Machine Learning for Data Science (CS4786) Lecture 1
|
|
- Dale Quinn
- 2 years ago
- Views:
Transcription
1 Machine Learning for Data Science (CS4786) Lecture 1 Tu-Th 10:10 to 11:25 AM Hollister B14 Instructors : Lillian Lee and Karthik Sridharan
2 ROUGH DETAILS ABOUT THE COURSE Diagnostic assignment 0 is out: for our calibration. Hand in your assignments beginning of class on 29th Jan. We are thinking roughly three assignments (Approximately) 2 competition/challenges, Clustering/data visualization challenge Prediction challenge with focus on feature extraction/selection
3 Lets get started...
4 DATA DELUGE Each time you use your credit card: who purchased what, where and when Netflix, Hulu, smart TV: what do different groups of people like to watch Social networks like Facebook, Twitter,... : who is friends with who, what do these people post or tweet about Millions of photos and videos, many tagged Wikipedia, all the news websites: pretty much most of human knowledge
5 Guess?
6 Social Network of Marvel Comic Characters! by Cesc Rosselló, Ricardo Alberich, and Joe Miro from the University of the Balearic Islands
7 What can we learn from all this data?
8 WHAT IS MACHINE LEARNING? Use data to automatically learn to perform tasks better. Close in spirit to T. Mitchell s description
9 W HERE IS IT USED? Movie Rating Prediction
10 WHERE IS IT USED? Pedestrian Detection
11 WHERE IS IT USED? Market Predictions
12 W HERE IS IT USED? Spam Classification
13 MORE APPLICATIONS Each time you use your search engine Autocomplete: Blame machine learning for bad spellings Biometrics: reason you shouldn t smile Recommendation systems: what you may like to buy based on what your friends and their friends buy Computer vision: self driving cars, automatically tagging photos Topic modeling: Automatically categorizing documents/ s by topics or music by genre...
14 TOPICS WE HOPE TO COVER 1 Dimensionality Reduction: Principal Component Analysis (PCA), Canonical Component Analysis (CCA), Random projections, Compressed Sensing (CS), Independent Component Analysis (ICA), Information-Bottleneck, Linear Discriminant Analysis 2 Clustering and Mixture models: k-means clustering, gaussian mixture models, hierarchical clustering, link based clustering 3 Probabilistic Modeling & Graphical Models: Probabilistic modeling, MLE Vs MAP Vs Bayesian approaches, inference and learning in graphical models, Latent Dirichlet Allocation (LDA) 4 Some supervised learning: (if time permits) linear regression, logistic regression, Lasso, ridge regression, neural networks/deep learning,...
15 TOPICS WE HOPE TO COVER 1 Dimensionality Reduction: Principal Component Analysis (PCA), Canonical Component Analysis (CCA), Random projections, Compressed Sensing (CS), Independent Component Analysis (ICA), Information-Bottleneck, Linear Discriminant Analysis 2 Clustering and Mixture models: k-means clustering, gaussian mixture models, hierarchical clustering, link based clustering 3 Probabilistic Modeling & Graphical Models: Probabilistic modeling, MLE Vs MAP Vs Bayesian approaches, inference and learning in graphical models, Latent Dirichlet Allocation (LDA) 4 Some supervised learning: (if time permits) linear regression, logistic regression, Lasso, ridge regression, neural networks/deep learning,...
16 TOPICS WE HOPE TO COVER 1 Dimensionality Reduction: Principal Component Analysis (PCA), Canonical Component Analysis (CCA), Random projections, Compressed Sensing (CS), Independent Component Analysis (ICA), Information-Bottleneck, Linear Discriminant Analysis 2 Clustering and Mixture models: k-means clustering, gaussian mixture models, hierarchical clustering, link based clustering 3 Probabilistic Modeling & Graphical Models: Probabilistic modeling, MLE Vs MAP Vs Bayesian approaches, inference and learning in graphical models, Latent Dirichlet Allocation (LDA) 4 Some supervised learning: (if time permits) linear regression, logistic regression, Lasso, ridge regression, neural networks/deep learning,...
17 TOPICS WE HOPE TO COVER 1 Dimensionality Reduction: Principal Component Analysis (PCA), Canonical Component Analysis (CCA), Random projections, Compressed Sensing (CS), Independent Component Analysis (ICA), Information-Bottleneck, Linear Discriminant Analysis 2 Clustering and Mixture models: k-means clustering, gaussian mixture models, hierarchical clustering, link based clustering 3 Probabilistic Modeling & Graphical Models: Probabilistic modeling, MLE Vs MAP Vs Bayesian approaches, inference and learning in graphical models, Latent Dirichlet Allocation (LDA) 4 Some supervised learning: (if time permits) linear regression, logistic regression, Lasso, ridge regression, neural networks/deep learning,...
18 TOPICS WE HOPE TO COVER 1 Dimensionality Reduction: Principal Component Analysis (PCA), Canonical Component Analysis (CCA), Random projections, Compressed Sensing (CS), Independent Component Analysis (ICA), Information-Bottleneck, Linear Discriminant Analysis 2 Clustering and Mixture models: k-means clustering, gaussian mixture models, hierarchical clustering, link based clustering 3 Probabilistic Modeling & Graphical Models: Probabilistic modeling, MLE Vs MAP Vs Bayesian approaches, inference and learning in graphical models, Latent Dirichlet Allocation (LDA) 4 Some supervised learning: (if time permits) linear regression, logistic regression, Lasso, ridge regression, neural networks/deep learning,...
19 TOPICS WE HOPE TO COVER unsupervised learning {z } 1 Dimensionality Reduction: Principal Component Analysis (PCA), Canonical Component Analysis (CCA), Random projections, Compressed Sensing (CS), Independent Component Analysis (ICA), Information-Bottleneck, Linear Discriminant Analysis 2 Clustering and Mixture models: k-means clustering, gaussian mixture models, hierarchical clustering, link based clustering 3 Probabilistic Modeling & Graphical Models: Probabilistic modeling, MLE Vs MAP Vs Bayesian approaches, inference and learning in graphical models, Latent Dirichlet Allocation (LDA) 4 Some supervised learning: (if time permits) linear regression, logistic regression, Lasso, ridge regression, neural networks/deep learning,...
20 UNSUPERVISED LEARNING Given (unlabeled) data, find useful information, pattern or structure Dimensionality reduction/compression : compress data set by removing redundancy and retaining only useful information Clustering: Find meaningful groupings in data Topic modeling: discover topics/groups with which we can tag data points
21 DIMENSIONALITY REDUCTION You are provided with n data points each in R d Goal: Compress data into n, points in R K where K << d Retain as much information about the original data set Retain desired properties of the original data set Eg. PCA, compressed sensing,...
22 PRINCIPAL COMPONENT ANALYSIS (PCA) Eigen Face: Turk & Pentland 91 Write down each data point as a linear combination of small number of basis vectors Data specific compression scheme One of the early successes: in face recognition: classification based on nearest neighbor in the reduced dimension space
23 COMPRESSED SENSING From Compressive Sensing Camera Candes, Tao, Donaho 0 04 Can we compress directly while receiving the input? We now have cameras that directly sense/record compressed information... and very fast! Time spent only for reconstructing the compressed information Especially useful for capturing high resolution MRI s
24 INDEPENDENT COMPONENT ANALYSIS (ICA) Cocktail Party You are at a cocktail party, people are speaking all around you But you are still able to follow conversation with your group? Can a computer do this automatically?
25 INDEPENDENT COMPONENT ANALYSIS (ICA) Blind Source Seperation Bell & Sejnowski 95 Can do this as long as the sources are independent Represent data points as linear (or non-linear) combination of independent sources
26 DATA VISUALIZATION 2D projection Help visualize data (in relation to each other) Preserve relative distances among data-points (at least close by ones)
27 CLUSTERING K-means clustering Given just the data points group them in natural clusters Roughly speaking Points within a cluster must be close to each other Points between clusters must be separated Helps bin data points, but generally hard to do
28 TOPIC MODELLING Blei, Ng & Jordan 06 Probabilistic generative model for documents Each document has a fixed distribution over topics, each topic is has a fixed distribution over words belonging to it Unlike clustering, groups are non-exclusive
29 SUPERVISED LEARNING Training data comes as input output pairs (x, y) Based on this data we learn a mapping from input to output space Goal: Given new input instance x, predict outcome y accurately based on given training data Classification, regression PHOTO: Handout, Subaru
30 WHAT WE WON T COVER Feature extraction is a problem/domain specific art, we won t cover this in class We won t cover optimization methods for machine learning Implementation tricks and details won t be covered There are literally thousands of methods, we will only cover a few!
31 WHAT YOU CAN TAKE HOME How to think about a learning problem and formulate it Well known methods and how and why they work Hopefully we can give you an intuition on choice of methods/approach to try out on a given problem
32 DIMENSIONALITY REDUCTION Given data x 1,...,x n R d compress the data points in to low dimensional representation y 1,...,y n R K where K << d
33 WHY DIMENSIONALITY REDUCTION? For computational ease As input to supervised learning algorithm Before clustering to remove redundant information and noise Data visualization Data compression Noise reduction
34 DIMENSIONALITY REDUCTION Desired properties: 1 Original data can be (approximately) reconstructed 2 Preserve distances between data points 3 Relevant information is preserved 4 Redundant information is removed 5 Models our prior knowledge about real world Based on the choice of desired property and formalism we get different methods
35 SNEAK PEEK Linear projections Principle component analysis
TIETS34 Seminar: Data Mining on Biometric identification
TIETS34 Seminar: Data Mining on Biometric identification Youming Zhang Computer Science, School of Information Sciences, 33014 University of Tampere, Finland Youming.Zhang@uta.fi Course Description Content
ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING)
ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING) Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Preliminaries Classification and Clustering Applications
MS1b Statistical Data Mining
MS1b Statistical Data Mining Yee Whye Teh Department of Statistics Oxford http://www.stats.ox.ac.uk/~teh/datamining.html Outline Administrivia and Introduction Course Structure Syllabus Introduction to
BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376
Course Director: Dr. Kayvan Najarian (DCM&B, kayvan@umich.edu) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.
Introduction to Machine Learning. Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011
Introduction to Machine Learning Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011 1 Outline 1. What is machine learning? 2. The basic of machine learning 3. Principles and effects of machine learning
CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.
Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott
lop Building Machine Learning Systems with Python en source
Building Machine Learning Systems with Python Master the art of machine learning with Python and build effective machine learning systems with this intensive handson guide Willi Richert Luis Pedro Coelho
DATA ANALYTICS USING R
DATA ANALYTICS USING R Duration: 90 Hours Intended audience and scope: The course is targeted at fresh engineers, practicing engineers and scientists who are interested in learning and understanding data
An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015
An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content
CS 2750 Machine Learning. Lecture 1. Machine Learning. CS 2750 Machine Learning.
Lecture 1 Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x-5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott
Introduction to Machine Learning Lecture 1. Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu
Introduction to Machine Learning Lecture 1 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Introduction Logistics Prerequisites: basics concepts needed in probability and statistics
Machine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. huang@cs.qc.cuny.edu
Machine Learning CUNY Graduate Center, Spring 2013 Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning Logistics Lectures M 9:30-11:30 am Room 4419 Personnel
Machine Learning with MATLAB David Willingham Application Engineer
Machine Learning with MATLAB David Willingham Application Engineer 2014 The MathWorks, Inc. 1 Goals Overview of machine learning Machine learning models & techniques available in MATLAB Streamlining the
An Introduction to Data Mining
An Introduction to Intel Beijing wei.heng@intel.com January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail
Learning is a very general term denoting the way in which agents:
What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);
MACHINE LEARNING IN HIGH ENERGY PHYSICS
MACHINE LEARNING IN HIGH ENERGY PHYSICS LECTURE #1 Alex Rogozhnikov, 2015 INTRO NOTES 4 days two lectures, two practice seminars every day this is introductory track to machine learning kaggle competition!
C19 Machine Learning
C9 Machine Learning 8 Lectures Hilary Term 25 2 Tutorial Sheets A. Zisserman Overview: Supervised classification perceptron, support vector machine, loss functions, kernels, random forests, neural networks
Distance Metric Learning in Data Mining (Part I) Fei Wang and Jimeng Sun IBM TJ Watson Research Center
Distance Metric Learning in Data Mining (Part I) Fei Wang and Jimeng Sun IBM TJ Watson Research Center 1 Outline Part I - Applications Motivation and Introduction Patient similarity application Part II
Machine Learning using MapReduce
Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous
Introduction to machine learning and pattern recognition Lecture 1 Coryn Bailer-Jones
Introduction to machine learning and pattern recognition Lecture 1 Coryn Bailer-Jones http://www.mpia.de/homes/calj/mlpr_mpia2008.html 1 1 What is machine learning? Data description and interpretation
Big Data and Marketing
Big Data and Marketing Professor Venky Shankar Coleman Chair in Marketing Director, Center for Retailing Studies Mays Business School Texas A&M University http://www.venkyshankar.com venky@venkyshankar.com
Data Mining and Knowledge Discovery in Databases (KDD) State of the Art. Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland
Data Mining and Knowledge Discovery in Databases (KDD) State of the Art Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland 1 Conference overview 1. Overview of KDD and data mining 2. Data
Evaluation of Machine Learning Techniques for Green Energy Prediction
arxiv:1406.3726v1 [cs.lg] 14 Jun 2014 Evaluation of Machine Learning Techniques for Green Energy Prediction 1 Objective Ankur Sahai University of Mainz, Germany We evaluate Machine Learning techniques
Unsupervised Learning: Clustering with DBSCAN Mat Kallada
Unsupervised Learning: Clustering with DBSCAN Mat Kallada STAT 2450 - Introduction to Data Mining Supervised Data Mining: Predicting a column called the label The domain of data mining focused on prediction:
Machine Learning. 01 - Introduction
Machine Learning 01 - Introduction Machine learning course One lecture (Wednesday, 9:30, 346) and one exercise (Monday, 17:15, 203). Oral exam, 20 minutes, 5 credit points. Some basic mathematical knowledge
Search Taxonomy. Web Search. Search Engine Optimization. Information Retrieval
Information Retrieval INFO 4300 / CS 4300! Retrieval models Older models» Boolean retrieval» Vector Space model Probabilistic Models» BM25» Language models Web search» Learning to Rank Search Taxonomy!
Clustering Big Data. Anil K. Jain. (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012
Clustering Big Data Anil K. Jain (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012 Outline Big Data How to extract information? Data clustering
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
Data Mining Yelp Data - Predicting rating stars from review text
Data Mining Yelp Data - Predicting rating stars from review text Rakesh Chada Stony Brook University rchada@cs.stonybrook.edu Chetan Naik Stony Brook University cnaik@cs.stonybrook.edu ABSTRACT The majority
Machine learning for algo trading
Machine learning for algo trading An introduction for nonmathematicians Dr. Aly Kassam Overview High level introduction to machine learning A machine learning bestiary What has all this got to do with
Statistics for BIG data
Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSA-Bulletine 2014) Before
EECS 445: Introduction to Machine Learning Winter 2015
Instructor: Prof. Jenna Wiens Office: 3609 BBB wiensj@umich.edu EECS 445: Introduction to Machine Learning Winter 2015 Graduate Student Instructor: Srayan Datta Office: 3349 North Quad (**office hours
Introduction to Machine Learning
Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Instructor: Erik Sudderth Graduate TAs: Dae Il Kim & Ben Swanson Head Undergraduate TA: William Allen Undergraduate TAs: Soravit
A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization
A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization Ángela Blanco Universidad Pontificia de Salamanca ablancogo@upsa.es Spain Manuel Martín-Merino Universidad
Let the data speak to you. Look Who s Peeking at Your Paycheck. Big Data. What is Big Data? The Artemis project: Saving preemies using Big Data
CS535 Big Data W1.A.1 CS535 BIG DATA W1.A.2 Let the data speak to you Medication Adherence Score How likely people are to take their medication, based on: How long people have lived at the same address
Machine Learning CS 6830. Lecture 01. Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu
Machine Learning CS 6830 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu What is Learning? Merriam-Webster: learn = to acquire knowledge, understanding, or skill
MACHINE LEARNING AN INTRODUCTION
AN INTRODUCTION JOSEFIN ROSÉN, SENIOR ANALYTICAL EXPERT, SAS INSTITUTE JOSEFIN.ROSEN@SAS.COM TWITTER: @ROSENJOSEFIN AGENDA What is machine learning? When, where and how is machine learning used? Exemple
KATE GLEASON COLLEGE OF ENGINEERING. John D. Hromi Center for Quality and Applied Statistics
ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM KATE GLEASON COLLEGE OF ENGINEERING John D. Hromi Center for Quality and Applied Statistics NEW (or REVISED) COURSE (KGCOE- CQAS- 747- Principles of
Machine Learning and Data Mining. Fundamentals, robotics, recognition
Machine Learning and Data Mining Fundamentals, robotics, recognition Machine Learning, Data Mining, Knowledge Discovery in Data Bases Their mutual relations Data Mining, Knowledge Discovery in Databases,
CSCI-599 DATA MINING AND STATISTICAL INFERENCE
CSCI-599 DATA MINING AND STATISTICAL INFERENCE Course Information Course ID and title: CSCI-599 Data Mining and Statistical Inference Semester and day/time/location: Spring 2013/ Mon/Wed 3:30-4:50pm Instructor:
203.4770: Introduction to Machine Learning Dr. Rita Osadchy
203.4770: Introduction to Machine Learning Dr. Rita Osadchy 1 Outline 1. About the Course 2. What is Machine Learning? 3. Types of problems and Situations 4. ML Example 2 About the course Course Homepage:
Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut.
Machine Learning and Data Analysis overview Jiří Kléma Department of Cybernetics, Czech Technical University in Prague http://ida.felk.cvut.cz psyllabus Lecture Lecturer Content 1. J. Kléma Introduction,
Face Recognition using SIFT Features
Face Recognition using SIFT Features Mohamed Aly CNS186 Term Project Winter 2006 Abstract Face recognition has many important practical applications, like surveillance and access control.
Using Data Mining for Mobile Communication Clustering and Characterization
Using Data Mining for Mobile Communication Clustering and Characterization A. Bascacov *, C. Cernazanu ** and M. Marcu ** * Lasting Software, Timisoara, Romania ** Politehnica University of Timisoara/Computer
Machine Learning What, how, why?
Machine Learning What, how, why? Rémi Emonet (@remiemonet) 2015-09-30 Web En Vert $ whoami $ whoami Software Engineer Researcher: machine learning, computer vision Teacher: web technologies, computing
CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing
CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate
Machine Learning Capacity and Performance Analysis and R
Machine Learning and R May 3, 11 30 25 15 10 5 25 15 10 5 30 25 15 10 5 0 2 4 6 8 101214161822 0 2 4 6 8 101214161822 0 2 4 6 8 101214161822 100 80 60 40 100 80 60 40 100 80 60 40 30 25 15 10 5 25 15 10
Neural Networks. CAP5610 Machine Learning Instructor: Guo-Jun Qi
Neural Networks CAP5610 Machine Learning Instructor: Guo-Jun Qi Recap: linear classifier Logistic regression Maximizing the posterior distribution of class Y conditional on the input vector X Support vector
COLLEGE OF SCIENCE. John D. Hromi Center for Quality and Applied Statistics
ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE John D. Hromi Center for Quality and Applied Statistics NEW (or REVISED) COURSE: COS-STAT-747 Principles of Statistical Data Mining
Introduction to Machine Learning Using Python. Vikram Kamath
Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression
Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data
CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear
Data, Measurements, Features
Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are
Concepts in Machine Learning, Unsupervised Learning & Astronomy Applications
Data Mining In Modern Astronomy Sky Surveys: Concepts in Machine Learning, Unsupervised Learning & Astronomy Applications Ching-Wa Yip cwyip@pha.jhu.edu; Bloomberg 518 Human are Great Pattern Recognizers
Clustering Connectionist and Statistical Language Processing
Clustering Connectionist and Statistical Language Processing Frank Keller keller@coli.uni-sb.de Computerlinguistik Universität des Saarlandes Clustering p.1/21 Overview clustering vs. classification supervised
Data Mining: Overview. What is Data Mining?
Data Mining: Overview What is Data Mining? Recently * coined term for confluence of ideas from statistics and computer science (machine learning and database methods) applied to large databases in science,
The Data Mining Process
Sequence for Determining Necessary Data. Wrong: Catalog everything you have, and decide what data is important. Right: Work backward from the solution, define the problem explicitly, and map out the data
Is a Data Scientist the New Quant? Stuart Kozola MathWorks
Is a Data Scientist the New Quant? Stuart Kozola MathWorks 2015 The MathWorks, Inc. 1 Facts or information used usually to calculate, analyze, or plan something Information that is produced or stored by
CPSC 340: Machine Learning and Data Mining. Mark Schmidt University of British Columbia Fall 2015
CPSC 340: Machine Learning and Data Mining Mark Schmidt University of British Columbia Fall 2015 Outline 1) Intro to Machine Learning and Data Mining: Big data phenomenon and types of data. Definitions
INTERNATIONAL MASTER IN BUSINESS ANALYTICS AND BIG DATA
POLITECNICO DI MILANO GRADUATE SCHOOL OF BUSINESS BABD INTERNATIONAL MASTER IN BUSINESS ANALYTICS AND BIG DATA Courses Description A JOINT PROGRAM WITH POLITECNICO DI MILANO SCHOOL OF MANAGEMENT PRE-COURSES
Data Clustering. Dec 2nd, 2013 Kyrylo Bessonov
Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms k-means Hierarchical Main
Introduction to Pattern Recognition
Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)
Data Mining Part 5. Prediction
Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification
Overview. Clustering. Clustering vs. Classification. Supervised vs. Unsupervised Learning. Connectionist and Statistical Language Processing
Overview Clustering Connectionist and Statistical Language Processing Frank Keller keller@coli.uni-sb.de Computerlinguistik Universität des Saarlandes clustering vs. classification supervised vs. unsupervised
Introduction to Big Data with Apache Spark UC BERKELEY
Introduction to Big Data with Apache Spark UC BERKELEY This Lecture Exploratory Data Analysis Some Important Distributions Spark mllib Machine Learning Library Descriptive vs. Inferential Statistics Descriptive:»
HT2015: SC4 Statistical Data Mining and Machine Learning
HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric
EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set
EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set Amhmed A. Bhih School of Electrical and Electronic Engineering Princy Johnson School of Electrical and Electronic Engineering Martin
Learning outcomes. Knowledge and understanding. Competence and skills
Syllabus Master s Programme in Statistics and Data Mining 120 ECTS Credits Aim The rapid growth of databases provides scientists and business people with vast new resources. This programme meets the challenges
Data Mining for Customer Service Support. Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin
Data Mining for Customer Service Support Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin Traditional Hotline Services Problem Traditional Customer Service Support (manufacturing)
Obtaining Value from Big Data
Obtaining Value from Big Data Course Notes in Transparency Format technology basics for data scientists Spring - 2014 Jordi Torres, UPC - BSC www.jorditorres.eu @JordiTorresBCN Data deluge, is it enough?
ANALYTICAL TECHNIQUES FOR DATA VISUALIZATION
ANALYTICAL TECHNIQUES FOR DATA VISUALIZATION CSE 537 Ar@ficial Intelligence Professor Anita Wasilewska GROUP 2 TEAM MEMBERS: SAEED BOOR BOOR - 110564337 SHIH- YU TSAI - 110385129 HAN LI 110168054 SOURCES
MA2823: Foundations of Machine Learning
MA2823: Foundations of Machine Learning École Centrale Paris Fall 2015 Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr TAs: Jiaqian Yu jiaqian.yu@centralesupelec.fr
Computational Linguistics and Learning from Big Data. Gabriel Doyle UCSD Linguistics
Computational Linguistics and Learning from Big Data Gabriel Doyle UCSD Linguistics From not enough data to too much Finding people: 90s, 700 datapoints, 7 years People finding you: 00s, 30000 datapoints,
Using Artificial Intelligence to Manage Big Data for Litigation
FEBRUARY 3 5, 2015 / THE HILTON NEW YORK Using Artificial Intelligence to Manage Big Data for Litigation Understanding Artificial Intelligence to Make better decisions Improve the process Allay the fear
ADVANCED MACHINE LEARNING. Introduction
1 1 Introduction Lecturer: Prof. Aude Billard (aude.billard@epfl.ch) Teaching Assistants: Guillaume de Chambrier, Nadia Figueroa, Denys Lamotte, Nicola Sommer 2 2 Course Format Alternate between: Lectures
APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder
APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large
Principles of Data Mining by Hand&Mannila&Smyth
Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences
Lecture 20: Clustering
Lecture 20: Clustering Wrap-up of neural nets (from last lecture Introduction to unsupervised learning K-means clustering COMP-424, Lecture 20 - April 3, 2013 1 Unsupervised learning In supervised learning,
Social Media Mining. Data Mining Essentials
Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers
CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen
CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 3: DATA TRANSFORMATION AND DIMENSIONALITY REDUCTION Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major
Learning outcomes. Knowledge and understanding. Ability and Competences. Evaluation capability and scientific approach
Syllabus Master s Programme in Statistics and Data Mining 120 ECTS Credits Aim The rapid growth of databases provides scientists and business people with vast new resources. This programme meets the challenges
SWIFT: A Text-mining Workbench for Systematic Review
SWIFT: A Text-mining Workbench for Systematic Review Ruchir Shah, PhD Sciome LLC NTP Board of Scientific Counselors Meeting June 16, 2015 Large Literature Corpus: An Ever Increasing Challenge Systematic
Spatio-Temporal Patterns of Passengers Interests at London Tube Stations
Spatio-Temporal Patterns of Passengers Interests at London Tube Stations Juntao Lai *1, Tao Cheng 1, Guy Lansley 2 1 SpaceTimeLab for Big Data Analytics, Department of Civil, Environmental &Geomatic Engineering,
INTRODUCTION TO MACHINE LEARNING
Why are you here? What is Machine Learning? Why are you taking this course? INTRODUCTION TO MACHINE LEARNING David Kauchak CS 451 Fall 2013 What topics would you like to see covered? Machine Learning is
Music Classification by Composer
Music Classification by Composer Janice Lan janlan@stanford.edu CS 229, Andrew Ng December 14, 2012 Armon Saied armons@stanford.edu Abstract Music classification by a computer has been an interesting subject
Robotics 2 Clustering & EM. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Maren Bennewitz, Wolfram Burgard
Robotics 2 Clustering & EM Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Maren Bennewitz, Wolfram Burgard 1 Clustering (1) Common technique for statistical data analysis to detect structure (machine learning,
Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics
Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics Part I: Factorizations and Statistical Modeling/Inference Amnon Shashua School of Computer Science & Eng. The Hebrew University
Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j
Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j What is Kiva? An organization that allows people to lend small amounts of money via the Internet
Introduction to Machine Learning
Introduction to Machine Learning Prof. Alexander Ihler Prof. Max Welling icamp Tutorial July 22 What is machine learning? The ability of a machine to improve its performance based on previous results:
TDA and Machine Learning: Better Together
TDA and Machine Learning: Better Together TDA AND MACHINE LEARNING: BETTER TOGETHER 2 TABLE OF CONTENTS The New Data Analytics Dilemma... 3 Introducing Topology and Topological Data Analysis... 3 The Promise
Machine Learning for NLP
Natural Language Processing SoSe 2015 Machine Learning for NLP Dr. Mariana Neves May 4th, 2015 (based on the slides of Dr. Saeedeh Momtazi) Introduction Field of study that gives computers the ability
Machine Learning Introduction
Machine Learning Introduction Ingmar Schuster Patrick Jähnichen Institut für Informatik This lecture covers Machine Learning Overview Example applications of Machine Learning Distinction Supervised vs.
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
COPYRIGHTED MATERIAL. Contents. List of Figures. Acknowledgments
Contents List of Figures Foreword Preface xxv xxiii xv Acknowledgments xxix Chapter 1 Fraud: Detection, Prevention, and Analytics! 1 Introduction 2 Fraud! 2 Fraud Detection and Prevention 10 Big Data for
Statistical Models in Data Mining
Statistical Models in Data Mining Sargur N. Srihari University at Buffalo The State University of New York Department of Computer Science and Engineering Department of Biostatistics 1 Srihari Flood of
Mammoth Scale Machine Learning!
Mammoth Scale Machine Learning! Speaker: Robin Anil, Apache Mahout PMC Member! OSCON"10! Portland, OR! July 2010! Quick Show of Hands!# Are you fascinated about ML?!# Have you used ML?!# Do you have Gigabytes
Linear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
8/29/2015. Data Mining and Machine Learning. Erich Seamon University of Idaho
Data Mining and Machine Learning Erich Seamon University of Idaho www.webpages.uidaho.edu/erichs erichs@uidaho.edu 1 I am NOMAD 2 1 Data Mining and Machine Learning Outline Outlining the data mining and
Data Analytics at NICTA. Stephen Hardy National ICT Australia (NICTA) shardy@nicta.com.au
Data Analytics at NICTA Stephen Hardy National ICT Australia (NICTA) shardy@nicta.com.au NICTA Copyright 2013 Outline Big data = science! Data analytics at NICTA Discrete Finite Infinite Machine Learning
Attend Part 1 (2-3pm) to get 1 point extra credit. Polo will announce on Piazza options for DL students.
Attend Part 1 (2-3pm) to get 1 point extra credit. Polo will announce on Piazza options for DL students. Data Science/Data Analytics and Scaling to Big Data with MathWorks Using Data Analytics to turn
Health Spring Meeting May 2008 Session # 42: Dental Insurance What's New, What's Important
Health Spring Meeting May 2008 Session # 42: Dental Insurance What's New, What's Important Floyd Ray Martin, FSA, MAAA Thomas A. McInteer, FSA, MAAA Jonathan P. Polon, FSA Dental Insurance Fraud Detection