Signal Processing Tools for. Big Data Analy5cs. G. B. Giannakis, K. Slavakis, and G. Mateos. Call for Papers. Nice, France Location and venue

Size: px
Start display at page:

Download "Signal Processing Tools for. Big Data Analy5cs. G. B. Giannakis, K. Slavakis, and G. Mateos. Call for Papers. Nice, France Location and venue"

Transcription

1 Signal Processing Tools for General chairs Big Data Analy5cs Jean-Luc Dugelay, EURECOM Dirk Slock, EURECOM Technical chairs Marc Antonini, I3S/UNS/CNRS Nicholas Evans, EURECOM Cédric Richard, UNS/OCA Plenary Talks Sergios Theodoridis, UoA Josiane Zerubia, INRIA Special Sessions Marco Carli, U. Roma Thierry Dutoit, UMONS Jean-Yves Tourneret, IRIT/ENSEEIHT Tutorials G. B. Giannakis, K. Slavakis, and G. Mateos Touradj Ebrahimi, EPFL Patrick Naylor, Imperial Finance Bernard Merialdo, EURECOM Publicity Acknowledgments: NSF Grants EARS , EAGER , Benoit Huet, EURECOM Nikos Nikolaidis, AUTH CyberSEES , EAGER Publications MURI Grant No. AFOSR FA Patrizio Campisi, U. Roma Tre Claude Delpha, U. Paris Sud Student activities Christophe Beaugeant, Intel Ana Perez, UPC/CTTC Awards Marc Moonen, KU Leuven Sponsorship Lionel Fillatre, I3S/UNS/CNRS Call for Papers EUSIPCO is the flagship conference of the Eur EURASIP. The 23rd edition will be held in Nice, 4th September EUSIPCO 2015 will featu sessions, keynotes, exhibitions, demonstrations the order of 600 leading researchers and industry Technical scope The focus will be on signal processing theory, alg submission of original, unpublished technical pa to: Audio and acoustic signal processing Speech and language processing Image and video processing Multimedia signal processing Signal processing theory and methods Sensor array and multichannel signal processing Signal processing for communications Nonlinear signal processing Accepted papers will be submitted for inclusion are available at the conference website: Best student paper awards Two EUSIPCO Best Student Paper Awards will Papers will be selected by a committee compose Nice, France Location and venue Nestled August between the 31, foot 2015 of 1 the Alps and the accessed easily from the Nice Côte d'azur interna Paris, with direct connections to almost 100 Eu destinations including New York, JFK and Dubai. Acropolis Convention Centre, named Europe's n

2 Big Data: A growing torrent Source: McKinsey Global InsPtute, Big Data: The next fronper for innovapon, compeppon, and producpvity, May

3 Big Data: Capturing its value Source: McKinsey Global InsPtute, Big Data: The next fronper for innovapon, compeppon, and producpvity, May

4 Big Data and NetSci analypcs Online social media Robot and sensor networks Internet Biological networks Clean energy and grid analypcs Square kilometer array telescope q Desiderata: Process, analyze, and learn from large pools of network data 4

5 Challenges BIG q Sheer volume of data Ø Decentralized and parallel processing Ø Security and privacy measures q Modern massive datasets involve many a]ributes Ø Parsimonious models to ease interpretability Ø Enhanced predicpve performance Fast q Real- Pme streaming data Ø Online processing Ø Quick- rough answer vs. slow- accurate answer? q Outliers and misses Ø Robust imputapon algorithms q Good news: Ample research opportunipes arise! Messy K. Slavakis, G. B. Giannakis, and G. Mateos, Modeling and oppmizapon for big data analypcs, IEEE Signal Processing Magazine, vol. 31, no. 5, pp , Sep

6 OpportuniPes Big tensor data models and factorizapons High- dimensional stapspcal SP Network data visualizapon Theore5cal and Sta5s5cal Founda5ons of Big Data Analy5cs Pursuit of low- dimensional structure Analysis of mulp- relaponal data Common principles across networks Resource tradeoffs Randomized algorithms Scalable online, decentralized oppmizapon Convergence and performance guarantees InformaPon processing over graphs Algorithms and Implementa5on to Learn from Massive Datasets Novel architectures for large- scale data analypcs Robustness to outliers and missing data Graph SP 6

7 Roadmap q Context and mopvapon q CriPcal Big Data tasks Ø Encompassing and parsimonious data modeling Ø Dimensionality reducpon, data visualizapon Ø Data cleansing, anomaly detecpon, and inference q OpPmizaPon algorithms for Big Data q Randomized learning q Scalable compupng placorms for Big Data q Conclusions and future research direcpons 7

8 Encompassing model Background (low rank) Pa]erns, innovapons, (co- )clusters, outliers Observed data DicPonary Noise Sparse matrix q Subset of observapons and projecpon operator allow for misses q Large- scale data and/or h q Any of unknown 8

9 Subsumed paradigms q Structure leveraging criterion Nuclear norm: : singular val. of - norm (With or without misses) Ø known Compressive sampling (CS) [Candes- Tao 05] Ø Ø Ø Ø DicPonary learning (DL) [Olshausen- Field 97] Non- negapve matrix factorizapon (NMF) [Lee- Seung 99] Principal component pursuit (PCP) [Candes etal 11] Principal component analysis (PCA) [Pearson 1901] 9

10 PCA formulapons q Training data q Minimum reconstrucpon error Ø Compression Ø Reconstruction y t t ŷ t q Component analysis model SoluPon: 10

11 Dual and kernel PCA Ma q SVD: Q Gram matrix Inner products Q Q. What if approximapng low- dim space not a hyperplane? Q A1. Stretch it to become linear: Kernel PCA; e.g., [Scholkopf- Smola 01] Ø Maps to, and leverages dual PCA in high- dim spaces A2. General (non)linear models; e.g., union of hyperplanes, or, locally linear Ø TangenPal hyperplanes ŷ t B. Schölkopf and A. J. Smola, Learning with Kernels, Cambridge, MIT Press,

12 IdenPficaPon of network communipes q Kernel PCA instrumental for parpponing of large graphs (spectral clustering) Ø Relies on graph Laplacian to capture nodal correlapons Facebook egonet 744 nodes, 30,023 edges arxiv collaborapon network (General RelaPvity) 4,158 nodes, 13,422 edges q For random sketching and validapon reduces complexity to P. A. TraganiPs, K. Slavakis, and G. B. Giannakis, Spectral clustering of large- scale communipes via random sketching and validapon, in Proc. CISS, BalPmore, Maryland, Mar ,

13 MulP- dimensional scaling Given dissimilaripes or distances, idenpfy low- dim vectors that preserve LS or Kruskal- Shephard MDS: If s.t. Classical MDS: Solu5on Dual PCA: q Distance- preserving downscaling of data dimension I. Borg and P. J. Groenen, Modern MulIdimensional Scaling: Theory and ApplicaIons, NY, Springer,

14 Local linear embedding q For each find neighborhood, e.g., k- nearest neighbors q Weight matrix captures local affine relapons Sparse and [Elhamifar- Vidal 11] q IdenPfy low- dimensional vectors preserving local geometry [Saul- Roweis 03] Solu5on: The rows of are the minor, excluding, L. K. Saul and S. T. Roweis, Think globally, fit locally: Unsupervised learning of low dimensional manifolds, J. Machine Learning Research, vol. 4, pp ,

15 ApplicaPon to graph visualizapon q Undirected graph Nodes or verpces Edges or communicapng pairs of nodes All nodes that communicate with node (neighborhood) Ø Given centrality metrics q IdenPfy weights or geometry, centrality- constrained (CC) LLE q Visualize Centrality constraints, e.g., node degree Only corr. or dissimilaripes need be known B. Baingana and G. B. Giannakis, Embedding graphs under centrality constraints for network visualizapon, 2014, [Online]. Available: arxiv:

16 Visualizing the Gnutella network Gnutella: Peer- to- peer file- sharing network CC- LLE: centrality captured by node degree (08/04/2012) Processing Pme: sec (08/24/2012) Processing Time: sec B. Baingana and G. B. Giannakis, Embedding graphs under centrality constraints for network visualizapon, 2014, [Online]. Available: arxiv:

17 DicPonary learning q Solve for dicponary and sparse : (Lasso task; sparse coding) (Constrained LS task) q AlternaPng minimizapon; both and are convex q Special case of block coordinate descent methods (BCDMs) [Tseng 01] q Under certain condipons, converges to a staponary point of B. A. Olshausen and D. J. Field, Sparse coding with an overcomplete basis set: A strategy employed by V1? Vis. Res., vol. 37, no. 23, pp ,

18 Joint DL- LLE paradigm DL fit LLE fit Sparsity regularizapon q DicPonary morphs data to a smooth basis; reduces noise and complexity q InpainPng DL- LLE offers by local- affine- geometry- preserving data- driven non- linear embedding DL; for robust misses; (de- )compression PSNR db K. Slavakis, G. B. Giannakis, and G. Leus, Robust sparse embedding and reconstrucpon via dicponary learning, In Proc. CISS, BalPmore: USA,

19 Online dicponary learning q Data arrive sequenpally q InpainPng of 12- Mpixel damaged image S1. Learn dicponary from clean patches S2. Remove text by sparse coding from clean J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online learning for matrix factorizapon and sparse coding, J. Machine Learning Research, vol. 11, pp , Mar

20 Union of subspaces and subspace clustering q Parsimonious data model q Given Subspace clustering (SC) idenpfies No. of clusters Bases Data- cluster assoc. q SC as DL with block- sparse with q If then SC PCA R. Vidal, Subspace clustering, IEEE Signal Processing Magazine, vol. 28, no. 2, pp , March

21 Modeling outliers q Outlier variables s.t. outlier otherwise Ø Nominal data obey ; outliers something else Ø Linear regression [Fuchs 99], [Wright- Ma 10], [Giannakis et al 11] Ø Both and unknown, under- determined q typically sparse! 21

22 RobusPfying PCA q Natural (sparsity- leverging) espmator Ø Tuning parameter controls sparsity in number of outliers Q: Does (P1) yield robust espmates? A: Yap! Huber espmator is a special case Ø Formally juspfies the outlier- aware model and its espmator Ø Ties sparse regression with robust stapspcs G. Mateos and G. B. Giannakis, ``Robust PCA as bilinear decomposipon with outlier sparsity regularizapon,'' IEEE TransacIons on Signal Processing, pp , Oct

23 Prior art q Robust covariance matrix espmators [Campbell 80], [Huber 81] Ø M- type espmators in computer vision [Xu- Yuille 95], [De la Torre- Black 03] q Rank minimizapon with the nuclear norm, e.g., [Recht- Fazel- Parrilo 10] Ø Matrix decomposipon [Candes et al 10], [Chandrasekaran et al 11] Principal Component Pursuit (PCP) Observed Low rank Sparse Ø Singing voice separation [Huang Broadening et al 12] Ø Face recognition [Wright-Ma 10] the model = + = + 23

24 Video surveillance q Background modeling from video feeds [De la Torre- Black 01] Data PCA Robust PCA Outliers Data: h]p:// orre/ 24

25 Big Five personality factors q Measure five broad dimensions of personality traits [Costa- McRae 92] Eugene- Springfield BFI sample (WEIRD) Data: courtesy of Prof. L. Goldberg, provided by Prof. N. Waller q Big Five Inventory (BFI) Ø Short- quesponnaire (44 items) Ø Rate 1-5, e.g., `I see myself as someone who is talkapve is full of energy Outlier ranking Handbook of personality: Theory and research, O. P. John, R. W. Robins, and L. A. Pervin, Eds. New York, NY: Guilford Press,

26 Robust unveiling of communipes q Robust kernel PCA for idenpficapon of cohesive subgroups q Network: NCAA football teams (verpces), Fall 00 games (edges) Par55oned graph with outliers Row/column- permuted adjacency matrix ARI= Ø IdenPfied exactly: Big 10, Big 12, MWC, SEC, ; Outliers: Independent teams Data: h]p://www- personal.umich.edu/~mejn/netdata/ 26

27 Robust unveiling of communipes q Robust kernel PCA for idenpficapon of cohesive subgroups q Network: NCAA football teams (verpces), Fall 00 games (edges) Par55oned graph with outliers Row/column- permuted adjacency matrix ARI= Ø IdenPfied exactly: Big 10, Big 12, MWC, SEC, ; Outliers: Independent teams Data: h]p://www- personal.umich.edu/~mejn/netdata/ 27

28 Robust unveiling of communipes q Robust kernel PCA for idenpficapon of cohesive subgroups q Network: NCAA football teams (verpces), Fall 00 games (edges) Par55oned graph with outliers Row/column- permuted adjacency matrix ARI= Ø IdenPfied exactly: Big 10, Big 12, MWC, SEC, ; Outliers: Independent teams Data: h]p://www- personal.umich.edu/~mejn/netdata/ 28

29 Load curve data cleansing and imputapon q Load curve: Electric power consumppon recorded periodically Ø Reliable data: Key to realize smart grid vision [Hauser 09] Ø Missing data: Faulty meters, communicapon errors, few PMUs Ø Outliers: Unscheduled maintenance, strikes, sport events [Chen et al 10] Low-rank nominal load profiles Sparse outliers across buses and time q Approach: Load cleansing and imputapon via distributed R- PCA G. Mateos and G. B. Giannakis, Load curve data cleansing and imputapon via sparsity and low rank," IEEE TransacIons on Smart Grid, pp , Dec

30 NorthWrite data q Power consumppon of schools, government building, grocery store ( 05-10) Cleansing Imputation Ø Outliers: Building operaponal transipon shoulder periods Ø PredicPon error: 6% for 30% missing data (8% for 50%) Data: Courtesy of NorthWrite Energy Group. 30

31 Anomalies in social networks q Approach: Graph data, decompose the egonet feature matrix using PCP σ i (Y) Low rank arxiv Collabora5on Network (General Rela5vity) Index (i) q Payoff: Unveil anomalous nodes and features q Outlook: Change detecpon, macro analysis to idenpfy outlying graphs 3- regular 6- regular 3- regular 3- regular 3- regular 31

32 Modeling Internet traffic anomalies q Anomalies: Changes in origin- despnapon (OD) flows [Lakhina et al 04] Ø Failures, congespons, DoS a]acks, intrusions, flooding q Graph G (N, L) with N nodes, L links, and F flows (F >> L); OD flow z f,t q Packet counts per link l and Pme slot t Anomaly f 2 l f є {0,1} q Matrix model across T Pme slots: M. Mardani, G. Mateos, and G. B. Giannakis, Recovery of low- rank plus compressed sparse matrices with applicapon to unveiling traffic anomalies," IEEE TransacIons on InformaIon Theory, pp Aug

33 Low- rank plus sparse matrices q Z (and X:=RZ) low rank, e.g., [Zhang et al 05]; A is sparse across Pme and flows 4 x 108 a f,t Time index(t) (P1) Data: h]p://math.bu.edu/people/kolaczyk/datasets.html 33

34 Internet2 data q Real network data, Dec. 8-28, Detection probability [Lakhina04], rank=1 [Lakhina04], rank=2 0.4 [Lakhina04], rank=3 Proposed method [Zhang05], rank=1 0.2 [Zhang05], rank=2 [Zhang05], rank= False alarm probability Anomaly volume Flows True ---- Estimated Time P fa = 0.03 P d = Ø Improved performance by leveraging sparsity and low rank Ø Succinct depicpon of the network health state across flows and Pme Data: h]p:// 34

35 Online espmator q Construct an espmated map of anomalies in real Pme Ø Streaming data model: q Approach: Regularized exponenpally- weighted LS formulapon 5 Tracking cleansed link traffic ATLA--HSTN 4 Real time unveiling of anomalies CHIN--ATLA 2 Link traffic level DNVR--KSCY HSTN--ATLA ---- Estimated ---- True Anomaly amplitude WASH--STTL WASH--WASH o---- Estimated ---- True 0 Time index (t) Time index (t) M. Mardani, G. Mateos, and G. B. Giannakis, "Dynamic anomalography: Tracking network anomalies via sparsity and low rank," IEEE Journal of Selected Topics in Signal Processing, pp , Feb

36 Low- rank tensor complepon q Data cube, e.g., sub- sampled MRI frames a r A= α i = b r X t B= β i q PARAFAC decomposipon per slab t [Harshman 70] c r q Tensor subspace comprises R rank- one matrices C= γ i Goal: Given streaming, learn the subspace matrices (A,B) recursively, and impute possible misses of Y t 36

37 Online tensor subspace learning n Image domain low tensor rank n Tikhonov regularizapon promotes low rank ProposiPon [Bazerque- GG 13]: With n StochasPc alternapng minimizapon; parallelizable across bases n Real- Pme reconstrucpon (FFT per iterapon) M. Mardani, G. Mateos, and G. B. Giannakis, "Subspace learning and imputapon for streaming big data matrices and tensors," IEEE Trans. on Signal Processing,

38 Dynamic cardiac MRI test n in vivo dataset: 256 k- space 200x256 frames Ground- truth frame Sampling trajectory R=100, 90% misses R=150, 75% misses n PotenPal for accelerapng MRI at high spapo- temporal resolupon n Low- rank plus can also capture mopon effects M. Mardani and G. B. Giannakis, "AcceleraPng dynamic MRI via tensor subspace learning, Proc. of ISMRM 23rd Annual MeeIng and ExhibiIon, Toronto, Canada, May 30 - June 5,

39 Roadmap q Context and mopvapon q CriPcal Big Data tasks q OpPmizaPon algorithms for Big Data Ø Decentralized (in- network) operapon Ø Parallel processing Ø Streaming analypcs q Randomized learning q Scalable compupng placorms for Big Data q Conclusions and future research direcpons 39

40 Decentralized processing paradigms Goal: Learning over networks. Why? Decentralized data, privacy Fusion Center (FC) Incremental In- network q LimitaPons of FC- based architectures Ø Lack of robustness (isolated point of failure, non- ideal links) Ø High Tx power and roupng overhead (as geographical area grows) Ø Less suitable for real- Pme applicapons q LimitaPons of incremental processing Ø Non- robust to node failures Ø (Re- ) roupng? Hamiltonian routes NP- hard to establish 40

41 In- network decentralized processing q Network anomaly detecpon: SpaPally- distributed link count data Agent 1 Centralized: Decentralized: Agent N In-network processing model: n q Local processing and single- hop communicapons q Given local link counts per agent, unveil anomalies in a decentralized fashion Ø Challenge: not separable across rows (links/agents) 41

42 Separable rank regularizapon q Neat idenpty [Srebro 05] q Nonconvex, separable formulapon equivalent to (P1) Lxρ rank[x] (P2) Proposi5on: If stat. pt. of (P2) and, then is a global opimum of (P1). Ø Key for parallel [Recht- Re 12], decentralized and online rank min. [Mardani et al 12] 42

43 Decentralized algorithm q AlternaPng- direcpon method of mulppliers (ADMM) solver for (P2) Ø Method [Glowinski- Marrocco 75], [Gabay- Mercier 76] Ø Learning over networks [Schizas- Ribeiro- Giannakis 07] Consensus- based op5miza5on AZains centralized performance q PotenPal for scalable compupng M. Mardani, G. Mateos, and G. B. Giannakis, Decentralized sparsity regularized rank minimizapon: Algorithms and applicapons," IEEE TransacIons on Signal Processing, pp , Nov

44 AlternaPng direcpon method of mulppliers q Canonical problem Ø Two sets of variables, separable cost, affine constraints Augmented Lagrangian ADMM Ø One Gauss- Seidel pass over primal variables + dual ascent D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed ComputaIon: Numerical Methods,

45 Scaled form and variants q Complete the squares in, define ADMM (scaled) Ø Proximal- spliƒng: q Variants Ex: Ø More than two sets of variables Ø MulPple Gauss- Seidel passes, or, inexact primal updates Ø Strictly convex : S. Boyd et al, Distributed oppmizapon and stapspcal learning via the alternapng direcpon method of mulppliers," FoundaIons and Trends in Machine Learning, vol. 3,

46 Convergence Theorem: If and have closed and convex epigraphs, and has a saddle point, then as Ø Feasibility Ø ObjecPve convergence Ø Dual variable convergence q Under addiponal assumppons Ø Primal variable convergence Ø Linear convergence q No results for nonconvex objecpves Ø Good empirical performance for e.g., bi- convex problems M. Hong and Z. Q. Luo, On the linear convergence of the alternapng direcpon method of mulpplers," MathemaIcal Programming Series A,

47 Decentralized consensus oppmizapon q Generic learning problem In- network Ø Local costs per agent, graph q Neat trick: local copies of primal variables + consensus constraints Ø Equivalent problems for connected graph Ø Amenable to decentralized implementapon with ADMM I. D. Schizas, A. Ribeiro, and G. B. Giannakis, Consensus in ad hoc WSNs with noisy links - - Part 1: Distributed espmapon of determinispc signals," IEEE TransacIons on Signal Processing, pp , Jan

48 ADMM for in- network oppmizapon ADMM (in- network oppmizapon at node ) Ø Auxiliary variables eliminated! Ø CommunicaPon of primary variables within neighborhoods only q A]racPve features Ø Fully decentralized, devoid of coordinapon Ø Robust to non- ideal links; addipve noise and intermi]ent edges [Zhu et al 10] Ø Provably convergent, a]ains centralized performance G. Mateos, J. A. Bazerque, and G. B. Giannakis, Distributed sparse linear regression," IEEE TransacIons on Signal Processing, pp , Oct

49 Example 1: Decentralized SVM Ø ADMM- based D- SVM a]ains centralized performance; outperforms local SVM Ø Nonlinear discriminant funcpons effected via kernels P. Forero, A. Cano, and G. B. Giannakis, ``Consensus- based distributed support vector machines,'' Journal of Machine Learning Research, pp , May

50 Example 2: RF cartography Idea: Collaborate to form a spapal map of the spectrum Goal: find s.t. is the spectrum at posipon Approach: Basis expansion for, decentralized, nonparametric basis pursuit Identify idle bands across space and frequency J. A. Bazerque, G. Mateos, and G. B. Giannakis, ``Group- Lasso on splines for spectrum cartography,'' IEEE TransacIons on Signal Processing, pp , Oct

51 Parallel algorithms for BD oppmizapon q Computer clusters offer ample opportunipes for parallel processing (PP) q Recent so ware placorms promote PP Smooth loss Non- smooth regularizer q Main idea: Divide into blocks and conquer; e.g., [Kim- GG 11] ParallelizaPon All blocks other than S.- J. Kim and G. B. Giannakis, "OpPmal Resource AllocaPon for MIMO Ad Hoc CogniPve Radio Networks, IEEE TransacIons on InformaIon Theory, vol. 57, no. 5, pp , May

52 A challenging parallel oppmizapon paradigm (As1) Smooth + non- convex Non- smooth + convex + separable Ex. q Having available, find Non- convex in general! ComputaPonally cumbersome! q Approximate locally by s.t. (As2) Convex in Ex. q Find QuadraPc proximal term renders task strongly convex! 52

53 Flexible parallel algorithm FLEXA S1. In parallel, find for all blocks a solupon of with accuracy S2. RelaPve error Regression matrix of dims. Sparse vector; only non- zero entries F. Facchinei, S. Sagratella, and G. Scutari, Flexible parallel algorithms for big data oppmizapon, Proc. ICASSP, Florence: Italy,

54 Streaming BD analypcs Data arrive sequenpally, Pmely response needed 400M tweets/day 500TB data/day Limits of storage and computaponal capability Process one new datum at a Pme ApplicaPons: Goal: Develop simple online algorithms with performance guarantees K. Slavakis, S. J. Kim, G. Mateos, and G. B. Giannakis, StochasPc approximapon vis- à- vis online learning for Big Data, IEEE Signal Processing Magazine, vol. 31, no. 6, Nov

55 Roadmap of stochaspc approximapon Newton- Raphson iterapon Law of large numbers Det. variable Pdfs not available! Solve Rand. variable StochasPc oppmizapon AdapPve filtering LMS and RLS as special cases ApplicaPons EsPmaPon of pdfs, Gaussian mixtures maximum likelihood espmapon, etc. 55

56 Numerical analysis basics q Problem 1: Find root of ; i.e., Ø Newton- Raphson iterapon: select and run Ø Popular choice of step- size Newton- Raphson iterapon q Problem 2: Find min or max of with gradient method q StochasPc counterparts of these determinispc iterapons? 56

57 Robbins- Monro algorithm q Robbins- Monro (R- M) iterapon q espmated on- the- fly by sample averaging Find a root of using online espmates and Q: How general can the class of such problems be? A: As general as adappve algorithms are in: Ø SP, communicapons, control, machine learning, pa]ern recognipon q FuncPon and data pdfs unknown! H. Robbins and S. Monro, A stochaspc approximapon method, Annals Math. StaIsIcs, vol. 22, no. 3, pp ,

58 Convergence analysis Theorem If then R- M converges in the m.s.s., i.e., (As1) ensures unique (two lines with +Pve slope cross at ) (As2) is a finite variance requirement q Diminishing step- size (e.g., Ø Limit does not oscillate around (as in LMS) Ø But convergence ( ) should not be too fast q I.i.d. and (As1) assumppons can be relaxed! ) H. Kushner and G. G. Yin, StochasIc ApproximaIon and Recursive Algorithms and ApplicaIons, Second ed., Springer,

59 Online learning and SA Given basis funcpons, learn the nonlinear funcpon by, and training data Solve Normal equa5ons q Batch LMMSE solupon: R- M iterapon: [least mean- squares (LMS)] 59

60 RLS as SA Scalar step size 1 st order iterapon Matrix step size 2 nd order iterapon Usually unavailable! : Sample correla5on : RLS 60

61 SA vis- a- vis stochaspc oppmizapon Find q Online convex oppmizapon uplizes projecpon onto the convex R- M iterapon: Strong convexity Theorem Under (As1), (As2) with i.i.d. and with Corollary If is - Lipschitz, then A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochaspc approximapon approach to stochaspc programming, SIAM J. OpImizaIon, vol. 19, No. 4. pp , Jan

62 Online convex oppmizapon q Mo5va5ng example: Website adverpsing company Ø Spends adverpsing on different sites Ø Obtain clicks at the end of week q Online learning: A repeated game between learner and nature (adversary) For OCO q Learner updates q Nature provides a convex loss q Learner suffers loss 62

63 Regret as performance metric Def. 1 Def. 2 (Worst case regret) Goal: Select s.t. Sublinear! q How to update? 63

64 Online gradient descent OGD Let and for Ø Choose a step- size Ø Update and a (sub)gradient Theorem For convex, it holds that If is - Lipschitz cont. w.r.t., and s.t., then for, and with, regret is sublinear q Unlike SA, no stochaspc assumppons; but also no primal var. convergence S. Shalev- Shwartz, Online learning and online convex oppmizapon, Found. Trends Machine Learn., vol. 4, no. 2, pp ,

65 Gradient- free OCO q Se]ng: Form of is unknown; only samples can be obtained q Main idea: Obtain unbiased gradient espmate on- the- fly Def. Given, define a smoothed version of as : uniform distribupon over Unit ball Theorem It holds that If is - Lipschitz conpnuous, then If is differenpable, then Unit sphere A. D. Flaxman, A. T. Kalai, and H. B. McMahan, "Online convex oppmizapon in the bandit seƒng: Gradient descent without a gradient," Proc. ACM- SIAM Symp. Discrete Algorithms,

66 When OCO meets SA For, S1. Find S2. Pick, and form S3. Let S4. Theorem If are convex, - Lipschitz conpnuous, and is convex, with and, then In parpcular, if and, then regret is bounded by Ø Compare in the agnospc vs in the full informapon case A. D. Flaxman, A. T. Kalai, and H. B. McMahan, "Online convex oppmizapon in the bandit seƒng: Gradient descent without a gradient," Proc. ACM- SIAM Symp. Discrete Algorithms,

67 Roadmap q Context and mopvapon q CriPcal Big Data tasks q OpPmizaPon algorithms for Big Data q Randomized learning Ø Randomized linear regression, leverage scores Ø Johnson- Lindenstrauss lemma Ø Randomized classificapon and clustering q Scalable compupng placorms for Big Data q Conclusions and future research direcpons 67

68 Randomized linear algebra q Basic tools: Random sampling and random projecpons q A]racPve features Ø Reduced dimensionality to lower complexity with Big Data Ø Rigorous error analysis at reduced dimension Ordinary least- squares (LS) Given If SVD LS- oppmal predicpon q SVD incurs complexity. Q: What if? M. W. Mahoney, Randomized Algorithms for Matrices and Data, FoundaIons and Trends In Machine Learning, vol. 3, no. 2, pp , Nov

69 Randomized LS for linear regression q LS espmate using (pre- condiponed) random projecpon matrix R d x D R q Random diagonal w/ z } { {z} R 2 {z} R 1 and Hadamard matrix Ø Subsets of data obtained by uniform sampling/scaling via yield LS espmates of comparable quality q Select reduced dimension q Complexity reduced from to N. Ailon and B. Chazelle, The fast Johnson- Lindenstrauss transform and approximate nearest neighbors, SIAM Journal on CompuIng, 39(1): ,

70 Johnson- Lindenstrauss lemma q The workhorse for proofs involving random projecpons JL lemma: If, integer, and reduced dimension sapsfies then for any there exists a mapping s.t. Almost preserves pairwise distances! ( ) q If with i.i.d. entries of and reduced dimension, then ( ) holds w.h.p. [Indyk-Motwani'98] q If with i.i.d. uniform over {+1,- 1} entries of and reduced dimension as in JL lemma, then ( ) holds w.h.p. [Achlioptas 01] W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz maps into a Hilbert space, Contemp. Math, vol. 26, pp ,

71 Performance of randomized LS Theorem For any, if, then w.h.p. condipon number of ; and q Uniform sampling vs Hadamard precondiponing Ø D = 10,000 and p =50 Ø Performance depends on X M. W. Mahoney, Randomized Algorithms for Matrices and Data, FoundaIons and Trends In Machine Learning, vol. 3, no. 2, pp , Nov

72 Large- scale regression: Streaming and censoring q Key idea: SequenPally test and update RLS espmates only for informapve data q Censoring threshold controls avg. data reducpon q AdapPve censoring (AC) rule ( y c n = 1, n x T n n 1 apple 0, otherwise. q AC- RLS online espmate D. K. Berberidis, G. Wang, G. B. Giannakis, and V. Kekatos, "AdapPve EsPmaPon from Big Data via Censored StochasPc ApproximaPon," Proc. of Asilomar Conf., Pacific Grove, CA, Nov

73 Censoring vis- a- vis random projecpons q Random projecpons for linear regression [Mahoney 11] Ø Data- agnospc reducpon decoupled from LS solupon q AdapPve censoring (AC- RLS) Ø Data- driven measurement selecpon Ø Suitable for streaming data Ø Minimal memory requirements 73

74 Performance comparison q Synthe5c: D=10,000, p=300 (50 MC runs); Real data: espmated from full set Highly non- uniform data q AC- RLS outperforms alternapves at comparable complexity q Robustness to uniform data (all rows of X equally important ) 74

75 Big data classificapon q Support vector machines (SVM): The workhorse for linear discriminant analysis Ø Data: Ø Goal: SeparaPng hyperplane with labels to max between- class margin q Binary classificapon Ø Primal problem Margin: 75

76 Randomized SVM classifier q Dual problem q Random projecpons approach Ø Given, let Ø Solve the transformed dual problem S. Paul, C. Boutsidis, M. Magdon- Ismail, P. Drineas, Random projecpons for linear support vector machines, ACM Trans. Knowledge Discovery from Data,

77 Joint subspace tracking- classificapon q Q: Streaming, structured data? Missing features? Goal: Given and jointly find classifier and subspace online. LS fit Convex surrogate for rank Margin- maximizer q AlternaPng minimizapon (at Pme t) Ø Step 1: ProjecPon coefficient updates Ø Step 2: Subspace tracking Ø Step 3: Classifier update Tractable as Low- rank prudent also for F. Sheikholeslami, M. Mardani, and G. B. Giannakis, "ClassificaPon of Streaming Big Data with Misses," Proc. of Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2-5,

78 Simulated tests v SynthePc data v 70% uniformly missing features Generalizationn Error Probability Iteration index Full Data Data with imputed entries Data with missing entries v Joint classificapon design outperforms its compepng peers Generalization Error Probability Full data Data with imputed entries Data with missing entries Incomplete data- Adjusted SVM Standard Deviation of Noise Adjusted SVM: G. Chechik,G. Heitz, G. Elidan, P. Abbeel, and D. Koller. "Max- margin classificapon of data with absent features," J. of Machine Learning Research, vol. 9, pp. 1-21,

79 Big data clustering q Given with assign them to clusters q Key idea: Reduce dimensionality via random projecpons q Desiderata: Preserve the pairwise data distances in lower dimensions Feature extrac5on q Construct combined features (e.g., via ) q Apply K- means to - space Feature selec5on q Select of input features (rows of ) q Apply K- means to - space C. Boutsidis, A. Zouzias, M. W. Mahoney, and P. Drineas, Randomized dimensionality reducpon for K- means clustering, arxiv: ,

80 Random sampling and consensus q RANSAC: for robust LS espmapon with outliers Toy example: Line espmapon noise unknown Ø For v Sample dimensions v LS espmate v Consensus set: Other costs possible (e.g., ML) Ø Ø Our ideas: a) Sketch and validate with affordable ( ) consensus subset b) Employ Ransac- like hypotheses tespng for large- scale clustering M. Fisher and R. Bolles, Random sample consensus: A paradigm for model fiƒng with applicapons to image analysis and automated cartography, Comm. ACM, vol. 24, pp , June

81 Random sketching and validapon (SkeVa) q Randomly select informapve dimensions q Algorithm For v Sketch dimensions: v Run k- means on v Re- sketch dimensions v Augment centroids, v Validate using consensus set Ø q Similar approaches possible for q SequenPal and kernel variants available P. A. TraganiPs, K. Slavakis, and G. B. Giannakis, Clustering High- Dimensional Data via Random Sampling and Consensus, Proc. of GlobalSIP, Atlanta, GA, December

82 TesPng randomized clustering KDDb dataset (subset) D = 2,990,384, T = 10,000, K = 2 RP: [Boutsidis etal 13] SkeVa: Sketch and validate P. TraganiPs, K. Slavakis, and G. B. Giannakis, Sketch and validate for big data clustering, IEEE Journal of Selected Topics in Signal Processing, June

83 Roadmap q Context and mopvapon q CriPcal Big Data tasks q OpPmizaPon algorithms for Big Data q Randomized learning q Scalable compupng placorms for Big Data Ø MapReduce placorm Ø Least- squares and k- means in MapReduce Ø Graph algorithms q Conclusions and future research direcpons 83

84 Parallel programming issues q Challenges Ø Load balancing; communicapons Ø Sca]ered data; synchronizapon (deadlocks, read- write racing) q General vs applicapon- specific implementapons Ø Efficient vs development overhead tradeoffs Choosing the right tool is important! 84

85 MapReduce q General parallel programming (PP) paradigm for large- scale problems q Easy parallelizapon at a high level Ø SynchronizaPon, communicapon challenges are taken care of q IniPally developed by Google Processing divided in two stages (S1 and S2) S1 (Map): PP for porpons of the input data S2 (Reduce): AggregaPon of S1 results (possibly in parallel) Example Reduce Map per processor 85

86 Basic ingredients of MapReduce q All data are in the form <key,value> e.g., key = machine, value = 5 q Map- Reduce model consists of [Lin- Dryer 10] Ø Input key- value pairs Ø Mappers Programs applying a Map operapon to a subset of input data Run same operapon in parallel Produce intermediate key- value pairs Ø Reducers Programs applying a Reduce operapon (e.g., aggregapon) to a subset of intermediate key- value pairs with the same key Reducers execute same operapon in parallel to generate output key- value pairs Ø ExecuPon framework Transparent to the programmer; performs tasks, e.g., sync and com J. Lin and C. Dryer, Data- Intensive Text Processing with MapReduce, Morgan & Claypool Pubs.,

87 Running MapReduce q Each job has three phases Input Input Input q Phase 1: Map Ø Receive input key- value pairs to produce intermediate key- value pairs q Phase 2: Shuffle and sort Ø Intermediate key- value pairs sorted; sent to proper reducers Ø Handled by the execupon framework Ø Single point of communicapon Ø Slowest phase of MapReduce q Phase 3: Reduce Ø Receive intermediate key- value pairs; determine the final ones Ø All mappers must have finished for reducers to start! Shuffle Map Map Map Reduce Output Reduce 87

88 The MapReduce model Aggregates intermediate key- value pairs of each mapper Map phase Reduce phase Assign intermediate key- value pairs to reducers e.g. key mod #reducers 88

89 Least- squares in MapReduce q Given find q Map Phase Ø Mappers (here 3) calculate parpal sums q Reduce Phase Ø Reducer aggregates parpal sums Ø Computes Ø Finds Aggregate parpal sums Calculate C. Chu, S. K. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, K. Olokotun, Map- Reduce for machine learning on mulpcore, pp , NIPS,

90 K- means in MapReduce q Serial k- means Ø Pick K random inipal centroids Ø Iterate: - Assigning points to cluster of closest centroid - UpdaPng centroids by averaging data per clusterning points to cluster of closest centroid - UpdaPng centroids by averaging data per cluster Ø A central unit picks K random inipal centroids Ø Each iterapon is a MapReduce job (mulpple required!) q MapReduce k- means q Mappers Ø Each assigned a subset of data Ø Find closest centroid, parpal sum of data, and #data per cluster Ø Generate key- value pairs; key = cluster, value = parpal sum, #points q Reducers Ø Each assigned a subset of clusters Ø Aggregate parpal sums for corresponding clusters Ø Update centroid locapon : centroids : Mapper 1 : Mapper 2 : Reducer 1 : Reducer 2 90

91 Graph algorithms q Require communicapon between processing nodes across mulpple iterapons; MapReduce not ideal! q Pregel Ø Based on Bulk Synchronous Parallel (BSP) model Ø Developed by Google for use on large graph problems Ø Each vertex is characterized by a user- defined value Ø Each edge is characterized by source vertex, despnapon vertex and a user- defined value q ComputaPon is performed in Supersteps Ø A user- defined funcpon is executed on each vertex (parallel) Ø Messages from previous superstep are received Ø Messages for the next superstep are sent Ø Supersteps are separated by global synchronizapon points Superstep i Vertex 1 Vertex 2 Vertex 3 Superstep i+1 Vertex 1 Vertex 2 Vertex 3 More efficient than MapReduce! Sync barrier G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, G. Czajkowski, Pregel: A system for large- scale graph processing, SIGMOD Indianapolis,

92 Wrap- up for scalable compupng q MapReduce Ø Simple parallel processing Ø Code easy to understand Ø Great for batch problems Ø Applicable to many problems q However Ø Framework can be restricpve Ø Not designed for online algorithms Ø Inefficient for graph processing q Pregel Ø Tailored for graph algorithms Ø More efficient relapve to MapReduce q Available open source implementapons Ø Hadoop (MapReduce) Ø Hama (Pregel) Ø Giraph (Pregel) q Machine learning algorithms can be found at Mahout! 92

93 Roadmap q Context and mopvapon q CriPcal Big Data tasks q OpPmizaPon algorithms for Big Data q Randomized learning q Scalable compupng placorms for Big Data q Conclusions and future research direcpons 93

94 Tutorial summary q Big Data modeling and tasks Ø Dimensionality reducpon Ø Succinct representapons Ø Vectors, matrices, and tensors q Op5miza5on algorithms Ø Decentralized, parallel, streaming Ø Data sketching q Implementa5on pla@orms Ø Scalable compupng placorms Ø AnalyPcs in the cloud 94

95 Timeliness q Special sessions in recent IEEE SP Society / EURASIP meepngs Signal and Informa5on Processing for Big Data Challenges in High- Dimensional Learning Informa5on Processing over Networks Trends in Sparse Signal Processing Sparse Signal Techniques for Web Informa5on Processing Informa5on Processing for Big Data SP for Big Data Op5miza5on Algorithms for High- Dimensional SP New Direc5ons in High- Dimensional Op5miza5on Advances in Manifold- based Signal and Informa5on Processing 95

96 Importance to funding agencies q NSF, NIH, DARPA, DoD, DoE, and US Geological Survey q Sample programs: Ø NSF (BIGDATA) Ø DARPA ADAMS (Anomaly DetecPon on MulPple Scales) q DoD: 20 + solicitapons Ø Data to decisions Ø Autonomy Ø Human- machine systems Source: 96

97 NSF- ECCS sponsored workshop NSF Workshop on Big Data From Signal Processing to Systems Engineering March 21 22, 2013 Arlington, Virginia, USA q Workshop program and slides hzp:// q Workshop final report hzp:// Sponsored by Electrical, CommunicaPons and Cyber Systems (ECCS) 97

98 Recent IEEE SP Magazine issue q Special issue on Signal Processing for Big Data IEEE Signal Processing Magazine September 2014 Ø Tutorials on: Modeling and oppmizapon for Big Data Advances in convex oppmizapon algorithms Outlier- robust, sequenpal detecpon for Big Data Parallel algorithms for decomposing big tensors Signal processing on large graphs Sparse Fourier transforms CollaboraPve bike sensing for geographic enrichment IEEE SIGNAL PROCESSING MAGAZINE BIG DATA VOLUME 31 NUMBER 5 SEPTEMBER 2014 [ VOLUME 31 NUMBER 5 SEPTEMBER 2014 ] q June 15 issue of IEEE J. of Selected Topics in Signal Processing (also on Big Data) q Open SP for Big Data special issue: EURASIP J. of Advances in Signal Processing 98

99 QuesPons? hzp://spincom.umn.edu B. Baingana UofM Dr. J. A. Bazerque UTE D. Berberidis UofM Dr. P. A. Forero SPAWAR Prof. V. Kekatos VaTech Prof. S.- J. Kim UMBC M. Mardani Stanford Y. Zhang UofM F. Sheikholeslami UofM P. TraganiPs UofM G. Wang UofM Prof. H. Zhu UIUC 99

Learning Tools for Big Data Analytics

Learning Tools for Big Data Analytics Learning Tools for Big Data Analytics Georgios B. Giannakis Acknowledgments: Profs. G. Mateos and K. Slavakis NSF 1343860, 1442686, and MURI-FA9550-10-1-0567 Center for Advanced Signal and Image Sciences

More information

Signal Processing for Big Data

Signal Processing for Big Data Signal Processing for Big Data G. B. Giannakis, K. Slavakis, and G. Mateos Acknowledgments: NSF Grants EARS-1343248, EAGER-1343860 MURI Grant No. AFOSR FA9550-10-1-0567 Lisbon, Portugal 1 September 1,

More information

Robust and Scalable Algorithms for Big Data Analytics

Robust and Scalable Algorithms for Big Data Analytics Robust and Scalable Algorithms for Big Data Analytics Georgios B. Giannakis Acknowledgment: Drs. G. Mateos, K. Slavakis, G. Leus, and M. Mardani Arlington, VA, USA March 22, 2013 1 Roadmap n Robust principal

More information

MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research

MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research MapReduce and Distributed Data Analysis Google Research 1 Dealing With Massive Data 2 2 Dealing With Massive Data Polynomial Memory Sublinear RAM Sketches External Memory Property Testing 3 3 Dealing With

More information

Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data

Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear

More information

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #18: Dimensionality Reduc7on

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #18: Dimensionality Reduc7on CS 5614: (Big) Data Management Systems B. Aditya Prakash Lecture #18: Dimensionality Reduc7on Dimensionality Reduc=on Assump=on: Data lies on or near a low d- dimensional subspace Axes of this subspace

More information

Randomized Robust Linear Regression for big data applications

Randomized Robust Linear Regression for big data applications Randomized Robust Linear Regression for big data applications Yannis Kopsinis 1 Dept. of Informatics & Telecommunications, UoA Thursday, Apr 16, 2015 In collaboration with S. Chouvardas, Harris Georgiou,

More information

Machine Learning Big Data using Map Reduce

Machine Learning Big Data using Map Reduce Machine Learning Big Data using Map Reduce By Michael Bowles, PhD Where Does Big Data Come From? -Web data (web logs, click histories) -e-commerce applications (purchase histories) -Retail purchase histories

More information

Unsupervised Data Mining (Clustering)

Unsupervised Data Mining (Clustering) Unsupervised Data Mining (Clustering) Javier Béjar KEMLG December 01 Javier Béjar (KEMLG) Unsupervised Data Mining (Clustering) December 01 1 / 51 Introduction Clustering in KDD One of the main tasks in

More information

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large

More information

Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics

Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics Part I: Factorizations and Statistical Modeling/Inference Amnon Shashua School of Computer Science & Eng. The Hebrew University

More information

Analysis of MapReduce Algorithms

Analysis of MapReduce Algorithms Analysis of MapReduce Algorithms Harini Padmanaban Computer Science Department San Jose State University San Jose, CA 95192 408-924-1000 harini.gomadam@gmail.com ABSTRACT MapReduce is a programming model

More information

Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning

Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning SAMSI 10 May 2013 Outline Introduction to NMF Applications Motivations NMF as a middle step

More information

Graph Processing and Social Networks

Graph Processing and Social Networks Graph Processing and Social Networks Presented by Shu Jiayu, Yang Ji Department of Computer Science and Engineering The Hong Kong University of Science and Technology 2015/4/20 1 Outline Background Graph

More information

Big Data, Statistics, and the Internet

Big Data, Statistics, and the Internet Big Data, Statistics, and the Internet Steven L. Scott April, 4 Steve Scott (Google) Big Data, Statistics, and the Internet April, 4 / 39 Summary Big data live on more than one machine. Computing takes

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

large-scale machine learning revisited Léon Bottou Microsoft Research (NYC)

large-scale machine learning revisited Léon Bottou Microsoft Research (NYC) large-scale machine learning revisited Léon Bottou Microsoft Research (NYC) 1 three frequent ideas in machine learning. independent and identically distributed data This experimental paradigm has driven

More information

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014 Probabilistic Models for Big Data Alex Davies and Roger Frigola University of Cambridge 13th February 2014 The State of Big Data Why probabilistic models for Big Data? 1. If you don t have to worry about

More information

Nimble Algorithms for Cloud Computing. Ravi Kannan, Santosh Vempala and David Woodruff

Nimble Algorithms for Cloud Computing. Ravi Kannan, Santosh Vempala and David Woodruff Nimble Algorithms for Cloud Computing Ravi Kannan, Santosh Vempala and David Woodruff Cloud computing Data is distributed arbitrarily on many servers Parallel algorithms: time Streaming algorithms: sublinear

More information

Ins+tuto Superior Técnico Technical University of Lisbon. Big Data. Bruno Lopes Catarina Moreira João Pinho

Ins+tuto Superior Técnico Technical University of Lisbon. Big Data. Bruno Lopes Catarina Moreira João Pinho Ins+tuto Superior Técnico Technical University of Lisbon Big Data Bruno Lopes Catarina Moreira João Pinho Mo#va#on 2 220 PetaBytes Of data that people create every day! 2 Mo#va#on 90 % of Data UNSTRUCTURED

More information

Simple and efficient online algorithms for real world applications

Simple and efficient online algorithms for real world applications Simple and efficient online algorithms for real world applications Università degli Studi di Milano Milano, Italy Talk @ Centro de Visión por Computador Something about me PhD in Robotics at LIRA-Lab,

More information

An Introduction to Machine Learning

An Introduction to Machine Learning An Introduction to Machine Learning L5: Novelty Detection and Regression Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au Tata Institute, Pune,

More information

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu

More information

Detecting Network Anomalies. Anant Shah

Detecting Network Anomalies. Anant Shah Detecting Network Anomalies using Traffic Modeling Anant Shah Anomaly Detection Anomalies are deviations from established behavior In most cases anomalies are indications of problems The science of extracting

More information

Software tools for Complex Networks Analysis. Fabrice Huet, University of Nice Sophia- Antipolis SCALE (ex-oasis) Team

Software tools for Complex Networks Analysis. Fabrice Huet, University of Nice Sophia- Antipolis SCALE (ex-oasis) Team Software tools for Complex Networks Analysis Fabrice Huet, University of Nice Sophia- Antipolis SCALE (ex-oasis) Team MOTIVATION Why do we need tools? Source : nature.com Visualization Properties extraction

More information

Map-Reduce for Machine Learning on Multicore

Map-Reduce for Machine Learning on Multicore Map-Reduce for Machine Learning on Multicore Chu, et al. Problem The world is going multicore New computers - dual core to 12+-core Shift to more concurrent programming paradigms and languages Erlang,

More information

Big Data - Lecture 1 Optimization reminders

Big Data - Lecture 1 Optimization reminders Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Schedule Introduction Major issues Examples Mathematics

More information

Bilinear Prediction Using Low-Rank Models

Bilinear Prediction Using Low-Rank Models Bilinear Prediction Using Low-Rank Models Inderjit S. Dhillon Dept of Computer Science UT Austin 26th International Conference on Algorithmic Learning Theory Banff, Canada Oct 6, 2015 Joint work with C-J.

More information

A Survey on Outlier Detection Techniques for Credit Card Fraud Detection

A Survey on Outlier Detection Techniques for Credit Card Fraud Detection IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. VI (Mar-Apr. 2014), PP 44-48 A Survey on Outlier Detection Techniques for Credit Card Fraud

More information

Big Data Analytics. Lucas Rego Drumond

Big Data Analytics. Lucas Rego Drumond Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany MapReduce II MapReduce II 1 / 33 Outline 1. Introduction

More information

Introduction to Support Vector Machines. Colin Campbell, Bristol University

Introduction to Support Vector Machines. Colin Campbell, Bristol University Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.

More information

Comparision of k-means and k-medoids Clustering Algorithms for Big Data Using MapReduce Techniques

Comparision of k-means and k-medoids Clustering Algorithms for Big Data Using MapReduce Techniques Comparision of k-means and k-medoids Clustering Algorithms for Big Data Using MapReduce Techniques Subhashree K 1, Prakash P S 2 1 Student, Kongu Engineering College, Perundurai, Erode 2 Assistant Professor,

More information

CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen

CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 3: DATA TRANSFORMATION AND DIMENSIONALITY REDUCTION Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major

More information

Social Media Mining. Data Mining Essentials

Social Media Mining. Data Mining Essentials Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

More information

MapReduce/Bigtable for Distributed Optimization

MapReduce/Bigtable for Distributed Optimization MapReduce/Bigtable for Distributed Optimization Keith B. Hall Google Inc. kbhall@google.com Scott Gilpin Google Inc. sgilpin@google.com Gideon Mann Google Inc. gmann@google.com Abstract With large data

More information

Cognitive Radio Network as Wireless Sensor Network (II): Security Consideration

Cognitive Radio Network as Wireless Sensor Network (II): Security Consideration Cognitive Radio Network as Wireless Sensor Network (II): Security Consideration Feng Lin, Zhen Hu, Shujie Hou, Jingzhi Yu, Changchun Zhang, Nan Guo, Michael Wicks, Robert C Qiu, Kenneth Currie Cognitive

More information

See All by Looking at A Few: Sparse Modeling for Finding Representative Objects

See All by Looking at A Few: Sparse Modeling for Finding Representative Objects See All by Looking at A Few: Sparse Modeling for Finding Representative Objects Ehsan Elhamifar Johns Hopkins University Guillermo Sapiro University of Minnesota René Vidal Johns Hopkins University Abstract

More information

Statistical machine learning, high dimension and big data

Statistical machine learning, high dimension and big data Statistical machine learning, high dimension and big data S. Gaïffas 1 14 mars 2014 1 CMAP - Ecole Polytechnique Agenda for today Divide and Conquer principle for collaborative filtering Graphical modelling,

More information

Support Vector Machines with Clustering for Training with Very Large Datasets

Support Vector Machines with Clustering for Training with Very Large Datasets Support Vector Machines with Clustering for Training with Very Large Datasets Theodoros Evgeniou Technology Management INSEAD Bd de Constance, Fontainebleau 77300, France theodoros.evgeniou@insead.fr Massimiliano

More information

Big Data Analytics in Future Internet of Things

Big Data Analytics in Future Internet of Things Big Data Analytics in Future Internet of Things Guoru Ding, Long Wang, Qihui Wu College of Communications Engineering, PLA University of Science and Technology, Nanjing 210007, China email: dingguoru@gmail.com;

More information

Algorithmic Techniques for Big Data Analysis. Barna Saha AT&T Lab-Research

Algorithmic Techniques for Big Data Analysis. Barna Saha AT&T Lab-Research Algorithmic Techniques for Big Data Analysis Barna Saha AT&T Lab-Research Challenges of Big Data VOLUME Large amount of data VELOCITY Needs to be analyzed quickly VARIETY Different types of structured

More information

Big Data Optimization: Randomized lock-free methods for minimizing partially separable convex functions

Big Data Optimization: Randomized lock-free methods for minimizing partially separable convex functions Big Data Optimization: Randomized lock-free methods for minimizing partially separable convex functions Peter Richtárik School of Mathematics The University of Edinburgh Joint work with Martin Takáč (Edinburgh)

More information

The Scientific Data Mining Process

The Scientific Data Mining Process Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

More information

203.4770: Introduction to Machine Learning Dr. Rita Osadchy

203.4770: Introduction to Machine Learning Dr. Rita Osadchy 203.4770: Introduction to Machine Learning Dr. Rita Osadchy 1 Outline 1. About the Course 2. What is Machine Learning? 3. Types of problems and Situations 4. ML Example 2 About the course Course Homepage:

More information

Map/Reduce Affinity Propagation Clustering Algorithm

Map/Reduce Affinity Propagation Clustering Algorithm Map/Reduce Affinity Propagation Clustering Algorithm Wei-Chih Hung, Chun-Yen Chu, and Yi-Leh Wu Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology,

More information

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Learning Gaussian process models from big data Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Machine learning seminar at University of Cambridge, July 4 2012 Data A lot of

More information

A Distributed Line Search for Network Optimization

A Distributed Line Search for Network Optimization 01 American Control Conference Fairmont Queen Elizabeth, Montréal, Canada June 7-June 9, 01 A Distributed Line Search for Networ Optimization Michael Zargham, Alejandro Ribeiro, Ali Jadbabaie Abstract

More information

Machine Learning over Big Data

Machine Learning over Big Data Machine Learning over Big Presented by Fuhao Zou fuhao@hust.edu.cn Jue 16, 2014 Huazhong University of Science and Technology Contents 1 2 3 4 Role of Machine learning Challenge of Big Analysis Distributed

More information

Intrusion Detection via Machine Learning for SCADA System Protection

Intrusion Detection via Machine Learning for SCADA System Protection Intrusion Detection via Machine Learning for SCADA System Protection S.L.P. Yasakethu Department of Computing, University of Surrey, Guildford, GU2 7XH, UK. s.l.yasakethu@surrey.ac.uk J. Jiang Department

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

Distributed Computing over Communication Networks: Topology. (with an excursion to P2P)

Distributed Computing over Communication Networks: Topology. (with an excursion to P2P) Distributed Computing over Communication Networks: Topology (with an excursion to P2P) Some administrative comments... There will be a Skript for this part of the lecture. (Same as slides, except for today...

More information

Big learning: challenges and opportunities

Big learning: challenges and opportunities Big learning: challenges and opportunities Francis Bach SIERRA Project-team, INRIA - Ecole Normale Supérieure December 2013 Omnipresent digital media Scientific context Big data Multimedia, sensors, indicators,

More information

Traffic Driven Analysis of Cellular Data Networks

Traffic Driven Analysis of Cellular Data Networks Traffic Driven Analysis of Cellular Data Networks Samir R. Das Computer Science Department Stony Brook University Joint work with Utpal Paul, Luis Ortiz (Stony Brook U), Milind Buddhikot, Anand Prabhu

More information

Distributed Machine Learning and Big Data

Distributed Machine Learning and Big Data Distributed Machine Learning and Big Data Sourangshu Bhattacharya Dept. of Computer Science and Engineering, IIT Kharagpur. http://cse.iitkgp.ac.in/~sourangshu/ August 21, 2015 Sourangshu Bhattacharya

More information

Distance Metric Learning in Data Mining (Part I) Fei Wang and Jimeng Sun IBM TJ Watson Research Center

Distance Metric Learning in Data Mining (Part I) Fei Wang and Jimeng Sun IBM TJ Watson Research Center Distance Metric Learning in Data Mining (Part I) Fei Wang and Jimeng Sun IBM TJ Watson Research Center 1 Outline Part I - Applications Motivation and Introduction Patient similarity application Part II

More information

An Overview of Knowledge Discovery Database and Data mining Techniques

An Overview of Knowledge Discovery Database and Data mining Techniques An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,

More information

MapReduce Algorithms. Sergei Vassilvitskii. Saturday, August 25, 12

MapReduce Algorithms. Sergei Vassilvitskii. Saturday, August 25, 12 MapReduce Algorithms A Sense of Scale At web scales... Mail: Billions of messages per day Search: Billions of searches per day Social: Billions of relationships 2 A Sense of Scale At web scales... Mail:

More information

Functional-Repair-by-Transfer Regenerating Codes

Functional-Repair-by-Transfer Regenerating Codes Functional-Repair-by-Transfer Regenerating Codes Kenneth W Shum and Yuchong Hu Abstract In a distributed storage system a data file is distributed to several storage nodes such that the original file can

More information

Making Sense of the Mayhem: Machine Learning and March Madness

Making Sense of the Mayhem: Machine Learning and March Madness Making Sense of the Mayhem: Machine Learning and March Madness Alex Tran and Adam Ginzberg Stanford University atran3@stanford.edu ginzberg@stanford.edu I. Introduction III. Model The goal of our research

More information

Supervised Feature Selection & Unsupervised Dimensionality Reduction

Supervised Feature Selection & Unsupervised Dimensionality Reduction Supervised Feature Selection & Unsupervised Dimensionality Reduction Feature Subset Selection Supervised: class labels are given Select a subset of the problem features Why? Redundant features much or

More information

Going Big in Data Dimensionality:

Going Big in Data Dimensionality: LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Going Big in Data Dimensionality: Challenges and Solutions for Mining High Dimensional Data Peer Kröger Lehrstuhl für

More information

ADAPTIVE ALGORITHMS FOR ACOUSTIC ECHO CANCELLATION IN SPEECH PROCESSING

ADAPTIVE ALGORITHMS FOR ACOUSTIC ECHO CANCELLATION IN SPEECH PROCESSING www.arpapress.com/volumes/vol7issue1/ijrras_7_1_05.pdf ADAPTIVE ALGORITHMS FOR ACOUSTIC ECHO CANCELLATION IN SPEECH PROCESSING 1,* Radhika Chinaboina, 1 D.S.Ramkiran, 2 Habibulla Khan, 1 M.Usha, 1 B.T.P.Madhav,

More information

Pa8ern Recogni6on. and Machine Learning. Chapter 4: Linear Models for Classifica6on

Pa8ern Recogni6on. and Machine Learning. Chapter 4: Linear Models for Classifica6on Pa8ern Recogni6on and Machine Learning Chapter 4: Linear Models for Classifica6on Represen'ng the target values for classifica'on If there are only two classes, we typically use a single real valued output

More information

Parallel Data Mining. Team 2 Flash Coders Team Research Investigation Presentation 2. Foundations of Parallel Computing Oct 2014

Parallel Data Mining. Team 2 Flash Coders Team Research Investigation Presentation 2. Foundations of Parallel Computing Oct 2014 Parallel Data Mining Team 2 Flash Coders Team Research Investigation Presentation 2 Foundations of Parallel Computing Oct 2014 Agenda Overview of topic Analysis of research papers Software design Overview

More information

Machine learning and optimization for massive data

Machine learning and optimization for massive data Machine learning and optimization for massive data Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE Joint work with Eric Moulines - IHES, May 2015 Big data revolution?

More information

Apache Hama Design Document v0.6

Apache Hama Design Document v0.6 Apache Hama Design Document v0.6 Introduction Hama Architecture BSPMaster GroomServer Zookeeper BSP Task Execution Job Submission Job and Task Scheduling Task Execution Lifecycle Synchronization Fault

More information

Evaluating partitioning of big graphs

Evaluating partitioning of big graphs Evaluating partitioning of big graphs Fredrik Hallberg, Joakim Candefors, Micke Soderqvist fhallb@kth.se, candef@kth.se, mickeso@kth.se Royal Institute of Technology, Stockholm, Sweden Abstract. Distributed

More information

Analysis of Internet Topologies

Analysis of Internet Topologies Analysis of Internet Topologies Ljiljana Trajković ljilja@cs.sfu.ca Communication Networks Laboratory http://www.ensc.sfu.ca/cnl School of Engineering Science Simon Fraser University, Vancouver, British

More information

Chapter 6: Episode discovery process

Chapter 6: Episode discovery process Chapter 6: Episode discovery process Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process 1 6. Episode discovery process The knowledge discovery process KDD process of analyzing

More information

Geometric-Guided Label Propagation for Moving Object Detection

Geometric-Guided Label Propagation for Moving Object Detection MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Geometric-Guided Label Propagation for Moving Object Detection Kao, J.-Y.; Tian, D.; Mansour, H.; Ortega, A.; Vetro, A. TR2016-005 March 2016

More information

Big Data Science. Prof. Lise Getoor University of Maryland, College Park. http://www.cs.umd.edu/~getoor. October 17, 2013

Big Data Science. Prof. Lise Getoor University of Maryland, College Park. http://www.cs.umd.edu/~getoor. October 17, 2013 Big Data Science Prof Lise Getoor University of Maryland, College Park October 17, 2013 http://wwwcsumdedu/~getoor BIG Data is not flat 2004-2013 lonnitaylor Data is multi-modal, multi-relational, spatio-temporal,

More information

Managing Incompleteness, Complexity and Scale in Big Data

Managing Incompleteness, Complexity and Scale in Big Data Managing Incompleteness, Complexity and Scale in Big Data Nick Duffield Electrical and Computer Engineering Texas A&M University http://nickduffield.net/work Three Challenges for Big Data Complexity Problem:

More information

Knowledge Discovery from patents using KMX Text Analytics

Knowledge Discovery from patents using KMX Text Analytics Knowledge Discovery from patents using KMX Text Analytics Dr. Anton Heijs anton.heijs@treparel.com Treparel Abstract In this white paper we discuss how the KMX technology of Treparel can help searchers

More information

Robust Outlier Detection Technique in Data Mining: A Univariate Approach

Robust Outlier Detection Technique in Data Mining: A Univariate Approach Robust Outlier Detection Technique in Data Mining: A Univariate Approach Singh Vijendra and Pathak Shivani Faculty of Engineering and Technology Mody Institute of Technology and Science Lakshmangarh, Sikar,

More information

ON THE DEGREES OF FREEDOM OF SIGNALS ON GRAPHS. Mikhail Tsitsvero and Sergio Barbarossa

ON THE DEGREES OF FREEDOM OF SIGNALS ON GRAPHS. Mikhail Tsitsvero and Sergio Barbarossa ON THE DEGREES OF FREEDOM OF SIGNALS ON GRAPHS Mikhail Tsitsvero and Sergio Barbarossa Sapienza Univ. of Rome, DIET Dept., Via Eudossiana 18, 00184 Rome, Italy E-mail: tsitsvero@gmail.com, sergio.barbarossa@uniroma1.it

More information

Signal and Information Processing

Signal and Information Processing The Fu Foundation School of Engineering and Applied Science Department of Electrical Engineering COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK Signal and Information Processing Prof. John Wright SIGNAL AND

More information

Large-Scale Similarity and Distance Metric Learning

Large-Scale Similarity and Distance Metric Learning Large-Scale Similarity and Distance Metric Learning Aurélien Bellet Télécom ParisTech Joint work with K. Liu, Y. Shi and F. Sha (USC), S. Clémençon and I. Colin (Télécom ParisTech) Séminaire Criteo March

More information

Analytics on Big Data

Analytics on Big Data Analytics on Big Data Riccardo Torlone Università Roma Tre Credits: Mohamed Eltabakh (WPI) Analytics The discovery and communication of meaningful patterns in data (Wikipedia) It relies on data analysis

More information

Predict Influencers in the Social Network

Predict Influencers in the Social Network Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons

More information

Developing MapReduce Programs

Developing MapReduce Programs Cloud Computing Developing MapReduce Programs Dell Zhang Birkbeck, University of London 2015/16 MapReduce Algorithm Design MapReduce: Recap Programmers must specify two functions: map (k, v) * Takes

More information

Machine Learning for Data Science (CS4786) Lecture 1

Machine Learning for Data Science (CS4786) Lecture 1 Machine Learning for Data Science (CS4786) Lecture 1 Tu-Th 10:10 to 11:25 AM Hollister B14 Instructors : Lillian Lee and Karthik Sridharan ROUGH DETAILS ABOUT THE COURSE Diagnostic assignment 0 is out:

More information

Classification On The Clouds Using MapReduce

Classification On The Clouds Using MapReduce Classification On The Clouds Using MapReduce Simão Martins Instituto Superior Técnico Lisbon, Portugal simao.martins@tecnico.ulisboa.pt Cláudia Antunes Instituto Superior Técnico Lisbon, Portugal claudia.antunes@tecnico.ulisboa.pt

More information

NMR Measurement of T1-T2 Spectra with Partial Measurements using Compressive Sensing

NMR Measurement of T1-T2 Spectra with Partial Measurements using Compressive Sensing NMR Measurement of T1-T2 Spectra with Partial Measurements using Compressive Sensing Alex Cloninger Norbert Wiener Center Department of Mathematics University of Maryland, College Park http://www.norbertwiener.umd.edu

More information

So which is the best?

So which is the best? Manifold Learning Techniques: So which is the best? Todd Wittman Math 8600: Geometric Data Analysis Instructor: Gilad Lerman Spring 2005 Note: This presentation does not contain information on LTSA, which

More information

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT

More information

The Impact of Big Data on Classic Machine Learning Algorithms. Thomas Jensen, Senior Business Analyst @ Expedia

The Impact of Big Data on Classic Machine Learning Algorithms. Thomas Jensen, Senior Business Analyst @ Expedia The Impact of Big Data on Classic Machine Learning Algorithms Thomas Jensen, Senior Business Analyst @ Expedia Who am I? Senior Business Analyst @ Expedia Working within the competitive intelligence unit

More information

High-dimensional labeled data analysis with Gabriel graphs

High-dimensional labeled data analysis with Gabriel graphs High-dimensional labeled data analysis with Gabriel graphs Michaël Aupetit CEA - DAM Département Analyse Surveillance Environnement BP 12-91680 - Bruyères-Le-Châtel, France Abstract. We propose the use

More information

CSC2420 Fall 2012: Algorithm Design, Analysis and Theory

CSC2420 Fall 2012: Algorithm Design, Analysis and Theory CSC2420 Fall 2012: Algorithm Design, Analysis and Theory Allan Borodin November 15, 2012; Lecture 10 1 / 27 Randomized online bipartite matching and the adwords problem. We briefly return to online algorithms

More information

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University caizhua@gmail.com 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian

More information

Load Balancing and Switch Scheduling

Load Balancing and Switch Scheduling EE384Y Project Final Report Load Balancing and Switch Scheduling Xiangheng Liu Department of Electrical Engineering Stanford University, Stanford CA 94305 Email: liuxh@systems.stanford.edu Abstract Load

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang, Qihang Lin, Rong Jin Tutorial@SIGKDD 2015 Sydney, Australia Department of Computer Science, The University of Iowa, IA, USA Department of

More information

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic

More information

Classification of Bad Accounts in Credit Card Industry

Classification of Bad Accounts in Credit Card Industry Classification of Bad Accounts in Credit Card Industry Chengwei Yuan December 12, 2014 Introduction Risk management is critical for a credit card company to survive in such competing industry. In addition

More information

An Initial Study on High-Dimensional Data Visualization Through Subspace Clustering

An Initial Study on High-Dimensional Data Visualization Through Subspace Clustering An Initial Study on High-Dimensional Data Visualization Through Subspace Clustering A. Barbosa, F. Sadlo and L. G. Nonato ICMC Universidade de São Paulo, São Carlos, Brazil IWR Heidelberg University, Heidelberg,

More information

Big Graph Processing: Some Background

Big Graph Processing: Some Background Big Graph Processing: Some Background Bo Wu Colorado School of Mines Part of slides from: Paul Burkhardt (National Security Agency) and Carlos Guestrin (Washington University) Mines CSCI-580, Bo Wu Graphs

More information

Section for Cognitive Systems DTU Informatics, Technical University of Denmark

Section for Cognitive Systems DTU Informatics, Technical University of Denmark Transformation Invariant Sparse Coding Morten Mørup & Mikkel N Schmidt Morten Mørup & Mikkel N. Schmidt Section for Cognitive Systems DTU Informatics, Technical University of Denmark Redundancy Reduction

More information

Sanjeev Kumar. contribute

Sanjeev Kumar. contribute RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 sanjeevk@iasri.res.in 1. Introduction The field of data mining and knowledgee discovery is emerging as a

More information

DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS

DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS 1 AND ALGORITHMS Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy WHAT IS CLUSTER ANALYSIS? Finding groups of objects such that the objects in a group will be similar

More information

Virtual Landmarks for the Internet

Virtual Landmarks for the Internet Virtual Landmarks for the Internet Liying Tang Mark Crovella Boston University Computer Science Internet Distance Matters! Useful for configuring Content delivery networks Peer to peer applications Multiuser

More information