Review Horse Race Gambling and Side Information Dependent horse races and the entropy rate. Gambling. Besma Smida. ES250: Lecture 9.

Save this PDF as:

Size: px
Start display at page:

Download "Review Horse Race Gambling and Side Information Dependent horse races and the entropy rate. Gambling. Besma Smida. ES250: Lecture 9."

Transcription

1 Gambling Besma Smida ES250: Lecture 9 Fall B. Smida (ES250) Gambling Fall / 23

2 Today s outline Review of Huffman Code and Arithmetic Coding Horse Race Gambling and Side Information Dependent horse races and the entropy rate B. Smida (ES250) Gambling Fall / 23

3 Existence of a particular optimal code Lemma: Existence of a particular optimal code For any distribution, there exists an optimal instantaneous code (with minimum expected length) that satisfies the following properties: 1 The lengths are ordered inversely with the probabilities (i.e., if p j > p k, then l j l k ). 2 The two longest codewords have the same length. 3 Two of the longest codewords differ only in the last bit and correspond to the two least likely symbols. B. Smida (ES250) Gambling Fall / 23

4 Huffman Code Huffman Code A code which satisfies the properties stated in the above lemma is called an Huffman code. It can be obtained by repeatedly merging the last two symbols, assigning to them the last codeword minus the last bit, and reordering the symbols in order to have non-increasing probabilities. Theorem: Optimality of Huffman coding Huffman coding is optimal; that is, if C is a Huffman code and C is any other uniquely decodable code, then L(C ) L(C ). B. Smida (ES250) Gambling Fall / 23

5 Huffman: Good and Bad Good Bad Shortest possible symbol code H D (X) L H H D (X) + 1 Redundancy of up to 1 bit per symbol Expensive if H(X) is small Less sf you use a block of N symbols Redundancy equals 0 iff distribution is D-adic Must recompute entire code if any symbol probability changes A block of N symbols needs X N pre-calculated probabilities B. Smida (ES250) Gambling Fall / 23

6 Arithmetic Coding Based on Shannon-Fano-Elias code. Let X = {0, 1}. Let us use the above idea. if x n = (x 1, x 2,..., x n ) X n. We need to calculate F(x n ) and l(x n ) = log 1 p(x n ) + 1 B. Smida (ES250) Gambling Fall / 23

7 Computing F(x n ) Note that if we have computed F(x n ) for every x n, it is easy to compute F(x n+1 ) for every x n+1. In fact, { F(x n+1 ) = F(x n F(x, x n+1 ) = n ) + p(x n, 0) if x n+1 = 1 F(x n ) if x n+1 = 0 Thus encoding can be done sequentially. This procedure is efficient provided that p(x n ) can be efficiently computed (iid and Markov). B. Smida (ES250) Gambling Fall / 23

8 Horse Race We assume m horses run in a race. Let the i-th horse win with probability p i. If horse i wins, the payoff is for 1. The gambler distributes all his wealth across the horses b i 0 and i b i = 1. At the end of the race, the gambler will have multiplied his wealth by a factor b i and this will happen with probability p i. Then the resulting wealth relative is S(X) = b(x)o(x), with probability p(x). Repeat gambles n times. Let S n be the gambler s wealth after n races, then S n = n S(X i ) i=1 B. Smida (ES250) Gambling Fall / 23

9 Doubling Rate Definition: doubling rate The doubling rate of a horse race is Theorem: W(b,p) = E[logS(X)] = m p k log b k o k Let the race outcomes X 1, X 2, be i.i.d. p(x). Then the wealth of the gambler using betting strategy b grows exponentially at rate W(b,p); that is, S n. = 2 nw(b,p) k=1 B. Smida (ES250) Gambling Fall / 23

10 Proof Let S n be the gambler s wealth after n races, then Hence, S n = n S(X i ). i=1 1 n logs n = 1 n n log S(X i ). i=1 Then, by the weak law of larger numbers, Thus, S n. = 2 nw(b,p). 1 n log S n E(log S(X)), B. Smida (ES250) Gambling Fall / 23

11 Optimum doubling rate Definition: The optimum doubling rate W (p) is the maximum doubling rate over all choices of the portfolio b: W (p) = maxw(b,p) = b Theorem: proportional gambling is log-optimal the optimal doubling rate is given by max b:b i 0, i bi=1 m p i log b i i=1 W (p) = p i log H(p) and is achieved by the proportional gambling scheme b = p. B. Smida (ES250) Gambling Fall / 23

12 Proof Goal: Maximize W(b,p) as a function of b subject to the constraint bi = 1. We change the base of the logarithm constraints and use the Lagrange multiplier J(b) = p i ln b i + λ b i, and J b i = pi b i + λ for i = 1, 2,...,m. If you set J b i = 0, we have b i = pi λ. Substituting this in the constraint b i = 1 yields b i = p i B. Smida (ES250) Gambling Fall / 23

13 Proof We rewrite the function W(b,p) as: W(b,p) = p i log b i = p i log b i p i p i = p i log H(p) D(p b) p i log H(p) with equality iff p = b (i.e., the gambler bets on each horse in proportion to its probability of winning). B. Smida (ES250) Gambling Fall / 23

14 Example 1 The case of 3 horses with probability to win p 1 = 1 2 and p 2 = p 3 = 1 4. We also assume uniform fair odds (3 for 1). Then the optimum bet is proportional betting (b 1 = p 1, b 2 = p 2, and b 3 = p 3 ). The optimal doubling rate is W (p) = p i log H(p) = log 3 H( 1 2, 1 4, 1 4 ) = 0.085, and the resulting wealth grows tnfinity S n. = 2 n0.085 = (1.06) n. If we put all the money on the first horse, then the probability that we do not go broke in n races is 1 2n. Since this probability goes to zero with n, we go broke with probability 1. if b(1, 0, 0), then W(b) = and S n. = 2 nw = 0. B. Smida (ES250) Gambling Fall / 23

15 Example 2 The case of fair odds with respect to some distribution (i.e. 1 = 1). Let r i = 1, then we can write the doubling rate as: W(b,p) = p i log b i = p i log b i p i p i r i = D(p r) D(p b) B. Smida (ES250) Gambling Fall / 23

16 Conservation theorem Theorem: Conservation theorem For uniform fair odds, W (p) + H(p) = log m Thus, the sum of the doubling rate and the entropy rate is a constant. Proof: We assume uniform fair odds : = 1 m. Hence the optimum doubling rate is W (p) = D(p 1 ) = log m H(p). m B. Smida (ES250) Gambling Fall / 23

17 The optimum strategy with cash option The optimum strategy depends on the odds and will not necessarily have the simple form of proportional gambling. There are three cases: 1 Fair odds with respect to some distribution: 1 = 1. By betting b i = 1, one achieves S(X) = 1. Proportional betting is optimal. 2 Superfair odds: 1 < 1. By choosing b i = c 1, where c = 1/ 1, one has S(X) = 1/ 1 > 1 with probability 1. In this case, the optimum strategy is proportional betting. 3 Subfair odds: 1 > 1. Proportional gambling is no longer log-optimal. The optimal strategy for this case can be found using water-filling interpretation with Kuhn-Tucker conditions. B. Smida (ES250) Gambling Fall / 23

18 Sketch of Proof (Relative Entropy) We want to maximize the expected log return W(b,p) = m p i log(b 0 + b i ) i=1 Let try express W(b,p) as a sum of relative entropies: W(b,p) = = = m p i log(b 0 + b i ) = i=1 m p i log i=1 ( b0 + b i p i p i 1 ) ( m b0 ) o p i log i + b i 1 i=1 m p i log p i + log K D(p r). i=1 where K = ( b0 + b i ) = b 0 ( 1 1) + 1 and r i = b 0 oi +b i K. B. Smida (ES250) Gambling Fall / 23

19 Sketch of Proof (Relative Entropy) 1 Fair odds with respect to some distribution: 1 = 1. K = 1, In this case, setting b 0 = 0 and b i = p i would imply that r i = p i and hence D(p r) = 0. Proportional betting is optimal. 2 Superfair odds: 1 < 1. Examining the expression of K, we see that K is maximized for b 0 = 0. In this case, setting b 0 = 0 and b i = p i would imply that D(p r) = 0. In this case, the optimum strategy is proportional betting. 3 Subfair odds: 1 > 1. The argument breaks down. Looking at the expression of for K, we see that it is maximized for b 0 = 1. However, we cannot simultaneously minimize D(p r). The optimal strategy for this case can be found using water-filling interpretation with Kuhn-Tucker conditions. B. Smida (ES250) Gambling Fall / 23

20 Gambling and Side Information Definition: The increase W is defined as: W = W (X Y ) W (X), where W (X) = max b(x) W (X Y ) = max b(x y) p(x) log b(x)o(x) x p(x, y)log b(x y)o(x) x,y Theorem: The increase W in doubling rate due to side information Y for a horse race X is W = I(X; Y ) B. Smida (ES250) Gambling Fall / 23

21 Proof With side information, the maximum value of W (X Y ) with side information Y is achieved by conditionally proportional gambling [i.e. b (x y) = p(x y)]. Thus W (X Y ) = max E[log S] = max b(x y) b(x y) = x,y p(x, y)log b(x y)o(x) x,y p(x, y)log p(x y)o(x) = x p(x)log o(x) H(X Y ). Without side information, the optimal doubling rate is W (X) = max p(x)log b(x)o(x) = p(x)log o(x) H(X). b(x) x x Thus, the increase in doubling rate due to the presence of side side information Y is W = W (X Y ) W (X) = I(X; Y ). B. Smida (ES250) Gambling Fall / 23

22 Dependent horse races and the entropy rate For a stochastic process of the sequence {X k }: The optimal doubling rate for uniform fair odds (m for 1) is, W (X k X k 1, X k 2,, X 1 ) = logm H(X k X k 1, X k 2,, X 1 ), which is achieved by b (x k x k 1,, x 1 ) = p(x k x k 1,, x 1 ). and the exponent in the growth rate is, 1 n E[log S n] = logm H(X 1,, X n ) n B. Smida (ES250) Gambling Fall / 23

23 Stationary process For stationary process with entropy rate H(X), the limit yields 1 lim n n E log S n + H(X) = log m Again, we have the results that the entropy plus the doubling rate is a constant. B. Smida (ES250) Gambling Fall / 23

Gambling and Data Compression

Gambling and Data Compression Gambling. Horse Race Definition The wealth relative S(X) = b(x)o(x) is the factor by which the gambler s wealth grows if horse X wins the race, where b(x) is the fraction

National Sun Yat-Sen University CSE Course: Information Theory. Gambling And Entropy

Gambling And Entropy 1 Outline There is a strong relationship between the growth rate of investment in a horse race and the entropy of the horse race. The value of side information is related to the mutual

Gambling with Information Theory

Gambling with Information Theory Govert Verkes University of Amsterdam January 27, 2016 1 / 22 How do you bet? Private noisy channel transmitting results while you can still bet, correct transmission(p)

On Directed Information and Gambling

On Directed Information and Gambling Haim H. Permuter Stanford University Stanford, CA, USA haim@stanford.edu Young-Han Kim University of California, San Diego La Jolla, CA, USA yhk@ucsd.edu Tsachy Weissman

On Adaboost and Optimal Betting Strategies

On Adaboost and Optimal Betting Strategies Pasquale Malacaria School of Electronic Engineering and Computer Science Queen Mary, University of London Email: pm@dcs.qmul.ac.uk Fabrizio Smeraldi School of

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

Gambling and Portfolio Selection using Information theory

Gambling and Portfolio Selection using Information theory 1 Luke Vercimak University of Illinois at Chicago E-mail: lverci2@uic.edu Abstract A short survey is given of the applications of information theory

Exercises with solutions (1)

Exercises with solutions (). Investigate the relationship between independence and correlation. (a) Two random variables X and Y are said to be correlated if and only if their covariance C XY is not equal

Review for Calculus Rational Functions, Logarithms & Exponentials

Definition and Domain of Rational Functions A rational function is defined as the quotient of two polynomial functions. F(x) = P(x) / Q(x) The domain of F is the set of all real numbers except those for

Part I. Gambling and Information Theory. Information Theory and Networks. Section 1. Horse Racing. Lecture 16: Gambling and Information Theory

and Networks Lecture 16: Gambling and Paul Tune http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/ Part I Gambling and School of Mathematical

Chapter 7: Proportional Play and the Kelly Betting System

Chapter 7: Proportional Play and the Kelly Betting System Proportional Play and Kelly s criterion: Investing in the stock market is, in effect, making a series of bets. Contrary to bets in a casino though,

A New Interpretation of Information Rate

A New Interpretation of Information Rate reproduced with permission of AT&T By J. L. Kelly, jr. (Manuscript received March 2, 956) If the input symbols to a communication channel represent the outcomes

Betting rules and information theory

Betting rules and information theory Giulio Bottazzi LEM and CAFED Scuola Superiore Sant Anna September, 2013 Outline Simple betting in favorable games The Central Limit Theorem Optimal rules The Game

An Introduction to Information Theory

An Introduction to Information Theory Carlton Downey November 12, 2013 INTRODUCTION Today s recitation will be an introduction to Information Theory Information theory studies the quantification of Information

arxiv:1112.0829v1 [math.pr] 5 Dec 2011

How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly

Solving Exponential Equations

Solving Exponential Equations Deciding How to Solve Exponential Equations When asked to solve an exponential equation such as x + 6 = or x = 18, the first thing we need to do is to decide which way is

Alternative proof for claim in [1]

Alternative proof for claim in [1] Ritesh Kolte and Ayfer Özgür Aydin The problem addressed in [1] is described in Section 1 and the solution is given in Section. In the proof in [1], it seems that obtaining

The Mathematics of Gambling

The Mathematics of Gambling with Related Applications Madhu Advani Stanford University April 12, 2014 Madhu Advani (Stanford University) Mathematics of Gambling April 12, 2014 1 / 23 Gambling Gambling:

Goal Problems in Gambling and Game Theory. Bill Sudderth. School of Statistics University of Minnesota

Goal Problems in Gambling and Game Theory Bill Sudderth School of Statistics University of Minnesota 1 Three problems Maximizing the probability of reaching a goal. Maximizing the probability of reaching

A Quantitative Measure of Relevance Based on Kelly Gambling Theory

A Quantitative Measure of Relevance Based on Kelly Gambling Theory Mathias Winther Madsen ILLC, University of Amsterdam Defining a good concept of relevance is a key problem in all disciplines that theorize

Week 4: Gambler s ruin and bold play

Week 4: Gambler s ruin and bold play Random walk and Gambler s ruin. Imagine a walker moving along a line. At every unit of time, he makes a step left or right of exactly one of unit. So we can think that

The Kelly Betting System for Favorable Games.

The Kelly Betting System for Favorable Games. Thomas Ferguson, Statistics Department, UCLA A Simple Example. Suppose that each day you are offered a gamble with probability 2/3 of winning and probability

Maximum Entropy. Information Theory 2013 Lecture 9 Chapter 12. Tohid Ardeshiri. May 22, 2013

Maximum Entropy Information Theory 2013 Lecture 9 Chapter 12 Tohid Ardeshiri May 22, 2013 Why Maximum Entropy distribution? max f (x) h(f ) subject to E r(x) = α Temperature of a gas corresponds to the

arxiv:math/0412362v1 [math.pr] 18 Dec 2004

Improving on bold play when the gambler is restricted arxiv:math/0412362v1 [math.pr] 18 Dec 2004 by Jason Schweinsberg February 1, 2008 Abstract Suppose a gambler starts with a fortune in (0, 1) and wishes

The Kelly criterion for spread bets

IMA Journal of Applied Mathematics 2007 72,43 51 doi:10.1093/imamat/hxl027 Advance Access publication on December 5, 2006 The Kelly criterion for spread bets S. J. CHAPMAN Oxford Centre for Industrial

14.451 Lecture Notes 10

14.451 Lecture Notes 1 Guido Lorenzoni Fall 29 1 Continuous time: nite horizon Time goes from to T. Instantaneous payo : f (t; x (t) ; y (t)) ; (the time dependence includes discounting), where x (t) 2

Information Theory and Stock Market

Information Theory and Stock Market Pongsit Twichpongtorn University of Illinois at Chicago E-mail: ptwich2@uic.edu 1 Abstract This is a short survey paper that talks about the development of important

Reading.. IMAGE COMPRESSION- I IMAGE COMPRESSION. Image compression. Data Redundancy. Lossy vs Lossless Compression. Chapter 8.

Reading.. IMAGE COMPRESSION- I Week VIII Feb 25 Chapter 8 Sections 8.1, 8.2 8.3 (selected topics) 8.4 (Huffman, run-length, loss-less predictive) 8.5 (lossy predictive, transform coding basics) 8.6 Image

Betting with the Kelly Criterion

Betting with the Kelly Criterion Jane June 2, 2010 Contents 1 Introduction 2 2 Kelly Criterion 2 3 The Stock Market 3 4 Simulations 5 5 Conclusion 8 1 Page 2 of 9 1 Introduction Gambling in all forms,

Decision Theory. 36.1 Rational prospecting

36 Decision Theory Decision theory is trivial, apart from computational details (just like playing chess!). You have a choice of various actions, a. The world may be in one of many states x; which one

HOMEWORK 4 SOLUTIONS. All questions are from Vector Calculus, by Marsden and Tromba

HOMEWORK SOLUTIONS All questions are from Vector Calculus, by Marsden and Tromba Question :..6 Let w = f(x, y) be a function of two variables, and let x = u + v, y = u v. Show that Solution. By the chain

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

Economics 2020a / HBS 4010 / HKS API-111 FALL 2010 Solutions to Practice Problems for Lectures 1 to 4

Economics 00a / HBS 4010 / HKS API-111 FALL 010 Solutions to Practice Problems for Lectures 1 to 4 1.1. Quantity Discounts and the Budget Constraint (a) The only distinction between the budget line with

The Cost of Offline Binary Search Tree Algorithms and the Complexity of the Request Sequence

The Cost of Offline Binary Search Tree Algorithms and the Complexity of the Request Sequence Jussi Kujala, Tapio Elomaa Institute of Software Systems Tampere University of Technology P. O. Box 553, FI-33101

SOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION. School of Mathematical Sciences. Monash University, Clayton, Victoria, Australia 3168

SOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION Ravi PHATARFOD School of Mathematical Sciences Monash University, Clayton, Victoria, Australia 3168 In this paper we consider the problem of gambling with

A Note on Proebsting s Paradox

A Note on Proebsting s Paradox Leonid Pekelis March 8, 2012 Abstract Proebsting s Paradox is two-stage bet where the naive Kelly gambler (wealth growth rate maximizing) can be manipulated in some disconcertingly

Betting on Excel to enliven the teaching of probability

Betting on Excel to enliven the teaching of probability Stephen R. Clarke School of Mathematical Sciences Swinburne University of Technology Abstract The study of probability has its roots in gambling

Wald s Identity. by Jeffery Hein. Dartmouth College, Math 100

Wald s Identity by Jeffery Hein Dartmouth College, Math 100 1. Introduction Given random variables X 1, X 2, X 3,... with common finite mean and a stopping rule τ which may depend upon the given sequence,

Fund Manager s Portfolio Choice

Fund Manager s Portfolio Choice Zhiqing Zhang Advised by: Gu Wang September 5, 2014 Abstract Fund manager is allowed to invest the fund s assets and his personal wealth in two separate risky assets, modeled

Inverses and powers: Rules of Matrix Arithmetic

Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3

3. Exponential and Logarithmic functions

3. ial and s ial and ic... 3.1. Here are a few examples to remind the reader of the definitions and laws for expressions involving exponents: 2 3 = 2 2 2 = 8, 2 0 = 1, 2 1 = 1 2, 2 3 = 1 2 3 = 1 8, 9 1/2

Gambling Systems and Multiplication-Invariant Measures

Gambling Systems and Multiplication-Invariant Measures by Jeffrey S. Rosenthal* and Peter O. Schwartz** (May 28, 997.. Introduction. This short paper describes a surprising connection between two previously

LECTURE 4. Last time: Lecture outline

LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises

CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =

Analogy Between Gambling and. Measurement-Based Work Extraction

Analogy Between Gambling and 1 Measurement-Based Work Extraction Dror A. Vinkler, Haim H. Permuter and Neri Merhav Abstract arxiv:144.6788v1 [cs.it] 27 Apr 214 In information theory, one area of interest

Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents

Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents William H. Sandholm January 6, 22 O.. Imitative protocols, mean dynamics, and equilibrium selection In this section, we consider

6.042/18.062J Mathematics for Computer Science December 12, 2006 Tom Leighton and Ronitt Rubinfeld. Random Walks

6.042/8.062J Mathematics for Comuter Science December 2, 2006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Random Walks Gambler s Ruin Today we re going to talk about one-dimensional random walks. In

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

Chapter 7 Outline Math 236 Spring 2001

Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

How to Gamble If You Must

How to Gamble If You Must Kyle Siegrist Department of Mathematical Sciences University of Alabama in Huntsville Abstract In red and black, a player bets, at even stakes, on a sequence of independent games

Lecture 25: Money Management Steven Skiena. http://www.cs.sunysb.edu/ skiena

Lecture 25: Money Management Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Money Management Techniques The trading

. (3.3) n Note that supremum (3.2) must occur at one of the observed values x i or to the left of x i.

Chapter 3 Kolmogorov-Smirnov Tests There are many situations where experimenters need to know what is the distribution of the population of their interest. For example, if they want to use a parametric

eday Lessons HSCC Precalculus Logarithims F-LE 4, BF-B 5 11/2014 E-Lesson 1

eday Lessons HSCC Precalculus Logarithims F-LE 4, BF-B 5 11/2014 E-Lesson 1 Enclosed are the E-Day assignments required to make up the 3 calamity days missed during the 2014-2015 school year for High School

Chapter 4. Growth Optimal Portfolio Selection with Short Selling and Leverage

Chapter 4 Growth Optimal Portfolio Selection with Short Selling Leverage Márk Horváth András Urbán Department of Computer Science Information Theory Budapest University of Technology Economics. H-7 Magyar

Chapter 8. Exponential and Logarithmic Functions

Chapter 8 Exponential and Logarithmic Functions This unit defines and investigates exponential and logarithmic functions. We motivate exponential functions by their similarity to monomials as well as their

Lecture 15. Ranking Payoff Distributions: Stochastic Dominance. First-Order Stochastic Dominance: higher distribution

Lecture 15 Ranking Payoff Distributions: Stochastic Dominance First-Order Stochastic Dominance: higher distribution Definition 6.D.1: The distribution F( ) first-order stochastically dominates G( ) if

Lecture 11 Uncertainty

Lecture 11 Uncertainty 1. Contingent Claims and the State-Preference Model 1) Contingent Commodities and Contingent Claims Using the simple two-good model we have developed throughout this course, think

פרויקט מסכם לתואר בוגר במדעים )B.Sc( במתמטיקה שימושית

המחלקה למתמטיקה Department of Mathematics פרויקט מסכם לתואר בוגר במדעים )B.Sc( במתמטיקה שימושית הימורים אופטימליים ע"י שימוש בקריטריון קלי אלון תושיה Optimal betting using the Kelly Criterion Alon Tushia

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

Auctioning Keywords in Online Search

Auctioning Keywords in Online Search Jianqing Chen The Uniersity of Calgary iachen@ucalgary.ca De Liu Uniersity of Kentucky de.liu@uky.edu Andrew B. Whinston Uniersity of Texas at Austin abw@uts.cc.utexas.edu

THE CENTRAL LIMIT THEOREM TORONTO

THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................

9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

i is a root of the quadratic equation.

13 14 SEMESTER EXAMS 1. This question assesses the student s understanding of a quadratic function written in vertex form. y a x h k where the vertex has the coordinates V h, k a) The leading coefficient

Section 1. Logarithms

Worksheet 2.7 Logarithms and Exponentials Section 1 Logarithms The mathematics of logarithms and exponentials occurs naturally in many branches of science. It is very important in solving problems related

Compressing Forwarding Tables for Datacenter Scalability

TECHNICAL REPORT TR12-03, TECHNION, ISRAEL 1 Compressing Forwarding Tables for Datacenter Scalability Ori Rottenstreich, Marat Radan, Yuval Cassuto, Isaac Keslassy, Carmi Arad, Tal Mizrahi, Yoram Revah

1 Portfolio Selection

COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture # Scribe: Nadia Heninger April 8, 008 Portfolio Selection Last time we discussed our model of the stock market N stocks start on day with

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

SOLVING POLYNOMIAL EQUATIONS

C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

MATH 34A REVIEW FOR MIDTERM 2, WINTER 2012. 1. Lines. (1) Find the equation of the line passing through (2,-1) and (-2,9). y = 5

MATH 34A REVIEW FOR MIDTERM 2, WINTER 2012 ANSWERS 1. Lines (1) Find the equation of the line passing through (2,-1) and (-2,9). y = 5 2 x + 4. (2) Find the equation of the line which meets the x-axis

THIS paper deals with a situation where a communication

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 3, MAY 1998 973 The Compound Channel Capacity of a Class of Finite-State Channels Amos Lapidoth, Member, IEEE, İ. Emre Telatar, Member, IEEE Abstract

APPLICATIONS OF THE ORDER FUNCTION

APPLICATIONS OF THE ORDER FUNCTION LECTURE NOTES: MATH 432, CSUSM, SPRING 2009. PROF. WAYNE AITKEN In this lecture we will explore several applications of order functions including formulas for GCDs and

constraint. Let us penalize ourselves for making the constraint too big. We end up with a

Chapter 4 Constrained Optimization 4.1 Equality Constraints (Lagrangians) Suppose we have a problem: Maximize 5, (x 1, 2) 2, 2(x 2, 1) 2 subject to x 1 +4x 2 =3 If we ignore the constraint, we get the

Practice with Proofs

Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.

FUNDAMENTALS of INFORMATION THEORY and CODING DESIGN

DISCRETE "ICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN FUNDAMENTALS of INFORMATION THEORY and CODING DESIGN Roberto Togneri Christopher J.S. desilva CHAPMAN & HALL/CRC A CRC Press Company Boca

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Copyright Cengage Learning. All rights reserved. What You Should Learn Recognize and evaluate logarithmic functions with base a. Graph logarithmic functions.

Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

Bond Price Arithmetic

1 Bond Price Arithmetic The purpose of this chapter is: To review the basics of the time value of money. This involves reviewing discounting guaranteed future cash flows at annual, semiannual and continuously

it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

Functions and Equations

Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

Readings. D Chapter 1. Lecture 2: Constrained Optimization. Cecilia Fieler. Example: Input Demand Functions. Consumer Problem

Economics 245 January 17, 2012 : Example Readings D Chapter 1 : Example The FOCs are max p ( x 1 + x 2 ) w 1 x 1 w 2 x 2. x 1,x 2 0 p 2 x i w i = 0 for i = 1, 2. These are two equations in two unknowns,

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

Probability Generating Functions

page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge,

The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints

Lossy Common Information of Two Dependent Random Variables

01 IEEE International Symposium on Information Theory Proceedings Lossy Common Information of Two Dependent Random Variables Kumar Viswanatha, Emrah Akyol and Kenneth Rose ECE Department, University of

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

2. How is a fund manager motivated to behave with this type of renumeration package?

MØA 155 PROBLEM SET: Options Exercise 1. Arbitrage [2] In the discussions of some of the models in this course, we relied on the following type of argument: If two investment strategies have the same payoff

Universal hashing. In other words, the probability of a collision for two different keys x and y given a hash function randomly chosen from H is 1/m.

Universal hashing No matter how we choose our hash function, it is always possible to devise a set of keys that will hash to the same slot, making the hash scheme perform poorly. To circumvent this, we

Solving Logarithmic Equations

Solving Logarithmic Equations Deciding How to Solve Logarithmic Equation When asked to solve a logarithmic equation such as log (x + 7) = or log (7x + ) = log (x + 9), the first thing we need to decide

Influences in low-degree polynomials

Influences in low-degree polynomials Artūrs Bačkurs December 12, 2012 1 Introduction In 3] it is conjectured that every bounded real polynomial has a highly influential variable The conjecture is known

Information Theoretic Analysis of Proactive Routing Overhead in Mobile Ad Hoc Networks

Information Theoretic Analysis of Proactive Routing Overhead in obile Ad Hoc Networks Nianjun Zhou and Alhussein A. Abouzeid 1 Abstract This paper considers basic bounds on the overhead of link-state protocols

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

RN-Codings: New Insights and Some Applications

RN-Codings: New Insights and Some Applications Abstract During any composite computation there is a constant need for rounding intermediate results before they can participate in further processing. Recently

Exam Introduction Mathematical Finance and Insurance

Exam Introduction Mathematical Finance and Insurance Date: January 8, 2013. Duration: 3 hours. This is a closed-book exam. The exam does not use scrap cards. Simple calculators are allowed. The questions