midas Gen One Stop Solution for Building and General Structures Pushover Analysis
|
|
|
- Florence McLaughlin
- 9 years ago
- Views:
Transcription
1 midas Gen Pushover Analysis
2 Webinar Schedule Topics Presenter Date February Basic Product & General Use Yaman 2/14, Tue Advanced Concrete Building Design (Beam, Column, Wall, Slab) Ravi 2/28, Tue March Basic Product & General Use Yaman 3/13, Tue Advanced Steel Structure Design Ravi 3/27, Tue April Basic Product & General Use Yaman 4/10, Tue Advanced Pushover Analysis Ravi 4/24, Tue May Basic Product & General Use Yaman 5/15, Tue Advanced Time History Analysis Ravi 5/29, Tue June Basic Product & General Use Yaman 6/12, Tue Advanced Construction Stage Analysis & Column Shortening Ravi 6/26, Tue
3 midas Gen Pushover Analysis Webinar Objective Methods of Analysis for Earthquake Resistant Structures to Pushover Analysis Pushover Analysis of RC Building Pushover Analysis of Steel Building Conclusion
4 Objective 1. to Pushover Analysis. 2. Discussion of Features available in midas Gen for Pushover Analysis. 3. Live demonstration of performing pushover analysis and interpretation of results. 4. At the conclusion of the webinar attendees will be familiar with pushover analysis and midas Gen applicability to it.
5 midas Gen Pushover Analysis Webinar Objective Methods of Analysis for Earthquake Resistant Structures to Pushover Analysis Pushover Analysis of RC Building Pushover Analysis of Steel Building Conclusion
6 Methods of Analysis for Earthquake Resistance Structures Design Methods Force Based Design Elastic Response Acceleration is determined form the estimated structural period and given design elastic response spectrum. Modified design acceleration is obtained by dividing the Elastic Response Acceleration by Response Reduction Factor (R) Design Force is calculated using modified design acceleration. Displacement Check is made after the structural members satisfy the Force requirements. Problems :- The distribution of design forces are based on initial estimate of stiffness and as stiffness is dependent on the strength of elements, this cannot be know until the design process is complete. Distribution of seismic forces between elements based on initial stiffness is illogical, as it incorrectly assumes different elements can be forced to yield simultaneously. Ductility capacity is a function of structural geometry, not just of structural type. Hence it is inappropriate to specify a same displacement ductility factor for all structures of the same type.
7 Methods of Analysis for Earthquake Resistance Structures Design Methods Performance Based Design/ Displacement Based Design Importance of deformation rather than strength in seismic performance is gaining more popularity in recent times due to the deficiencies inherent in the force-based system of seismic design. The design is carried out by specifying a target displacement. There is no need to use a force reduction factor The inelastic nature of the structure during a earthquake is directly addressed. Displacement based design procedure can provide a reliable indication of damage potential.
8 Methods of Analysis for Earthquake Resistance Structures Analysis Methods Linear Nonlinear Static Dynamic Static Dynamic Equivalent Lateral Load Small Displacement Response Spectrum Analysis Small Displacement Equivalent Lateral Load Small or Large Displacement Nonlinear Response History Analysis Small or Large Displacement Linear Response History Analysis Small Displacement Sequential Yield Analysis Pushover Analysis
9 midas Gen Pushover Analysis Webinar Objective Methods of Analysis for Earthquake Resistant Structures to Pushover Analysis Pushover Analysis of RC Building Pushover Analysis of Steel Building Conclusion
10 Why Pushover Analysis Pushover Analysis in the recent years is becoming a popular method of predicting seismic forces and deformation demands for the purpose of performance evaluation of existing and new structures. Pushover analysis is a partial and relatively simple intermediate solution to the complex problem of predicting force and deformation demands imposed on structures and their elements by severe ground motion. Pushover analysis is one of the analysis methods recommended by Eurocode and FEMA 273.
11 Why Pushover Analysis Pushover analysis provides valuable insights on many response characteristics like Force Demand on Potentially brittle elements. Consequences of strength deterioration of individual elements on structural behavior. Identification of critical regions in which the deformation demands are expected to be high and that have to become the focus of through detailing. Identification of strength discontinuities in plan or elevation that will lead to changes in dynamic characteristics in the inelastic region. Verification of completeness and adequacy of load path, considering all structural and non structural elements of the structural system.
12 What is Pushover Analysis - Is a technique by which a structure is subjected to a incremental lateral load of certain shape. - The sequence of cracks, yielding, plastic hinge formation and failure of various structural components are noted. - The structural deficiencies are observed and rectified. - The iterative analysis and design goes on until the design satisfies a pre-established criteria. - The performance criteria is generally defined as Target displacement of the structure at roof level.
13 Performance Level - Performance Level is defined as the expected behavior of the building in the design earthquake in terms of limiting levels of damage to the structural and nonstructural components - The limiting condition is described by the physical damage within the building, the threat to life safety of the building s occupants created by the damage, and the post earthquake serviceability of the building.
14 Performance Level Operational Level This is the performance level related to functionality and any required repairs are minor. Immediate Occupancy level This corresponds to the most widely used criteria for essential facilities. The building s spaces and systems are expected to be reasonably usable Life Safety Level This level is intended to achieve a damage state that presents an extremely low probability of threat to life safety, either from structural damage or from falling or tipping of nonstructural building component Collapse Prevention Level This damage state addresses only the main building frame or vertical load carrying system and requires only stability under vertical loads.
15 Seismic hazard Seismic Hazard is a function of - The Building Performance level - The Mapped Acceleration Parameters - The Site Class Coefficients - The Effective structural damping - The fundamental Structural Period The general response spectrum is formulated
16 Target Displacement The Target displacement is calculated by d t = C 0 C 1 C 2 C 3 S a T e2 g/4p 2 where: C 0 = Modification factor for SDOF MDOF C 1 = Modification Factor to relate expected maximum inelastic displacements to displacements calculated for liner elastic response C 2 = Modification factor to represent the effect of hysteresis shape on the maximum displacement response C 3 = Modification Factor to represent increased displacements due to dynamic P- effects. S a = Response spectrum acceleration T e = Characteristic period of the response spectrum.
17 Reasons for Performing Pushover Analysis Why Pushover Analysis over Nonlinear Dynamic Analysis To run a full dynamic, non linear analysis on even a simple structure takes a long time. But with pushover analysis accurate results can be obtained in fractions of the time it would take to get any useful results from the fully dynamic analysis. When performing a dynamic analysis, it is best to use a series of earthquakes. The Pushover Analysis naturally accounts for all earthquakes with the same probability of exceedance by predicting the maximum displacement that can be expected in the form of the Target Displacement.
18 midas Gen Pushover Analysis Webinar Objective Methods of Analysis for Earthquake Resistant Structures to Pushover Analysis Pushover Analysis of RC Building Pushover Analysis of Steel Building Conclusion
19 Pushover Analysis Procedure Process in midas Gen Pushover Global Control Define Lateral Loads Define Hinge Properties Check Pushover Curve and Target Disp. Perform Analysis Assign Hinges Check Hinge Status Safety Verification
20 = 45,000 Midas Gen Advanced Webinar RC Model G1 LB1 G1 C1 C1 Designation Story Section Number Column Dimension C1 12~15F 8~11F 4~7F 1~3F x x x x 800 Designation Section Number Section Dimension G x 600 LBl x 300 unit : mm
21 Moment/SF Midas Gen Advanced Webinar Hinge Properties Hinge Property C B CP IO LS D E A Rotation/SF B - Yield State IO immediate Occupancy LS Life Safety CP Collapse Prevention C Ultimate State
22 Base Shear (V) Spectral Acceleration (Sa) Midas Gen Advanced Webinar Pushover Curve Roof Displacement (U) Spectral Displacement (Sd) Pushover Curve S S a d V / W / 1 / PF * roof 1 1, roof Capacity Spectrum
23 Spectral Acceleration Spectral Acceleration (Sa) Midas Gen Advanced Webinar Demand Spectrum T 0 T 0 Time Period Acceleration Vs Time Period Spectral Displacement (Sd) Acceleration Vs Displacement S d = S a T 2 /4p 2
24 Spectral Acceleration Midas Gen Advanced Webinar Performance Point Demand Spectrum for effective damping at performance point Capacity Spectrum Spectral Displacement
25 midas Gen Pushover Analysis Webinar Objective Methods of Analysis for Earthquake Resistant Structures to Pushover Analysis Pushover Analysis of RC Building Pushover Analysis of Steel Building Conclusion
26 3,000 6,000 G1 G1 G1 3,000 9,000 3,000 Midas Gen Advanced Webinar Steel Model Section Name Section ID Section DB Section Size C1 1 UNI HEA240 C2 2 UNI HEA300 G1 21 UNI HEA280 G2 22 UNI IPE240 Brace1 31 UNI HEA160 Brace2 32 UNI HEA120 Figure 1. Three-dimensional structural model BR1 10,000 2,500 2,500 2,500 2,500 B C2 G2 C1 BR G2 C2 BR1 BR2 A C2 G2 BR C1 G2 C2 Figure 2. Structural plan Figure 3. Elevation
27 midas Gen Pushover Analysis Webinar Objective Methods of Analysis for Earthquake Resistant Structures to Pushover Analysis Pushover Analysis of RC Building Pushover Analysis of Steel Building Conclusion
28 Conclusion - Pushover Analysis is a very useful tool for the evaluation of New and existing structures. - Pushover Analysis provided much useful information that cannot be obtained from elastic static and dynamic analysis. - Pushover Analysis provides a relatively simple solution than nonlinear Dynamic analysis and more realistic and comprehensive solution than linear elastic analysis. - Push over analysis require considerable amount of understanding of the subject by the engineer. - Pushover analysis is approximate in nature and is based on static loading and it cannot represent the dynamic phenomena with a large degree of accuracy. - Pushover Analysis does not create good solutions, it only evaluates solution. - Load pattern choice makes a huge difference to the analysis results.
29 midas Gen Q & A
Seismic Risk Evaluation of a Building Stock and Retrofit Prioritization
Seismic Risk Evaluation of a Building Stock and Retrofit Prioritization Seismic risk assessment of large building stocks can be conducted at various s depending on the objectives, size of the building
Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,
Volume, Special Issue, ICSTSD Behaviour of Steel Bracing as a Global Retrofitting Technique Miss S. S. Nibhorkar M. E (Structure) Scholar, Civil Engineering Department, G. H. Raisoni College of Engineering
Seismic Risk Prioritization of RC Public Buildings
Seismic Risk Prioritization of RC Public Buildings In Turkey H. Sucuoğlu & A. Yakut Middle East Technical University, Ankara, Turkey J. Kubin & A. Özmen Prota Inc, Ankara, Turkey SUMMARY Over the past
Seismic performance evaluation of an existing school building in Turkey
CHALLENGE JOURNAL OF STRUCTURAL MECHANICS 1 (4) (2015) 161 167 Seismic performance evaluation of an existing school building in Turkey Hüseyin Bilgin * Department of Civil Engineering, Epoka University,
SEISMIC RETROFITTING OF STRUCTURES
SEISMIC RETROFITTING OF STRUCTURES RANJITH DISSANAYAKE DEPT. OF CIVIL ENGINEERING, FACULTY OF ENGINEERING, UNIVERSITY OF PERADENIYA, SRI LANKA ABSTRACT Many existing reinforced concrete structures in present
Prepared For San Francisco Community College District 33 Gough Street San Francisco, California 94103. Prepared By
Project Structural Conditions Survey and Seismic Vulnerability Assessment For SFCC Civic Center Campus 750 Eddy Street San Francisco, California 94109 Prepared For San Francisco Community College District
SEISMIC DESIGN OF MULTI-STORY BUILDINGS WITH METALLIC STRUCTURAL FUSES. R. Vargas 1 and M. Bruneau 2 ABSTRACT
Proceedings of the 8 th U.S. National Conference on Earthquake Engineering April 18-22, 26, San Francisco, California, USA Paper No. 28 SEISMIC DESIGN OF MULTI-STORY BUILDINGS WITH METALLIC STRUCTURAL
Seismic Assessment and Retrofitting of Structures: Eurocode8 Part3 and the Greek Code on Seismic Structural Interventions
Working Group 7: Earthquake Resistant Structures Geneva, 25 September 2015 Seismic Assessment and Retrofitting of Structures: Eurocode8 Part3 and the Greek Code on Seismic Structural Interventions Prof.
Structural Retrofitting For Earthquake Resistance
Structural Retrofitting For Earthquake Resistance Ruben Boroschek WHO Disaster Mitigation in Health Facilities University of Chile [email protected] www.hospitalseguro.cl The following paper is part
SEISMIC APPROACH DESIGN COMPARISON BETWEEN
IABSE ANNUAL MEETING, LONDON, 19 TH SEPTEMBER 2011 SEISMIC APPROACH DESIGN COMPARISON BETWEEN IBC AND ITALIAN DM2008 Ing. Luca Zanaica Senior Structural Engineer Ing. Francesco Caobianco Senior Structural
G. Michele Calvi IUSS Pavia
CONVEGNO SISMA ED ELEMENTI NON STRUTTURALI Approcci, Stati Limite e Verifiche Prestazionali Bologna 24 ottobre 2014 PROGETTO DI ELEMENTI NON STRUTTURALI SOGGETTI AD AZIONI SISMICHE G. Michele Calvi IUSS
EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST
EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST Abstract Camelia SLAVE University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti
Seismic Evaluation and Retrofitting of RC Building by Using Energy Dissipating Devices
Seismic Evaluation and Retrofitting of RC Building by Using Energy Dissipating Devices S. I. Khan 1, Prof. P. O. Modani 2 1(Department of Civil Engineering, B.N.C.O.E, Pusad) 2(Assist. Professor Department
Current Status of Seismic Retrofitting Technology
CONTENTS Current Status of Seismic Retrofitting Technology Damages of Past Earthquakes Seismic Diagnosis Method Building Control Section Urban Building Division Bureau of Urban Development, TMG Seismic
SEISMIC RETROFITTING OF REINFORCED CONCRETE BUILDINGS USING TRADITIONAL AND INNOVATIVE TECHNIQUES
ISET Journal of Earthquake Technology, Paper No. 454, Vol. 42, No. 2-3, June-September 25, pp. 21-46 SEISMIC RETROFITTING OF REINFORCED CONCRETE BUILDINGS USING TRADITIONAL AND INNOVATIVE TECHNIQUES Giuseppe
SEISMIC RETROFIT DESIGN CRITERIA
SEISMIC RETROFIT DESIGN CRITERIA British Columbia Ministry of Transportation June 30, 2005 Prepared by: Recommended by: Approved by: Don Kennedy, P.Eng., Associated Engineering (BC) Sharlie Huffman, P.
PERFORMANCE BASED SEISMIC EVALUATION AND RETROFITTING OF UNSYMMETRICAL MEDIUM RISE BUILDINGS- A CASE STUDY
Paper No. 682 PERFORMANCE BASED SEISMIC EVALUATION AND RETROFITTING OF UNSYMMETRICAL MEDIUM RISE BUILDINGS- A CASE STUDY Jimmy Chandra, Pennung Warnitchai, Deepak Rayamajhi, Naveed Anwar and Shuaib Ahmad
SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:
SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the
Methods for Seismic Retrofitting of Structures
Methods for Seismic Retrofitting of Structures Retrofitting of existing structures with insufficient seismic resistance accounts for a major portion of the total cost of hazard mitigation. Thus, it is
REVISION OF GUIDELINE FOR POST- EARTHQUAKE DAMAGE EVALUATION OF RC BUILDINGS IN JAPAN
10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska REVISION OF GUIDELINE FOR POST- EARTHQUAKE DAMAGE EVALUATION OF RC
INTRODUCTION TO LIMIT STATES
4 INTRODUCTION TO LIMIT STATES 1.0 INTRODUCTION A Civil Engineering Designer has to ensure that the structures and facilities he designs are (i) fit for their purpose (ii) safe and (iii) economical and
SEISMIC ANALYSIS AND RETROFITTING OF R.C.C STRUCTURE
International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST) Vol., Issue, April 1 SEISMIC ANALYSIS AND RETROFITTING OF R.C.C STRUCTURE M.R.NAVANEETHA KRISHNAN 1,
Performance-based Evaluation of the Seismic Response of Bridges with Foundations Designed to Uplift
Performance-based Evaluation of the Seismic Response of Bridges with Foundations Designed to Uplift Marios Panagiotou Assistant Professor, University of California, Berkeley Acknowledgments Pacific Earthquake
Control of Seismic Drift Demand for Reinforced Concrete Buildings with Weak First Stories
Earthquake Yoshimura: Engineering Control and of Engineering Seismic Drift Seismology Demand for Reinforced Concrete Buildings with Weak First Stories 7 Volume 4, Number, September 3, pp. 7 3 Control of
DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: 2 sh. 63-76 Mayıs 2007
DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 9 Sayı: sh. 63-76 Mayıs 007 SEISMIC PERFORMANCE ASSESSMENT OF REINFORCED CONCRETE STRUCTURES (BETONARME YAPILARIN SİSMİK PERFORMANSININ DEĞERLENDİRİLMESİ)
Earthquakes and Data Centers
7x24 Exchange Fall Symposium September 11, 2013 Hilton Bellevue Andrew W. Taylor, Ph.D., S.E., FACI Earthquake Hazards 2 September 11, 2013 1 Cascadia Earthquake Sources Figure Credit: Craig Weaver, Pacific
AN IMPROVED SEISMIC DESIGN APPROACH FOR TWO-COLUMN REINFORCED CONCRETE BENTS OVER FLEXIBLE FOUNDATIONS WITH PREDEFINED DAMAGE LEVELS
AN IMPROVED SEISMIC DESIGN APPROACH FOR TWO-COLUMN REINFORCED CONCRETE BENTS OVER FLEXIBLE FOUNDATIONS WITH PREDEFINED DAMAGE LEVELS ABSTRACT: T. Yılmaz 1 ve A. Caner 2 1 Araştırma Görevlisi, İnşaat Müh.
Specification for Structures to be Built in Disaster Areas
Ministry of Public Works and Settlement Government of Republic of Turkey Specification for Structures to be Built in Disaster Areas PART III - EARTHQUAKE DISASTER PREVENTION (Chapter 5 through Chapter
Structural Dynamics of Linear Elastic Single-Degree-of-Freedom (SDOF) Systems
Structural Dynamics of Linear Elastic Single-Degree-of-Freedom (SDOF) Systems SDOF Dynamics 3-1 This set of slides covers the fundamental concepts of structural dynamics of linear elastic single-degree-of-freedom
1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures
Prof. Oral Buyukozturk Massachusetts Institute of Technology Outline 1 1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures
SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS
Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICA TIO Publishers, D-79104 Freiburg, Germany SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS H.
CONTRASTING DISPLACEMENT DEMANDS OF DUCTILE STRUCTURES FROM TOHOKU SUBDUCTION TO CRUSTAL EARTHQUAKE RECORDS. Peter Dusicka 1 and Sarah Knoles 2
CONTRASTING DISPLACEMENT DEMANDS OF DUCTILE STRUCTURES FROM TOHOKU SUBDUCTION TO CRUSTAL EARTHQUAKE RECORDS Abstract Peter Dusicka 1 and Sarah Knoles 2 With the impending Cascadia subduction zone event
Review of Code Provisions on Design Seismic Forces for Liquid Storage Tanks
Document No. :: IITK-GSDMA-EQ1-V1. Final Report :: A - Earthquake Codes IITK-GSDMA Project on Building Codes Review of Code Provisions on Design Seismic Forces for Liquid Storage Tanks by Dr. O. R. Jaiswal
SEISMIC DESIGN OF HIGHWAY BRIDGES
Journal of Japan Association for Earthquake Engineering, Vol.4, No.3 (Special Issue), 2004 SEISMIC DESIGN OF HIGHWAY BRIDGES Kazuhiko KAWASHIMA 1 and Shigeki UNJOH 2 1 Member of JAEE, Professor, Department
Nonlinear Structural Analysis For Seismic Design
NIST GCR 10-917-5 NEHRP Seismic Design Technical Brief No. 4 Nonlinear Structural Analysis For Seismic Design A Guide for Practicing Engineers Gregory G. Deierlein Andrei M. Reinhorn Michael R. Willford
ASSESSMENT AND RETROFITTING OF EXISTING RC BUILDINGS IN VIETNAM IN TERMS OF EARTHQUAKE RESISTANCES
GEM-SEA Workshop on Seismic Vulnerability of Buildings Nanyang Technological University, Singapore 1 st July 2013 ASSESSMENT AND RETROFITTING OF EXISTING RC BUILDINGS IN VIETNAM IN TERMS OF EARTHQUAKE
4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.
Shear Walls Buildings that use shear walls as the lateral force-resisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls
Reinforced Concrete Design
FALL 2013 C C Reinforced Concrete Design CIVL 4135 ii 1 Chapter 1. Introduction 1.1. Reading Assignment Chapter 1 Sections 1.1 through 1.8 of text. 1.2. Introduction In the design and analysis of reinforced
ABSTRACT. SUAREZ, VINICIO A. Implementation of Direct Displacement-Based Design for Highway Bridges. (Under the direction of Dr. Mervyn Kowalsky).
ABSTRACT SUAREZ, VINICIO A. Implementation of Direct Displacement-Based Design for Highway Bridges. (Under the direction of Dr. Mervyn Kowalsky). In the last decade, seismic design shifted towards Displacement-Based
Approximate Analysis of Statically Indeterminate Structures
Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis
Chapter 3 DESIGN AND CONSTRUCTION FEATURES IMPORTANT TO SEISMIC PERFORMANCE
Chapter 3 DESIGN AND CONSTRUCTION FEATURES IMPORTANT TO SEISMIC PERFORMANCE To satisfy the performance goals of the NEHRP Recommended Seismic Provisions, a number of characteristics are important to the
Rehabilitation of a 1985 Steel Moment- Frame Building
Rehabilitation of a 1985 Steel Moment- Frame Building Gregg Haskell, a) M.EERI A 1985 steel moment frame is seismically upgraded using passive energy dissipation, without adding stiffness to the system.
PUSHOVER ANALYSIS OF RC BUILDINGS WITH DIFFERENT NONLINEAR MODELS
PUSHOVER ANALYSIS OF RC BUILDINGS WITH DIFFERENT NONLINEAR MODELS ABSTRACT : M. Marques 1, D. Coutinho 2, R. Monteiro 1, R. Delgado 3 and A. Costa 4 1 Phd Student, Dept. of Structural Engineering, The
THE RELIABILITY OF CAPACITY-DESIGNED COMPONENTS IN SEISMIC RESISTANT SYSTEMS
THE RELIABILITY OF CAPACITY-DESIGNED COMPONENTS IN SEISMIC RESISTANT SYSTEMS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRIONMENTAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF
Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1
Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response
Bridging Your Innovations to Realities
Graphic User Interface Graphic User Interface Modeling Features Bridge Applications Segmental Bridges Cable Bridges Analysis Features Result Evaluation Design Features 02 07 13 17 28 34 43 48 2 User Interface
Advanced Retrofitting Methods and Techniques for RC Building: State of an Art
Advanced Retrofitting Methods and Techniques for RC Building: State of an Art Miss. Swati Sanjay Nibhorkar * M. E (Structure) Scholar, Civil Engineering Department, G. H. Raisoni College of Engg and Management,
Client: Nederlandse Aardolie Maatschappij Arup Project Title: Groningen 2013 Structural Upgrading Study
Client: Nederlandse Aardolie Maatschappij Arup Project Title: Groningen 2013 REP/229746/SU003 Issue 29 November 2013 This report was prepared by Arup in November 2013 on the basis of a scope of services
DESIGN OF BLAST RESISTANT BUILDINGS IN AN LNG PROCESSING PLANT
DESIGN OF BLAST RESISTANT BUILDINGS IN AN LNG PROCESSING PLANT Troy Oliver 1, Mark Rea 2 ABSTRACT: This paper provides an overview of the work undertaken in the design of multiple buildings for one of
Numerical modelling of shear connection between concrete slab and sheeting deck
7th fib International PhD Symposium in Civil Engineering 2008 September 10-13, Universität Stuttgart, Germany Numerical modelling of shear connection between concrete slab and sheeting deck Noémi Seres
SEISMIC CAPACITY OF EXISTING RC SCHOOL BUILDINGS IN OTA CITY, TOKYO, JAPAN
SEISMIC CAPACITY OF EXISTING RC SCHOOL BUILDINGS IN OTA CITY, TOKYO, JAPAN Toshio OHBA, Shigeru TAKADA, Yoshiaki NAKANO, Hideo KIMURA 4, Yoshimasa OWADA 5 And Tsuneo OKADA 6 SUMMARY The 995 Hyogoken-nambu
CHALLENGING CONVENTIONS
CHALLENGING CONVENTIONS How Innovation, Risk and Resilience Creates Better Buildings and Greater Cost Efficiency Jade Kirk BE(Hons), MIPENZ, IntPE, CPEng, QSNdip Managing Director Kirk Roberts Consulting
Improvement of Nonlinear Static Seismic Analysis Procedures FEMA 440 FEMA. nehrp. June 2005
Improvement of Nonlinear Static Seismic Analysis Procedures FEMA 44 June 25 FEMA nehrp FEMA 44 IMPROVEMENT OF NONLINEAR STATIC SEISMIC ANALYSIS PROCEDURES Prepared by: Applied Technology Council (ATC-55
SECTION 7 Engineered Buildings Field Investigation
SECTION 7 Engineered Buildings Field Investigation Types of Data to Be Collected and Recorded A field investigator looking at engineered buildings is expected to assess the type of damage to buildings.
Blast Resistant Building BP Refinery Rotterdam
Blast Resistant Building BP Refinery Rotterdam 14 May, 2008 1 1 Contents Presentation Introduction KCI Functional Specification Blast Resistant Building Basis for design Blast & impact loading Design modeling
3. Observed Damage in Railway Viaducts
Structural Damage of Tohoku Shinkansen Viaducts by the Off the Pacific Tohoku Earthquake First Report on March 16, 2011 Dr. Yoshikazu Takahashi, Associate Professor Disaster Prevention Research Institute,
Reinforced concrete moment-resisting frames are structural systems that work to
i Abstract Reinforced concrete moment-resisting frames are structural systems that work to resist earthquake ground motions through ductile behavior. Their performance is essential to prevent building
Seismic Retrofit of Bridges - A Short Course
Seismic Retrofit of Bridges - A Short Course Presented by Ian Buckle Geoffrey Martin, and Richard Nutt MULTIDISCIPLINARY CENTER FOR EARTHQUAKE ENGINEERING RESEARCH Tilting of pier 12, Ejian bridge, Chi-chi
Seismic Retrofitting for School Buildings in Japan Nonstructual Seismic Retrofitting
Seismic Retrofitting for School Buildings in Japan Nonstructual Seismic Retrofitting for School Buildings in Japan 8 January 2009 Koichi Shinpo Director, Educational Facilities Research Center National
Seismically retrofitting reinforced concrete moment resisting frames by using expanded metal panels
Faculté des Sciences Appliquées Département d'architecture, Géologie, Environnement et Constructions Secteur Ingénierie Structurale Seismically retrofitting reinforced concrete moment resisting frames
DESIGN DRIFT REQUIREMENTS FOR LONG-PERIOD STRUCTURES
13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3292 DESIGN DRIFT REQUIREMENTS FOR LONG-PERIOD STRUCTURES Gary R. Searer 1 and Sigmund A. Freeman 2 SUMMARY
NIST GCR 10-917-9 Applicability of Nonlinear Multiple-Degree-of-Freedom Modeling for Design
NIST GCR 0-97-9 Applicability of Nonlinear Multiple-Degree-of-Freedom Modeling for Design NEHRP Consultants Joint Venture A Partnership of the Applied Technology Council and the Consortium of Universities
THE REPORT ON THE INVESTIGATION OF THE REACTORS AT FUKUSHIMA DAIICHI NUCLEAR POWER STATION (NO. 1)
THE REPORT ON THE INVESTIGATION INTO THE CURRENT SEISMIC SAFETY AND REINFORCEMENT OF THE REACTORS AT FUKUSHIMA DAIICHI NUCLEAR POWER STATION (NO. 1) May 2011 The Tokyo Electric Power Company, Inc. Index
Seismic Isolation Retrofitting of Japanese Wooden Buildings
Seismic Isolation Retrofitting of Japanese Wooden Buildings Summary Junko Suga Building Design Department Takenaka Corporation, Osaka Main Office Osaka, Japan Hiroyuki Ueda Building Design Department Takenaka
SMIP05 Seminar Proceedings VISUALIZATION OF NONLINEAR SEISMIC BEHAVIOR OF THE INTERSTATE 5/14 NORTH CONNECTOR BRIDGE. Robert K.
VISUALIZATION OF NONLINEAR SEISMIC BEHAVIOR OF THE INTERSTATE 5/14 NORTH CONNECTOR BRIDGE Robert K. Dowell Department of Civil and Environmental Engineering San Diego State University Abstract This paper
Expected Performance Rating System
Expected Performance Rating System In researching seismic rating systems to determine how to best classify the facilities within the Portland Public School system, we searched out what was used by other
Blast Proof Occupied Buildings
Blast Proof Occupied Buildings 1 1 Contents Presentation References Functional Specification Blast Resistant Building Basis for design Blast & impact loading Design modeling & analyses Preliminary design
DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN
DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN MARCH 2002 CONTENTS Chapter 1 General... 1 1.1 Scope... 1 1.2 Definition of Terms... 1 Chapter 2 Basic Principles for Seismic Design... 4
vulcanhammer.net This document downloaded from
This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works
Dynamic Behaviour of Reinforced Concrete Frames Designed with Direct Displacement-Based Design
European School for Advanced Studies in Reduction of Seismic Risk Research Report No. ROSE-/ Dynamic Behaviour of Reinforced Concrete Frames ed with Direct Displacement-Based by J. Didier Pettinga Graduate
Structural Audit of Buildings
International Journal of Civil Engineering Research. ISSN 2278-3652 Volume 5, Number 4 (2014), pp. 411-416 Research India Publications http://www.ripublication.com/ijcer.htm Structural Audit of Buildings
Sisal Composite Ltd. Apparel 4 Ltd. JM Knit Ltd. Natun Para, Hemayetpur, Savar, Dhaka-1340 (23.789416N,90.266135E)
Revision: issue 1 Date: 11 June 2014 Sisal Composite Ltd. Apparel 4 Ltd. JM Knit Ltd. Natun Para, Hemayetpur, Savar, Dhaka-1340 (23.789416N,90.266135E) 24 th May 2014 Structural Inspection Report Observations
ETABS. Integrated Building Design Software. Concrete Shear Wall Design Manual. Computers and Structures, Inc. Berkeley, California, USA
ETABS Integrated Building Design Software Concrete Shear Wall Design Manual Computers and Structures, Inc. Berkeley, California, USA Version 8 January 2002 Copyright The computer program ETABS and all
CSA S16-09 Design of Steel Structures Canada
CSA S16-09 Design of Steel Structures Canada Ed Whalen, P.Eng CISC President CSA S16-09 1 CSA Standard S16-09 Standard, Design of Steel Structures. Sets out minimum requirements used by engineers in the
EARTHQUAKE DESIGN OF BUILDINGS
GAP.2.0.9 A Publication of Global Asset Protection Services LLC EARTHQUAKE DESIGN OF BUILDINGS INTRODUCTION Buildings in many areas of the world are susceptible to damage from moderate to severe earthquakes.
EARTHQUAKE DISASTER MITIGATION USING INNOVATIVE RETROFITTING METHOD
J. SE Asian Appl. Geol., Sep Dec 2010, Vol. 2(3), pp. 225 231 EARTHQUAKE DISASTER MITIGATION USING INNOVATIVE RETROFITTING METHOD Eric Augustus J. Tingatinga 1 and Hideji Kawakami 2 1 Institute of Civil
Design for Nonstructural Components
14 Design for Nonstructural Components Robert Bachman, S.E., John Gillengerten, S.E. and Susan Dowty, S.E. Contents 14.1 DEVELOPMENT AND BACKGROUND OF THE REQUIREMENTS FOR NONSTRUCTURAL COMPONENTS... 3
FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples
FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to
REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE
REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE A.Rito Proponte, Lda, Lisbon, Portugal J. Appleton A2P Consult, Lda, Lisbon, Portugal ABSTRACT: The Figueira da Foz Bridge includes a 405 m long cable stayed
Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014
Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered
SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES. S.K. Ghosh, Ph. D. President S.K. Ghosh Associates Inc. Northbrook, IL BACKGROUND
SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES S.K. Ghosh, Ph. D. President S.K. Ghosh Associates Inc. Northbrook, IL BACKGROUND Until recently, precast concrete structures could be built in
ASHULIA APPARELS LTD. Client Summary Report
Revision : Issue 1 Date: 18 March 2014 ASHULIA APPARELS LTD Samad Mansion, Sec # 6, Block # kha, Road No# 1, Plot #14, Shenpara Parbata, Mirpur, Dhaka (23.8065N,90.3683E) 4th March 2014 Client Summary
Seismic Isolated Hospital Design Practice in Turkey: Erzurum Medical Campus
Seismic Isolated Hospital Design Practice in Turkey: Erzurum Medical Campus J. Kubin, D. Kubin, A. Özmen, O.B. Şadan, E. Eroğlu Prota Engineering Design and Consultancy Services Inc. H. Sucuoğlu, S. Akkar
Course in. Nonlinear FEM
Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited
bi directional loading). Prototype ten story
NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation
A NEW DESIGN METHOD FOR INDUSTRIAL PORTAL FRAMES IN FIRE
Application of Structural Fire Engineering, 9-2 February 29, Prague, Czech Republic A NEW DESIGN METHOD FOR INDUSTRIAL PORTAL FRAMES IN FIRE Yuanyuan Song a, Zhaohui Huang b, Ian Burgess c, Roger Plank
LINKED COLUMN FRAME STEEL SYSTEM PERFORMANCE VALIDATION USING HYBRID SIMULATION
10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska LINKED COLUMN FRAME STEEL SYSTEM PERFORMANCE VALIDATION USING HYBRID
Name Date Class. By studying the Vocabulary and Notes listed for each section below, you can gain a better understanding of this chapter.
CHAPTER 7 VOCABULARY & NOTES WORKSHEET Earthquakes By studying the Vocabulary and Notes listed for each section below, you can gain a better understanding of this chapter. SECTION 1 Vocabulary In your
EARTHQUAKE INDUCED AMPLIFIED LOADS IN STEEL INVERTED V- TYPE CONCENTRICALLY BRACED FRAMES
EARTHQUAKE INDUCED AMPLIFIED LOADS IN STEEL INVERTED V- TYPE CONCENTRICALLY BRACED FRAMES Bora Akşar 1, Selçuk Doğru 2, Jay Shen 3, Ferit Cakir 4, Bulent Akbas 5 1 Res.Asst,, Gebze Technical University,
Eurocode 2: Design of concrete structures
Eurocode 2: Design of concrete structures Owen Brooker, The Concrete Centre Introduction The transition to using the Eurocodes is a daunting prospect for engineers, but this needn t be the case. Industry
CEE 227 -- Earthquake Resistant Design. General Information
University of California at Berkeley Civil and Environmental Engineering Instructor: Stephen A. Mahin Spring Semester 2007 CEE 227 -- Earthquake Resistant Design General Information Course Objectives This
DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES
13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2243 DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR
Tall buildings. Florea Dinu. Lecture 13: 25/02/2014
Tall buildings Florea Dinu Lecture 13: 25/02/2014 European Erasmus Mundus Master Course Sustainable Constructions under Natural 520121-1-2011-1-CZ-ERA MUNDUS-EMMC Part II Multistorey buildings Tall buildings,
