2 Math 114 Marginal Functions in Economics Marginal Cost Suppose a business owner is operating a plant that manufactures a certain product at a known level. Sometimes the business owner will want to know

More information

2DI36 Statistics. 2DI36 Part II (Chapter 7 of MR)

2DI36 Statistics. 2DI36 Part II (Chapter 7 of MR) 2DI36 Statistics 2DI36 Part II (Chapter 7 of MR) What Have we Done so Far? Last time we introduced the concept of a dataset and seen how we can represent it in various ways But, how did this dataset came

More information

EXCEL PREREQUISITES SOLVING TIME VALUE OF MONEY PROBLEMS IN EXCEL

EXCEL PREREQUISITES SOLVING TIME VALUE OF MONEY PROBLEMS IN EXCEL CHAPTER 3 Smart Excel Appendix Use the Smart Excel spreadsheets and animated tutorials at the Smart Finance section of http://www.cengage.co.uk/megginson. Appendix Contents Excel prerequisites Creating

More information

ESTIMATING AVERAGE TREATMENT EFFECTS: IV AND CONTROL FUNCTIONS, II Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics

ESTIMATING AVERAGE TREATMENT EFFECTS: IV AND CONTROL FUNCTIONS, II Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics ESTIMATING AVERAGE TREATMENT EFFECTS: IV AND CONTROL FUNCTIONS, II Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009 1. Quantile Treatment Effects 2. Control Functions

More information

Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem

Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem February 21, 214 In many problems, you are asked to show that something exists, but are not required to give a specific example or formula

More information

EQUIPMENT RENTAL by George M. Keen, Senior Consultant

EQUIPMENT RENTAL by George M. Keen, Senior Consultant EQUIPMENT RENTAL by George M. Keen, Senior Consultant Rental is an interesting area to examine from a strategic point of view. Let's look at rental growth in the last 20 years. In 1987, did you consciously

More information

11. Time series and dynamic linear models

11. Time series and dynamic linear models 11. Time series and dynamic linear models Objective To introduce the Bayesian approach to the modeling and forecasting of time series. Recommended reading West, M. and Harrison, J. (1997). models, (2 nd

More information

Perfect Pizza - Credit Card Processing Decisions Gail Kaciuba, Ph.D., St. Mary s University, San Antonio, USA

Perfect Pizza - Credit Card Processing Decisions Gail Kaciuba, Ph.D., St. Mary s University, San Antonio, USA Perfect Pizza - Credit Card Processing Decisions Gail Kaciuba, Ph.D., St. Mary s University, San Antonio, USA ABSTRACT This case is based on a consulting project the author conducted with a credit card

More information

Activity 1: Using base ten blocks to model operations on decimals

Activity 1: Using base ten blocks to model operations on decimals Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division

More information

" Y. Notation and Equations for Regression Lecture 11/4. Notation:

 Y. Notation and Equations for Regression Lecture 11/4. Notation: Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

More information

Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

More information

Markov Chain Monte Carlo Simulation Made Simple

Markov Chain Monte Carlo Simulation Made Simple Markov Chain Monte Carlo Simulation Made Simple Alastair Smith Department of Politics New York University April2,2003 1 Markov Chain Monte Carlo (MCMC) simualtion is a powerful technique to perform numerical

More information

How To Close A House On A Mortgage

How To Close A House On A Mortgage Coming to Grips With Settlement Coming to Grips With Settlement What to Know Before Your Closing The closing, also known as the settlement, is the last step in getting your mortgage and actually becoming

More information

Bayesian Statistics in One Hour. Patrick Lam

Bayesian Statistics in One Hour. Patrick Lam Bayesian Statistics in One Hour Patrick Lam Outline Introduction Bayesian Models Applications Missing Data Hierarchical Models Outline Introduction Bayesian Models Applications Missing Data Hierarchical

More information

One-year reserve risk including a tail factor : closed formula and bootstrap approaches

One-year reserve risk including a tail factor : closed formula and bootstrap approaches One-year reserve risk including a tail factor : closed formula and bootstrap approaches Alexandre Boumezoued R&D Consultant Milliman Paris [email protected] Yoboua Angoua Non-Life Consultant

More information

Recursive Algorithms. Recursion. Motivating Example Factorial Recall the factorial function. { 1 if n = 1 n! = n (n 1)! if n > 1

Recursive Algorithms. Recursion. Motivating Example Factorial Recall the factorial function. { 1 if n = 1 n! = n (n 1)! if n > 1 Recursion Slides by Christopher M Bourke Instructor: Berthe Y Choueiry Fall 007 Computer Science & Engineering 35 Introduction to Discrete Mathematics Sections 71-7 of Rosen cse35@cseunledu Recursive Algorithms

More information

Lesson 1. Key Financial Concepts INTRODUCTION

Lesson 1. Key Financial Concepts INTRODUCTION Key Financial Concepts INTRODUCTION Welcome to Financial Management! One of the most important components of every business operation is financial decision making. Business decisions at all levels have

More information

Portfolio Management 101:

Portfolio Management 101: THOUGHT LEADERSHIP WHITE PAPER In partnership with Portfolio Management 101: Moving from Just Project Management to True PPM A lot of organizations claim that they carry out project & portfolio management

More information

1 Teaching notes on GMM 1.

1 Teaching notes on GMM 1. Bent E. Sørensen January 23, 2007 1 Teaching notes on GMM 1. Generalized Method of Moment (GMM) estimation is one of two developments in econometrics in the 80ies that revolutionized empirical work in

More information

Lecture 8: Signal Detection and Noise Assumption

Lecture 8: Signal Detection and Noise Assumption ECE 83 Fall Statistical Signal Processing instructor: R. Nowak, scribe: Feng Ju Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(, σ I n n and S = [s, s,...,

More information

Settlement. Coming to Grips With. What to Know before Your Closing. The Event. What Is Closing?

Settlement. Coming to Grips With. What to Know before Your Closing. The Event. What Is Closing? Coming to Grips With Settlement What to Know before Your Closing The closing, or settlement, is the last step in getting your mortgage and actually becoming the owner of your new home. You ll probably

More information

Marketing Variance Analysis

Marketing Variance Analysis Marketing Variance Analysis This module introduces the tool of marketing variance analysis to aid a manager s understanding of the underlying reason(s) why a marketing plan s objectives were or were not

More information

1 Maximum likelihood estimation

1 Maximum likelihood estimation COS 424: Interacting with Data Lecturer: David Blei Lecture #4 Scribes: Wei Ho, Michael Ye February 14, 2008 1 Maximum likelihood estimation 1.1 MLE of a Bernoulli random variable (coin flips) Given N

More information

Lecture 19: Conditional Logistic Regression

Lecture 19: Conditional Logistic Regression Lecture 19: Conditional Logistic Regression Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina

More information

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b. PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

More information

Mathematics of Life Contingencies MATH 3281

Mathematics of Life Contingencies MATH 3281 Mathematics of Life Contingencies MATH 3281 Life annuities contracts Edward Furman Department of Mathematics and Statistics York University February 13, 2012 Edward Furman Mathematics of Life Contingencies

More information

2.2 Derivative as a Function

2.2 Derivative as a Function 2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an x-value, why don t we just use x

More information

Pricing I: Linear Demand

Pricing I: Linear Demand Pricing I: Linear Demand This module covers the relationships between price and quantity, maximum willing to buy, maximum reservation price, profit maximizing price, and price elasticity, assuming a linear

More information

November 2012 Course MLC Examination, Problem No. 1 For two lives, (80) and (90), with independent future lifetimes, you are given: k p 80+k

November 2012 Course MLC Examination, Problem No. 1 For two lives, (80) and (90), with independent future lifetimes, you are given: k p 80+k Solutions to the November 202 Course MLC Examination by Krzysztof Ostaszewski, http://www.krzysio.net, [email protected] Copyright 202 by Krzysztof Ostaszewski All rights reserved. No reproduction in

More information

Further Topics in Actuarial Mathematics: Premium Reserves. Matthew Mikola

Further Topics in Actuarial Mathematics: Premium Reserves. Matthew Mikola Further Topics in Actuarial Mathematics: Premium Reserves Matthew Mikola April 26, 2007 Contents 1 Introduction 1 1.1 Expected Loss...................................... 2 1.2 An Overview of the Project...............................

More information

Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing. Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative

More information

Normalization and Mixed Degrees of Integration in Cointegrated Time Series Systems

Normalization and Mixed Degrees of Integration in Cointegrated Time Series Systems Normalization and Mixed Degrees of Integration in Cointegrated Time Series Systems Robert J. Rossana Department of Economics, 04 F/AB, Wayne State University, Detroit MI 480 E-Mail: [email protected]

More information

Overview. Longitudinal Data Variation and Correlation Different Approaches. Linear Mixed Models Generalized Linear Mixed Models

Overview. Longitudinal Data Variation and Correlation Different Approaches. Linear Mixed Models Generalized Linear Mixed Models Overview 1 Introduction Longitudinal Data Variation and Correlation Different Approaches 2 Mixed Models Linear Mixed Models Generalized Linear Mixed Models 3 Marginal Models Linear Models Generalized Linear

More information

Insurance Benefits. Lecture: Weeks 6-8. Lecture: Weeks 6-8 (STT 455) Insurance Benefits Fall 2014 - Valdez 1 / 36

Insurance Benefits. Lecture: Weeks 6-8. Lecture: Weeks 6-8 (STT 455) Insurance Benefits Fall 2014 - Valdez 1 / 36 Insurance Benefits Lecture: Weeks 6-8 Lecture: Weeks 6-8 (STT 455) Insurance Benefits Fall 2014 - Valdez 1 / 36 An introduction An introduction Central theme: to quantify the value today of a (random)

More information

Solving Quadratic & Higher Degree Inequalities

Solving Quadratic & Higher Degree Inequalities Ch. 8 Solving Quadratic & Higher Degree Inequalities We solve quadratic and higher degree inequalities very much like we solve quadratic and higher degree equations. One method we often use to solve quadratic

More information

Notes on indifference curve analysis of the choice between leisure and labor, and the deadweight loss of taxation. Jon Bakija

Notes on indifference curve analysis of the choice between leisure and labor, and the deadweight loss of taxation. Jon Bakija Notes on indifference curve analysis of the choice between leisure and labor, and the deadweight loss of taxation Jon Bakija This example shows how to use a budget constraint and indifference curve diagram

More information

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( ) Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

More information

The Real Business Cycle model

The Real Business Cycle model The Real Business Cycle model Spring 2013 1 Historical introduction Modern business cycle theory really got started with Great Depression Keynes: The General Theory of Employment, Interest and Money Keynesian

More information

QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS

QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS L. M. Dieng ( Department of Physics, CUNY/BCC, New York, New York) Abstract: In this work, we expand the idea of Samuelson[3] and Shepp[,5,6] for

More information

PATTERN MIXTURE MODELS FOR MISSING DATA. Mike Kenward. London School of Hygiene and Tropical Medicine. Talk at the University of Turku,

PATTERN MIXTURE MODELS FOR MISSING DATA. Mike Kenward. London School of Hygiene and Tropical Medicine. Talk at the University of Turku, PATTERN MIXTURE MODELS FOR MISSING DATA Mike Kenward London School of Hygiene and Tropical Medicine Talk at the University of Turku, April 10th 2012 1 / 90 CONTENTS 1 Examples 2 Modelling Incomplete Data

More information

Chapter 6: Point Estimation. Fall 2011. - Probability & Statistics

Chapter 6: Point Estimation. Fall 2011. - Probability & Statistics STAT355 Chapter 6: Point Estimation Fall 2011 Chapter Fall 2011 6: Point1 Estimat / 18 Chap 6 - Point Estimation 1 6.1 Some general Concepts of Point Estimation Point Estimate Unbiasedness Principle of

More information

Article 3, Dealing with Reuse, explains how to quantify the impact of software reuse and commercial components/libraries on your estimate.

Article 3, Dealing with Reuse, explains how to quantify the impact of software reuse and commercial components/libraries on your estimate. Estimating Software Costs This article describes the cost estimation lifecycle and a process to estimate project volume. Author: William Roetzheim Co-Founder, Cost Xpert Group, Inc. Estimating Software

More information

Why is Insurance Good? An Example Jon Bakija, Williams College (Revised October 2013)

Why is Insurance Good? An Example Jon Bakija, Williams College (Revised October 2013) Why is Insurance Good? An Example Jon Bakija, Williams College (Revised October 2013) Introduction The United States government is, to a rough approximation, an insurance company with an army. 1 That is

More information

Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II

Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II Intermediate Math Circles March 7, 2012 Linear Diophantine Equations II Last week: How to find one solution to a linear Diophantine equation This week: How to find all solutions to a linear Diophantine

More information

1 The Black-Scholes Formula

1 The Black-Scholes Formula 1 The Black-Scholes Formula In 1973 Fischer Black and Myron Scholes published a formula - the Black-Scholes formula - for computing the theoretical price of a European call option on a stock. Their paper,

More information

Basics of Statistical Machine Learning

Basics of Statistical Machine Learning CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu [email protected] Modern machine learning is rooted in statistics. You will find many familiar

More information

Name: Date: 3. Variables that a model tries to explain are called: A. endogenous. B. exogenous. C. market clearing. D. fixed.

Name: Date: 3. Variables that a model tries to explain are called: A. endogenous. B. exogenous. C. market clearing. D. fixed. Name: Date: 1 A measure of how fast prices are rising is called the: A growth rate of real GDP B inflation rate C unemployment rate D market-clearing rate 2 Compared with a recession, real GDP during a

More information

The Point-Slope Form

The Point-Slope Form 7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science Adam J. Lee [email protected] 6111 Sennott Square Lecture #20: Bayes Theorem November 5, 2013 How can we incorporate prior knowledge? Sometimes we want to know

More information

How to write a design document

How to write a design document How to write a design document Øystein Dale [email protected] February 23, 2015 First off Writing a design document is something new for most of you. Before: Read mandatory assignment/exam description,

More information

Lecture notes: single-agent dynamics 1

Lecture notes: single-agent dynamics 1 Lecture notes: single-agent dynamics 1 Single-agent dynamic optimization models In these lecture notes we consider specification and estimation of dynamic optimization models. Focus on single-agent models.

More information

Statistical modelling with missing data using multiple imputation. Session 4: Sensitivity Analysis after Multiple Imputation

Statistical modelling with missing data using multiple imputation. Session 4: Sensitivity Analysis after Multiple Imputation Statistical modelling with missing data using multiple imputation Session 4: Sensitivity Analysis after Multiple Imputation James Carpenter London School of Hygiene & Tropical Medicine Email: [email protected]

More information

Amortized Loan Example

Amortized Loan Example Amortized Loan Example Chris Columbus bought a house for $293,000. He put 20% down and obtained a 3 simple interest amortized loan for the balance at 5 % annually interest for 30 8 years. a. Find the amount

More information

calculating probabilities

calculating probabilities 4 calculating probabilities Taking Chances What s the probability he s remembered I m allergic to non-precious metals? Life is full of uncertainty. Sometimes it can be impossible to say what will happen

More information

Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

More information

HOW MUCH WILL IT COST?

HOW MUCH WILL IT COST? RESEARCH BRIEF HOW MUCH WILL IT COST? How Americans Use Prices In Health Care A project by Public Agenda, with support from the Robert Wood Johnson Foundation MARCH 2015 SUMMARY As Americans shoulder more

More information

Economic Ordering Quantities: A Practical Cost Reduction Strategy for Inventory Management

Economic Ordering Quantities: A Practical Cost Reduction Strategy for Inventory Management Economic Ordering Quantities: A Practical Cost Reduction Strategy for Inventory Management By Todd Duell Abstract Inventory management is an important concern for all managers in all types of businesses.

More information

More on annuities with payments in arithmetic progression and yield rates for annuities

More on annuities with payments in arithmetic progression and yield rates for annuities More on annuities with payments in arithmetic progression and yield rates for annuities 1 Annuities-due with payments in arithmetic progression 2 Yield rate examples involving annuities More on annuities

More information

Chapter 22 Credit Risk

Chapter 22 Credit Risk Chapter 22 Credit Risk May 22, 2009 20.28. Suppose a 3-year corporate bond provides a coupon of 7% per year payable semiannually and has a yield of 5% (expressed with semiannual compounding). The yields

More information

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial

More information

Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus

Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives

More information

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.

More information

Reject Inference in Credit Scoring. Jie-Men Mok

Reject Inference in Credit Scoring. Jie-Men Mok Reject Inference in Credit Scoring Jie-Men Mok BMI paper January 2009 ii Preface In the Master programme of Business Mathematics and Informatics (BMI), it is required to perform research on a business

More information

Unit 4 The Bernoulli and Binomial Distributions

Unit 4 The Bernoulli and Binomial Distributions PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population

More information

ECG590I Asset Pricing. Lecture 2: Present Value 1

ECG590I Asset Pricing. Lecture 2: Present Value 1 ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1$ now or 1$ one year from now, then you would rather have your money now. If you have to decide

More information

Chapter 5 Estimating Demand Functions

Chapter 5 Estimating Demand Functions Chapter 5 Estimating Demand Functions 1 Why do you need statistics and regression analysis? Ability to read market research papers Analyze your own data in a simple way Assist you in pricing and marketing

More information

Time Value of Money Dallas Brozik, Marshall University

Time Value of Money Dallas Brozik, Marshall University Time Value of Money Dallas Brozik, Marshall University There are few times in any discipline when one topic is so important that it is absolutely fundamental in the understanding of the discipline. The

More information

Divorce Magazine Interviews Judith S. Charny

Divorce Magazine Interviews Judith S. Charny Divorce Magazine Interviews Judith S. Charny Judith Charny explains child custody laws in New Jersey including interstate relocation, college costs, post-divorce modifications and different approaches

More information

PERCENTS - compliments of Dan Mosenkis

PERCENTS - compliments of Dan Mosenkis PERCENTS - compliments of Dan Mosenkis Percent Basics: Percents are connected to many ideas: fractions, decimals, proportions, relative amounts, and multiplicative change. You could say they are like the

More information

Comparison of Estimation Methods for Complex Survey Data Analysis

Comparison of Estimation Methods for Complex Survey Data Analysis Comparison of Estimation Methods for Complex Survey Data Analysis Tihomir Asparouhov 1 Muthen & Muthen Bengt Muthen 2 UCLA 1 Tihomir Asparouhov, Muthen & Muthen, 3463 Stoner Ave. Los Angeles, CA 90066.

More information

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123 Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

More information

Greatest Common Factor and Least Common Multiple

Greatest Common Factor and Least Common Multiple Greatest Common Factor and Least Common Multiple Intro In order to understand the concepts of Greatest Common Factor (GCF) and Least Common Multiple (LCM), we need to define two key terms: Multiple: Multiples

More information

Investment, Time, and Present Value

Investment, Time, and Present Value Investment, Time, and Present Value Contents: Introduction Future Value (FV) Present Value (PV) Net Present Value (NPV) Optional: The Capital Asset Pricing Model (CAPM) Introduction Decisions made by a

More information