ECE 495 Project 3: Shocker Actuator Subsystem and Website Design. Group 1: One Awesome Engineering

Size: px
Start display at page:

Download "ECE 495 Project 3: Shocker Actuator Subsystem and Website Design. Group 1: One Awesome Engineering"

Transcription

1 ECE 495 Project 3: Shocker Actuator Subsystem and Website Design Group 1: One Awesome Engineering Luquita Edwards Evan Whetsell Sunny Verma Thomas Ryan Willis Long I. Executive Summary The main goal behind Project 3 was the design and implementation of an actuator subsystem that could be utilized in our overall Shocker robot design for Project 6. The actuator subsystem was designed around the problem of allowing our robot range of motion around the z-axis. In having this degree of motion, our Shocker robot should be able to handle with ease, any angle changes in any wire path that it is presented. Alongside the creation of the actuator subsystem, a corresponding website was developed in order to house all of our respective engineering documents for each specific design project. The overall lesson that we all learned is there a mighty big gap between designing an idea and actually implementing it.

2 II. Engineering Requirements Customer Requirements Accuracy Engineering Requirements Need the servo motor to move smoothly at specified angles Test Verify through measurement that the servo motor moved to the correct angle Cost Parts costs < $300 budget Parts Costs < $300 budget Degrees of Rotation Servo motor is able to rotate 180 degrees Test the maximum and minimum rotation angles Product Life Span Rotation Velocity Size Requirement xpc and Quanser Board interface Operation time greater than 100 usage cycles Servo motor's rotational speed needs to be ms/degree Servo motor needs to be mountable on overall robot design Servo motor needs to be controlled by the xpc / Quanser board connection Verify that the servo motor is still operational after 100 or so uses Verify the speed of the servo motor to be a the calculated speed The servo motor is mountable and does not hinder operation Servo motor control will be executed by the xpc interface The engineering requirements necessary for the creation and implementation of our actuator subsystem centered on the idea of having perfect z-axis motion. Without such perfect accuracy in our servo motor, there could be an angle measure in a wire path that the overall robot will not be able to navigate. Page 2

3 III. Actuator Subsystem Design The HS-311 servo motor rotates when an analog square pulse is received on the input signal pin. Depending on the pulse s length, the servo motor will rotate to a corresponding degree angle. In order to properly manipulate the servo motor, we had to calculate both the minimum and maximum pulse widths that could still motivate the motor. These calculations and resultant command pulses can be seen below in Figures 1, 2, and 3. Once the extreme angle values were known, we were able to calculate the necessary command pulses in order to obtain a degree range from A sample calculation is shown below. Servo Motor Calculation Example: 30 turn = (30* ms) ms [our initial value] = ms Max and Min PWM for servo motor 0 degree = 0.55ms 90 degree = 1.52ms 180 degree = 2.48ms Servo Motor Calculation (Specific Degree) 180 degree turn = 2.48ms ms = 1.93ms 1 degree = 1.93/180 = ms Square Command Pulses: Figure 1: PWM for 0 turn of Servo Motor Page 3

4 Figure 2: PWM for 90 turn of Servo Motor Figure 3: PWM for 180 turn of Servo Motor Page 4

5 Figure 4: Servo Motor Circuit Diagram As shown above in Figure 4, we have an amplifier component increasing our command signal to the necessary 5V in order to properly drive our servo motor. The servo motor is grounded through a ground pin, while the signal pin is connected to the third analog output port of the Quanser board. The Quanser board is able to control the servo motor by inputting the appropriate square pulse in order to move to the desired angle. Page 5

6 IV. Mechanical Design Details Figure 5 below is a picture of our HS-311 servo motor that we will use in order to rotate the Shocker game fork around the z-axis. The servo motor has three wires that are used to in order to interface with it. The red wire is Vcc or the power supply, the black wire is the grounding line, and the yellow wire is the signal line. The HS-311 motor runs on 5.0 V DC, which we were able to obtain in lab by linking the command signal from the Quanser board to a linear voltage amplifier. By amplifying the command signal from its much lower 1.0V, we were able to have enough power in order to drive the servo motor. Once all these wire and pin connections were in place, the servo motor was ready to be controlled by our Simulink control program. Figure 5: HS-311 Servo Motor Figure 6: Simulink Control Diagram Our Simulink control diagram works by first multiplying the desired degree measure with the appropriate pulse width. Then this product is compared to the current angle that the servo motor is sitting on. If the angle measure is not the desired one, then the program will keep adjusting the angle measure until it is correct. Once the correct pulse width is determined, the program will output a command signal that will be amplified and feed into the servo motor signal pin to control the motor. Page 6

7 V. Prototype Demonstration and Testing Our servo motor worked exactly as we expected being able to have a full range of motion around the z- axis. The servo motor was correctly interfaced with the Quanser board, allowing for precise rotation to any specified angle. We tested multiple angle measures and the servo motor was able to successfully turn to all of them. The servo motor s range is approximately from Our actual actuator prototype is shown below in Figure 6. Figure 6: Actuator Prototype Page 7

8 VI. Conclusion In summary, for Project 3 we utilized a servo motor in order to construct an actuator subsystem for our overall Shocker robot. This servo motor is controlled by the Quanser board through an analog port that is governed by our Simulink control program. This program allows us to command our servo motor in order to move to any desired angle from The design of our actuator subsystem was completed with adherence to our engineering requirements as desired by our customer. This actuator subsystem will most likely end up in our final design for the Shocker project as the z-axis component, which will allow us to handle any angle variations a wire path may present. Team Website: VI. References [1] T. Burg. (2014, March 3). Clemson ECE 495 Project 3 Instructions [Online]. Available: [2] (2014, March 3). Hitec HS-311 Standard [Online]. Available: Page 8

9 ECE495 Research Project 3 Group Name and Members: Score Pts ABET Outcomes 5 General Report Format - Professional Looking Document g a) Fonts, margins (11pt, times new roman, single spaced. 1" margins all sides). b) Spelling and grammar are correct c) Layout of pictures all figures have captions and are referenced in the text d) Follows the page limitations below. e) References. Use IEEE reference format. 5 Page 1: Title, Group Name, Group Members, and Date g Executive Summary (1 well written paragraph) Provide an overview of this project. Briefly what did you do and what did you learned. 20 Page 2: Engineering Requirements (~1 page) b Considering only the Sensor subsystem, make a three column table that lists Customer Requirements in the first column, the resulting Engineering Requirements in the second column, and the third column describes the Tests that will be done on the prototype to verify that your design meets each requirement. Note: One customer requirement may branch to multiple engineering requirements. The following should be a narrative report that describes your design decisions and final design, e.g., don t just have a flowchart without text that explains it. 20 Pages 3-4: c Electrical Design Details (~2 pages) Describe the system including: a) Calculations b) Simulation Results c) Circuit schematics Mechanical Design Details (~1 page) a) Assembly drawings 10 Pages 5: Prototype Demonstration and Testing (1 page) b Build a physical prototype that demonstrates that your design will meet all of the customer requirements. Present the results of your testing, which should consist of graphs and explanations. 5 Page 6: Conclusion (1 page) g Tell the Customer that you have completed the design, it achieves the desired objectives as demonstrated in the prototype testing (use the specific metrics defined in your testing plan), and that your design is complete and they can proceed to manufacturing. 15 Laboratory demonstration of your prototype b 20 General Format of Website a) Aesthetics b) Completeness a. Included the Team Description - No personal information that would be embarrassing to you or your teammates. b. Included Report 1. c. Outline of future sections c) Use of Graphics d) All links relative to starting directory so that it can be moved to ECE site. g Page 9

10 Follow the website guidelines, including, accessibility compliance, at Page 10

INTRODUCTION TO SERIAL ARM

INTRODUCTION TO SERIAL ARM INTRODUCTION TO SERIAL ARM A robot manipulator consists of links connected by joints. The links of the manipulator can be considered to form a kinematic chain. The business end of the kinematic chain of

More information

Project 4: Camera as a Sensor, Life-Cycle Analysis, and Employee Training Program

Project 4: Camera as a Sensor, Life-Cycle Analysis, and Employee Training Program Project 4: Camera as a Sensor, Life-Cycle Analysis, and Employee Training Program Team 7: Nathaniel Hunt, Chase Burbage, Siddhant Malani, Aubrey Faircloth, and Kurt Nolte March 15, 2013 Executive Summary:

More information

Servo Motors (SensorDAQ only) Evaluation copy. Vernier Digital Control Unit (DCU) LabQuest or LabPro power supply

Servo Motors (SensorDAQ only) Evaluation copy. Vernier Digital Control Unit (DCU) LabQuest or LabPro power supply Servo Motors (SensorDAQ only) Project 7 Servos are small, relatively inexpensive motors known for their ability to provide a large torque or turning force. They draw current proportional to the mechanical

More information

PROGRAMMING WITH ARDUINO - 1

PROGRAMMING WITH ARDUINO - 1 PROGRAMMING WITH ARDUINO - 1 IESL RoboGames 2014 University of Moratuwa Department of Computer Science & Engineering Table of Contents Introduction... 2 Arduino Development Board... 2 How to Setup Arduino

More information

Eric Mitchell April 2, 2012 Application Note: Control of a 180 Servo Motor with Arduino UNO Development Board

Eric Mitchell April 2, 2012 Application Note: Control of a 180 Servo Motor with Arduino UNO Development Board Eric Mitchell April 2, 2012 Application Note: Control of a 180 Servo Motor with Arduino UNO Development Board Abstract This application note is a tutorial of how to use an Arduino UNO microcontroller to

More information

Servo Info and Centering

Servo Info and Centering Info and Centering A servo is a mechanical motorized device that can be instructed to move the output shaft attached to a servo wheel or arm to a specified position. Inside the servo box is a DC motor

More information

MECE 102 Mechatronics Engineering Orientation

MECE 102 Mechatronics Engineering Orientation MECE 102 Mechatronics Engineering Orientation Mechatronic System Components Associate Prof. Dr. of Mechatronics Engineering Çankaya University Compulsory Course in Mechatronics Engineering Credits (2/0/2)

More information

INSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users

INSTRUCTOR WORKBOOK Quanser Robotics Package for Education for MATLAB /Simulink Users INSTRUCTOR WORKBOOK for MATLAB /Simulink Users Developed by: Amir Haddadi, Ph.D., Quanser Peter Martin, M.A.SC., Quanser Quanser educational solutions are powered by: CAPTIVATE. MOTIVATE. GRADUATE. PREFACE

More information

Robotics and Automation Blueprint

Robotics and Automation Blueprint Robotics and Automation Blueprint This Blueprint contains the subject matter content of this Skill Connect Assessment. This Blueprint does NOT contain the information one would need to fully prepare for

More information

dspace DSP DS-1104 based State Observer Design for Position Control of DC Servo Motor

dspace DSP DS-1104 based State Observer Design for Position Control of DC Servo Motor dspace DSP DS-1104 based State Observer Design for Position Control of DC Servo Motor Jaswandi Sawant, Divyesh Ginoya Department of Instrumentation and control, College of Engineering, Pune. ABSTRACT This

More information

A 5 Degree Feedback Control Robotic Arm (Haptic Arm)

A 5 Degree Feedback Control Robotic Arm (Haptic Arm) A 5 Degree Feedback Control Robotic Arm (Haptic Arm) 1 Prof. Sheetal Nirve, 2 Mr.Abhilash Patil, 3 Mr.Shailesh Patil, 4 Mr.Vishal Raut Abstract: Haptics is the science of applying touch sensation and control

More information

Six-servo Robot Arm. DAGU Hi-Tech Electronic Co., LTD www.arexx.com.cn. Six-servo Robot Arm

Six-servo Robot Arm. DAGU Hi-Tech Electronic Co., LTD www.arexx.com.cn. Six-servo Robot Arm Six-servo Robot Arm 1 1, Introduction 1.1, Function Briefing Servo robot, as the name suggests, is the six servo motor-driven robot arm. Since the arm has a few joints, we can imagine, our human arm, in

More information

Module: Wall-Following using Arduino

Module: Wall-Following using Arduino Module: Wall-Following using Arduino Now that you have a working wall-following vehicle enjoy a moment of satisfaction and then think how you might change the design to include more functionality. Maybe

More information

TwinCAT NC Configuration

TwinCAT NC Configuration TwinCAT NC Configuration NC Tasks The NC-System (Numeric Control) has 2 tasks 1 is the SVB task and the SAF task. The SVB task is the setpoint generator and generates the velocity and position control

More information

Introduction to Programmable Logic Controllers (PLC's)

Introduction to Programmable Logic Controllers (PLC's) NDSU Intro to PLC's 1 Introduction to Programmable Logic Controllers (PLC's) Programmable Logic Controllers (PLC's) are microprocessor devices much like the PIC microcontroller. Their function is to control

More information

Accurate Measurement of the Mains Electricity Frequency

Accurate Measurement of the Mains Electricity Frequency Accurate Measurement of the Mains Electricity Frequency Dogan Ibrahim Near East University, Faculty of Engineering, Lefkosa, TRNC dogan@neu.edu.tr Abstract The frequency of the mains electricity supply

More information

Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial

Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial Administration: o Prayer Robot Building for Beginners, Chapter 15, Voltage Comparators: o Review of Sandwich s Circuit:

More information

What s Left in E11? Technical Writing E11 Final Report

What s Left in E11? Technical Writing E11 Final Report Technical Writing What s Left in E11? Technical Writing E11 Final Report 2 Next Week: Competition! Second Last Week: Robotics S&T, Eng&CS Outlooks, Last Week: Final Presentations 3 There are several common

More information

FRC WPI Robotics Library Overview

FRC WPI Robotics Library Overview FRC WPI Robotics Library Overview Contents 1.1 Introduction 1.2 RobotDrive 1.3 Sensors 1.4 Actuators 1.5 I/O 1.6 Driver Station 1.7 Compressor 1.8 Camera 1.9 Utilities 1.10 Conclusion Introduction In this

More information

laboratory guide 2 DOF Inverted Pendulum Experiment for MATLAB /Simulink Users

laboratory guide 2 DOF Inverted Pendulum Experiment for MATLAB /Simulink Users laboratory guide 2 DOF Inverted Pendulum Experiment for MATLAB /Simulink Users Developed by: Jacob Apkarian, Ph.D., Quanser Hervé Lacheray, M.A.SC., Quanser Michel Lévis, M.A.SC., Quanser Quanser educational

More information

Active Vibration Isolation of an Unbalanced Machine Spindle

Active Vibration Isolation of an Unbalanced Machine Spindle UCRL-CONF-206108 Active Vibration Isolation of an Unbalanced Machine Spindle D. J. Hopkins, P. Geraghty August 18, 2004 American Society of Precision Engineering Annual Conference Orlando, FL, United States

More information

Analog control unit for mobile robots

Analog control unit for mobile robots Analog control unit for mobile robots Soldering kit for experimentation For Fischertechnik robots and others Most diverse functions Requires no programming Patented sensor technology Summary We are pleased

More information

Project Plan. Project Plan. May13-06. Logging DC Wattmeter. Team Member: Advisor : Ailing Mei. Collin Christy. Andrew Kom. Client: Chongli Cai

Project Plan. Project Plan. May13-06. Logging DC Wattmeter. Team Member: Advisor : Ailing Mei. Collin Christy. Andrew Kom. Client: Chongli Cai Project Plan May13-06 Logging DC Wattmeter Team Member: Ailing Mei Andrew Kom Chongli Cai Advisor : Collin Christy Client: Garmin International David Hoffman Qiaoya Cui Table of Contents Need Statement...

More information

Computer Controlled Generating Stations Control and Regulation Simulator, with SCADA SCE

Computer Controlled Generating Stations Control and Regulation Simulator, with SCADA SCE Technical Teaching Equipment Computer Controlled Generating Stations Control and Regulation Simulator, with SCADA SCE EDIBON SCADA System Teaching Technique used 4 5 2 Data Acquisition Board Cables and

More information

Force/position control of a robotic system for transcranial magnetic stimulation

Force/position control of a robotic system for transcranial magnetic stimulation Force/position control of a robotic system for transcranial magnetic stimulation W.N. Wan Zakaria School of Mechanical and System Engineering Newcastle University Abstract To develop a force control scheme

More information

Transmitter Interface Program

Transmitter Interface Program Transmitter Interface Program Operational Manual Version 3.0.4 1 Overview The transmitter interface software allows you to adjust configuration settings of your Max solid state transmitters. The following

More information

Industrial Automation Training Academy. PLC, HMI & Drives Training Programs Duration: 6 Months (180 ~ 240 Hours)

Industrial Automation Training Academy. PLC, HMI & Drives Training Programs Duration: 6 Months (180 ~ 240 Hours) nfi Industrial Automation Training Academy Presents PLC, HMI & Drives Training Programs Duration: 6 Months (180 ~ 240 Hours) For: Electronics & Communication Engineering Electrical Engineering Instrumentation

More information

1. Outline. The Manual of Mach3, EMC2 Interface Board CM106

1. Outline. The Manual of Mach3, EMC2 Interface Board CM106 The Manual of Mach3, EMC2 Interface Board CM106 1. Outline This is a Mach3, EMC2 Interface Board. It is linked with Parallel Port attached in PC It was made that each signal of parallel port to be connected

More information

Pulse Width Modulation Applications

Pulse Width Modulation Applications Pulse Width Modulation Applications Lecture 21 EE 383 Microcomputers Learning Objectives What is DTMF? How to use PWM to generate DTMF? How to use PWM to control a servo motor? How to use PWM to control

More information

STEPPER MOTOR SPEED AND POSITION CONTROL

STEPPER MOTOR SPEED AND POSITION CONTROL STEPPER MOTOR SPEED AND POSITION CONTROL Group 8: Subash Anigandla Hemanth Rachakonda Bala Subramanyam Yannam Sri Divya Krovvidi Instructor: Dr. Jens - Peter Kaps ECE 511 Microprocessors Fall Semester

More information

Lab 7: Operational Amplifiers Part I

Lab 7: Operational Amplifiers Part I Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,

More information

Sensors Collecting Manufacturing Process Data

Sensors Collecting Manufacturing Process Data Sensors & Actuators Sensors Collecting Manufacturing Process Data Data must be collected from the manufacturing process Data (commands and instructions) must be communicated to the process Data are of

More information

The Design of DSP controller based DC Servo Motor Control System

The Design of DSP controller based DC Servo Motor Control System International Conference on Advances in Energy and Environmental Science (ICAEES 2015) The Design of DSP controller based DC Servo Motor Control System Haiyan Hu *, Hong Gu, Chunguang Li, Xiaowei Cai and

More information

Using the Motor Controller

Using the Motor Controller The Motor Controller is designed to be a convenient tool for teachers and students who want to use math and science to make thing happen. Mathematical equations are the heart of math, science and technology,

More information

Scripting Language Reference. SimpleBGC 32bit

Scripting Language Reference. SimpleBGC 32bit Scripting Language Reference SimpleBGC 32bit Firmware ver.: 2.5x Updated: 05.08.2015 Overview Scripting language is intended to control a gimbal by user-written program. This program is uploaded to controller

More information

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

More information

AC 2007-2485: PRACTICAL DESIGN PROJECTS UTILIZING COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLD)

AC 2007-2485: PRACTICAL DESIGN PROJECTS UTILIZING COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLD) AC 2007-2485: PRACTICAL DESIGN PROJECTS UTILIZING COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLD) Samuel Lakeou, University of the District of Columbia Samuel Lakeou received a BSEE (1974) and a MSEE (1976)

More information

MAE106 Laboratory Exercises Lab # 3 Open-loop control of a DC motor

MAE106 Laboratory Exercises Lab # 3 Open-loop control of a DC motor MAE106 Laboratory Exercises Lab # 3 Open-loop control of a DC motor University of California, Irvine Department of Mechanical and Aerospace Engineering Goals To understand and gain insight about how a

More information

Ocean Controls RC Servo Motor Controller

Ocean Controls RC Servo Motor Controller Ocean Controls RC Servo Motor Controller RC Servo Motors: RC Servo motors are used in radio-controlled model cars and planes, robotics, special effects, test equipment and industrial automation. At the

More information

ARDUINO BASED POWER METER USING INSTANTANEOUS POWER CALCULATION METHOD

ARDUINO BASED POWER METER USING INSTANTANEOUS POWER CALCULATION METHOD ARDUINO BASED POWER METER USING INSTANTANEOUS POWER CALCULATION METHOD Tiong Meng Chung and Hamdan Daniyal Sustainable Energy & Power Electronics Research Cluster, Faculty of Electrical and Electronic

More information

EDUMECH Mechatronic Instructional Systems. Ball on Beam System

EDUMECH Mechatronic Instructional Systems. Ball on Beam System EDUMECH Mechatronic Instructional Systems Ball on Beam System Product of Shandor Motion Systems Written by Robert Hirsch Ph.D. 998-9 All Rights Reserved. 999 Shandor Motion Systems, Ball on Beam Instructional

More information

Work with Arduino Hardware

Work with Arduino Hardware 1 Work with Arduino Hardware Install Support for Arduino Hardware on page 1-2 Open Block Libraries for Arduino Hardware on page 1-9 Run Model on Arduino Hardware on page 1-12 Tune and Monitor Models Running

More information

How to program a Zumo Robot with Simulink

How to program a Zumo Robot with Simulink How to program a Zumo Robot with Simulink Created by Anuja Apte Last updated on 2015-03-13 11:15:06 AM EDT Guide Contents Guide Contents Overview Hardware Software List of Software components: Simulink

More information

Digital to Analog Conversion Using Pulse Width Modulation

Digital to Analog Conversion Using Pulse Width Modulation Digital to Analog Conversion Using Pulse Width Modulation Samer El-Haj-Mahmoud Electronics Engineering Technology Program Texas A&M University Instructor s Portion Summary The purpose of this lab is to

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Objectives Massachusetts Institute of Technology Robotics: Science and Systems I Lab 1: System Overview and Introduction to the µorcboard Distributed: February 4, 2015, 3:30pm Checkoffs due: February 9,

More information

Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip

Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip Pulse Width Modulation (PWM) LED Dimmer Circuit Using a 555 Timer Chip Goals of Experiment Demonstrate the operation of a simple PWM circuit that can be used to adjust the intensity of a green LED by varying

More information

ETEC 421 - Digital Controls PIC Lab 10 Pulse Width Modulation

ETEC 421 - Digital Controls PIC Lab 10 Pulse Width Modulation ETEC 421 - Digital Controls PIC Lab 10 Pulse Width Modulation Program Definition: Write a program to control the speed of a dc motor using pulse width modulation. Discussion: The speed of a dc motor is

More information

Measuring, Controlling and Regulating with labworldsoft

Measuring, Controlling and Regulating with labworldsoft Kai-Oliver Linde IKA-Werke Staufen Neumagenstraße 27 79219 Staufen Measuring, Controlling and Regulating with labworldsoft Rapid and easy networking of lab devices from different manufacturers The user

More information

DESIGN OF 6 DOF ROBOTIC ARM CONTROLLED OVER THE INTERNET

DESIGN OF 6 DOF ROBOTIC ARM CONTROLLED OVER THE INTERNET DESIGN OF 6 DOF ROBOTIC ARM CONTROLLED OVER THE INTERNET G. Rajiv and Sivakumar Sathyabama University, Chennai, India E-Mail: Rajiv.srkm@gmail.com ABSTRACT The purpose of the project is to build a robotic

More information

Mini-Lab Projects in the Undergraduate Classical Controls Course

Mini-Lab Projects in the Undergraduate Classical Controls Course Mini-Lab Projects in the Undergraduate Classical Controls Course Jeffrey S. Dalton, Daniel S. Stutts, and Robert L. Montgomery University of Missouri-Rolla Rolla, MO 65409 Abstract: To address a common

More information

XY ROBOTIC ARMS LINEAR SERVO SLIDE

XY ROBOTIC ARMS LINEAR SERVO SLIDE XY ROBOTIC ARMS LINEAR SERVO SLIDE Ultimate Solution for High Throughput Precision Positioning Turn-key solution Modular design Direct linear drive High speed Zero backlash Fast settling time Long stroke

More information

ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING EE ELECTRICAL ENGINEERING See beginning of Section H for abbreviations, course numbers and coding. The * denotes labs which are held on alternate weeks. A minimum grade of C is required for all prerequisite

More information

Lab 3: Introduction to Data Acquisition Cards

Lab 3: Introduction to Data Acquisition Cards Lab 3: Introduction to Data Acquisition Cards INTRODUCTION: In this lab, you will be building a VI to display the input measured on a channel. However, within your own VI you will use LabVIEW supplied

More information

Senior Year Project Report Writing Guidelines

Senior Year Project Report Writing Guidelines Senior Year Project Report Writing Guidelines Each student in the ECE-492 Senior Year Project class will be expected to hand in a project report on the day of presenting his/her work in front of a professor

More information

THE EDUCATIONAL IMPACT OF A GANTRY CRANE PROJECT IN AN UNDERGRADUATE CONTROLS CLASS

THE EDUCATIONAL IMPACT OF A GANTRY CRANE PROJECT IN AN UNDERGRADUATE CONTROLS CLASS Proceedings of IMECE: International Mechanical Engineering Congress and Exposition Nov. 7-22, 2002, New Orleans, LA. THE EDUCATIONAL IMPACT OF A GANTRY CRANE PROJECT IN AN UNDERGRADUATE CONTROLS CLASS

More information

A Surveillance Robot with Climbing Capabilities for Home Security

A Surveillance Robot with Climbing Capabilities for Home Security Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 2, Issue. 11, November 2013,

More information

Analog Amplifier Rexroth RA: Easy, user-friendly control of pumps and valves

Analog Amplifier Rexroth RA: Easy, user-friendly control of pumps and valves Electric Drives and Controls Hydraulics Linear Motion and Assembly Technologies Pneumatics Service Analog Amplifier Rexroth RA: Easy, user-friendly control of pumps and valves The Drive & Control Company

More information

LEDs and Sensors: Analog to Digital

LEDs and Sensors: Analog to Digital LEDs and Sensors: Analog to Digital In the last lesson, we used switches to create input for the Arduino, and, via the microcontroller, the inputs controlled our LEDs when playing Simon. In this lesson,

More information

Phil Crowther, Product Management, April 2015 YuMi IRB 14000 Overview

Phil Crowther, Product Management, April 2015 YuMi IRB 14000 Overview Phil Crowther, Product Management, April 2015 YuMi IRB 14000 Overview YuMi: IRB 14000 Agenda Differentiated value proposition Overview and vision Main features Payload Working range Performance and accuracy

More information

Tubular Analog model resolution: 0,5 mm (SLOW mode), 1 mm (FAST mode) Right angle Repeatibility: 0,7 mm Vdc

Tubular Analog model resolution: 0,5 mm (SLOW mode), 1 mm (FAST mode) Right angle Repeatibility: 0,7 mm Vdc Ultrasonic sensors for high precision detection of clear and transparent objects Clear object detection, inspection on transparent or highly reflective film and liquid level measurement Standard M18 tubular

More information

Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research

Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and

More information

PROJECT PRESENTATION ON CELLPHONE OPERATED ROBOTIC ASSISTANT

PROJECT PRESENTATION ON CELLPHONE OPERATED ROBOTIC ASSISTANT PROJECT PRESENTATION ON CELLPHONE OPERATED ROBOTIC ASSISTANT ELECTRONICS ENGINEERING DEPARTMENT SVNIT, SURAT-395007, INDIA Prepared by: Anurag Gupta (U05EC401) Dhrumeel Bakshi (U05EC326) Dileep Dhakal

More information

Data Sheet. Adaptive Design ltd. Arduino Dual L6470 Stepper Motor Shield V1.0. 20 th November 2012. L6470 Stepper Motor Shield

Data Sheet. Adaptive Design ltd. Arduino Dual L6470 Stepper Motor Shield V1.0. 20 th November 2012. L6470 Stepper Motor Shield Arduino Dual L6470 Stepper Motor Shield Data Sheet Adaptive Design ltd V1.0 20 th November 2012 Adaptive Design ltd. Page 1 General Description The Arduino stepper motor shield is based on L6470 microstepping

More information

Talon and Talon SR User Manual

Talon and Talon SR User Manual Talon and Talon SR User Manual Brushed DC motor controller Version 1.3 Cross the Road Electronics, LLC www.crosstheroadelectronics.com Cross The Road Electronics, LLC Page 1 4/2/2013 Device Overview Clear,

More information

Tarot 2-Axis Brushless Gimbal for Gopro User Manual V1.0

Tarot 2-Axis Brushless Gimbal for Gopro User Manual V1.0 Tarot 2-Axis Brushless Gimbal for Gopro User Manual V1.0 1. Introduction Tarot T-2D gimbal is designed for the Gopro Hero3, which is widely used in film, television productions, advertising aerial photography,

More information

EMC6D103S. Fan Control Device with High Frequency PWM Support and Hardware Monitoring Features PRODUCT FEATURES ORDER NUMBERS: Data Brief

EMC6D103S. Fan Control Device with High Frequency PWM Support and Hardware Monitoring Features PRODUCT FEATURES ORDER NUMBERS: Data Brief EMC6D103S Fan Control Device with High Frequency PWM Support and Hardware Monitoring Features PRODUCT FEATURES Data Brief 3.3 Volt Operation (5 Volt Tolerant Input Buffers) SMBus 2.0 Compliant Interface

More information

2/26/2008. Sensors For Robotics. What is sensing? Why do robots need sensors? What is the angle of my arm? internal information

2/26/2008. Sensors For Robotics. What is sensing? Why do robots need sensors? What is the angle of my arm? internal information Sensors For Robotics What makes a machine a robot? Sensing Planning Acting information about the environment action on the environment where is the truck? What is sensing? Sensing is converting a quantity

More information

Electronic Brick of Current Sensor

Electronic Brick of Current Sensor Electronic Brick of Current Sensor Overview What is an electronic brick? An electronic brick is an electronic module which can be assembled like Lego bricks simply by plugging in and pulling out. Compared

More information

Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

More information

10. CNC Hardware Basics

10. CNC Hardware Basics CAD/CAM Principles and Applications 10 CNC Hardware Basics 10-1/10-20 by P.N.Rao 10. CNC Hardware Basics 10.1 Structure of CNC machine tools Table 10.1 Some design criteria for CNC machine tool design

More information

Using Arduino Microcontrollers to Sense DC Motor Speed and Position

Using Arduino Microcontrollers to Sense DC Motor Speed and Position ECE480 Design Team 3 Using Arduino Microcontrollers to Sense DC Motor Speed and Position Tom Manner April 4, 2011 page 1 of 7 Table of Contents 1. Introduction ----------------------------------------------------------

More information

Automation System TROVIS 6400 TROVIS 6493 Compact Controller

Automation System TROVIS 6400 TROVIS 6493 Compact Controller Automation System TROVIS 6400 TROVIS 6493 Compact Controller For panel mounting (front frame 48 x 96 mm/1.89 x 3.78 inch) Application Digital controller to automate industrial and process plants for general

More information

Data Acquisition Using NI-DAQmx

Data Acquisition Using NI-DAQmx Instructor s Portion Data Acquisition Using NI-DAQmx Wei Lin Department of Biomedical Engineering Stony Brook University Summary This experiment requires the student to use NI-DAQmx to acquire voltage

More information

Automated Clay Conditioning for Foundation (ACCF)

Automated Clay Conditioning for Foundation (ACCF) Automated Clay Conditioning for Foundation (ACCF) by Kevin Aldridge ktaldridge@uh.edu Department of Engineering Technology Aron Hodge arhodge@uh.edu Department of Engineering Technology J. Collin Gallagher

More information

Designing Gain and Offset in Thirty Seconds

Designing Gain and Offset in Thirty Seconds Application Report SLOA097 February 2002 Designing Gain and Offset in Thirty Seconds Bruce Carter High Performance Linear ABSTRACT This document discusses how to design an operational amplifier (op amp)

More information

OEM-EP Pressure Controllers

OEM-EP Pressure Controllers Pressure Controllers Typical Applications Carrier Gas Pressure Control Air over Liquid Control Mass Spectrometer Process Gas Supply Pressure Control Miniature ler The Miniature ler converts a variable

More information

Flow Charts and Servomotors (background to Lab #2) Things to learn about: flow charts for design. MECH452 2014 Lecture #2 flow charts & servos rev2

Flow Charts and Servomotors (background to Lab #2) Things to learn about: flow charts for design. MECH452 2014 Lecture #2 flow charts & servos rev2 MECH 452 Lecture #2 Flow Charts and Servomotors (background to Lab #2) 1 2 Handout #2 (highlights, questions) Things to learn about: flow charts for design Only 5 symbols (subroutine not shown) Flow charts

More information

Manufacturing Equipment Modeling

Manufacturing Equipment Modeling QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,

More information

Fundamentals of Signature Analysis

Fundamentals of Signature Analysis Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...

More information

Encoders. the incremental encoders format such as relective optical technology, transmissive optical technology

Encoders. the incremental encoders format such as relective optical technology, transmissive optical technology the incremental encoders format such as relective optical technology, transmissive optical technology back devices, brakes and gearboxes at no extra cost to you. USA: +1 267 933 2105 Europe: +33 20928751

More information

OEM670T/OEM675T OPERATION & BLOCK DIAGRAM

OEM670T/OEM675T OPERATION & BLOCK DIAGRAM EM670/EM675 ➀ Introduction C H A P T E R ➀ Introduction EM670T/EM675T DESCRIPTIN The EM670T/EM675T is a torque servo drive designed to operate standard 3 phase brushless DC servo motors equipped with Hall

More information

The Design of a Low-Cost and Robust Linkage Position Sensor

The Design of a Low-Cost and Robust Linkage Position Sensor The Design of a Low-Cost and Robust Linkage Position Sensor Project Proposal By: Leann Vernon and Phillip Latka Advisor: Dr. Jose Sanchez December 16th, 2013 Table of Contents Introduction 2 Project Description..

More information

Micro-Step Driving for Stepper Motors: A Case Study

Micro-Step Driving for Stepper Motors: A Case Study Micro-Step Driving for Stepper Motors: A Case Study N. Sedaghati-Mokhtari Graduate Student, School of ECE, University of Tehran, Tehran, Iran n.sedaghati @ece.ut.ac.ir Abstract: In this paper, a case study

More information

GENERAL POWER SYSTEM WIRING PRACTICES APPLIED TO TECNADYNE DC BRUSHLESS MOTORS

GENERAL POWER SYSTEM WIRING PRACTICES APPLIED TO TECNADYNE DC BRUSHLESS MOTORS 1/5/2006 Page 1 of 6 GENERAL POWER SYSTEM WIRING PRACTICES APPLIED TO TECNADYNE DC BRUSHLESS MOTORS 1. Introduction The purpose of this application note is to describe some common connection and filtering

More information

Green House Monitoring and Controlling Using Android Mobile Application

Green House Monitoring and Controlling Using Android Mobile Application Green House Monitoring and Controlling Using Android Mobile Application Aji Hanggoro aji.hanggoro@ui.ac.id Mahesa Adhitya Putra mahesa.adhitya91@ui.ac.id Rizki Reynaldo rizki.reynaldo@ui.ac.id Riri Fitri

More information

www.infoplc.net Application case - Solar tracking system

www.infoplc.net Application case - Solar tracking system Application case - Solar tracking system The Solar Energy The industrial development over the past few decades greatly improved the food, clothing, shelters and transportation in the world. However, the

More information

Chapter 20 DAC, DAC AND ANALOG- DIGITAL MIX INTERFACES

Chapter 20 DAC, DAC AND ANALOG- DIGITAL MIX INTERFACES Chapter 20 DAC, DAC AND ANALOG- DIGITAL MIX INTERFACES Lesson 2 DIGITAL TO ANALOG CONVERTER (DAC or D/A) Ch20L2-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline DAC DAC Circuit

More information

Room Temperature based Fan Speed Control System using Pulse Width Modulation Technique

Room Temperature based Fan Speed Control System using Pulse Width Modulation Technique Room Temperature based Fan Speed Control System using Pulse Width Modulation Technique Vaibhav Bhatia Department of Electrical and Electronics Engg., Bhagwan Parshuram Institute of Technology, New Delhi-110089,

More information

HYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS

HYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS Engineering MECHANICS, Vol. 16, 2009, No. 4, p. 287 296 287 HYDRAULIC ARM MODELING VIA MATLAB SIMHYDRAULICS Stanislav Věchet, Jiří Krejsa* System modeling is a vital tool for cost reduction and design

More information

Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015

Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015 Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) The standard tuning values used in ADVANCED Motion Controls drives are conservative and work well in over 90%

More information

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 956 24-BIT DIFFERENTIAL ADC WITH I2C LTC2485 DESCRIPTION

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 956 24-BIT DIFFERENTIAL ADC WITH I2C LTC2485 DESCRIPTION LTC2485 DESCRIPTION Demonstration circuit 956 features the LTC2485, a 24-Bit high performance Σ analog-to-digital converter (ADC). The LTC2485 features 2ppm linearity, 0.5µV offset, and 600nV RMS noise.

More information

Computer Integrated Manufacturing Course Description

Computer Integrated Manufacturing Course Description Computer Integrated Manufacturing Course Description Computer Integrated Manufacturing (CIM) is the study of manufacturing planning, integration, and implementation of automation. The course explores manufacturing

More information

Lab 3 Microcontroller programming Interfacing to Sensors and Actuators with irobot

Lab 3 Microcontroller programming Interfacing to Sensors and Actuators with irobot 1. Objective Lab 3 Microcontroller programming Interfacing to Sensors and Actuators with irobot In this lab, you will: i. Become familiar with the irobot and AVR tools. ii. Understand how to program a

More information

Circuit Board Sensor Products

Circuit Board Sensor Products Circuit Board Sensor Products AG21x-07 Cylinder Position Sensors PCB Assemblies for Pneumatic Cylinder Applications Features: Precision Magnetic Operate Point Three-Wire Current Source or Current Sink

More information

Design and Implementation of an Accidental Fall Detection System for Elderly

Design and Implementation of an Accidental Fall Detection System for Elderly Design and Implementation of an Accidental Fall Detection System for Elderly Enku Yosef Kefyalew 1, Abubakr Rahmtalla Abdalla Mohamed 2 Department of Electronic Engineering, Tianjin University of Technology

More information

8-bit Digital to Analog converter (DAC)

8-bit Digital to Analog converter (DAC) 8-bit Digital to Analog converter (DAC) Posted on February 28, 2008, by Ibrahim KAMAL, in General electronics, tagged This article aims to introduce to beginners and intermediate readers a simple solution

More information

Development of the Induction Motor for Machine Tool Spindles and Servo Amplifier SANMOTION S

Development of the Induction Motor for Machine Tool Spindles and Servo Amplifier SANMOTION S New Products Introduction Development of the Induction Motor for Machine Tool Spindles and Servo Amplifier SANMOTION S Takashi Sekiguchi Masahiro Kidou Yuusuke Shimura Yuji Ide Masahisa Koyama Michio Kitahara

More information

Display Board Pulse Width Modulation (PWM) Power/Speed Controller Module

Display Board Pulse Width Modulation (PWM) Power/Speed Controller Module Display Board Pulse Width Modulation (PWM) Power/Speed Controller Module RS0 Microcontroller LEDs Motor Control Pushbuttons Purpose: To demonstrate an easy way of using a Freescale RS0K2 microcontroller

More information

Design and Implementation of a 4-Bar linkage Gripper

Design and Implementation of a 4-Bar linkage Gripper IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 5 Ver. IV (Sep- Oct. 2014), PP 61-66 Design and Implementation of a 4-Bar linkage Gripper

More information