Heart Sound Segmentation: A Stationary Wavelet Transform Based Approach

Size: px
Start display at page:

Download "Heart Sound Segmentation: A Stationary Wavelet Transform Based Approach"

Transcription

1 Heart Sound Segmentation: A Stationary Wavelet Transform Based Approach Author: Nuno Marques Advisors: Rute Almeida Miguel Coimbra

2 Classifying Heart Sounds PASCAL Challenge The challenge had 2 tasks: Segmentation and Classification and Anomaly Detection This work describes what i did in the first task: Segmentation and Classification

3 44100 Hz 20 auscultations istethoscope Datasets Digiscope 4000 Hz 80 auscultations Non-controlled environment No expert! Who was auscultated? Controlled environement Done by expert! Auscultation were performed on infants exclusively!

4 Heart Sounds We want to detect and distinguish these two peaks! (which are the heart sounds!)

5 How do you detect and distinguish heart sounds?

6 Heart Sound Segmentation Cardiac Segmentation algorithms can be successfully divided in 4 phases: Preprocessing Segmentation Representation Classification

7 P Preprocessing

8 P Preprocessing

9 R Préprocessamento Representation

10 R Préprocessamento Representation Segmentação

11 Préprocessamento Segmentation Segmentação S

12 Préprocessamento Segmentation Segmentação S

13 S Préprocessamento Segmentation

14 S Préprocessamento Segmentation

15 Préprocessamento Classification Segmentação S1/S2/sistole/diastole?! C

16 Préprocessamento Classification Segmentação S1 sistole S2 diastole S1 C

17 P Manual Annotation

18 P Manual Annotation

19 Fourier Transform P Mediana 1 Mediana 2...

20 P Spectral Analysis

21 Pre-Processing Just downsampled istethoscope! P

22 R Representation A good cardiac signal representation should have 2 characteristics g 1 e g 2

23 R g 1. Accentuate the difference between S1/S2 and sistole/diastole sistole diastole S1 S2

24 R g 2. Accentuate the difference between S1 and S2 S1 S2

25 Representation Shannon Energy Envelope Shannon Entropy Envelope R Domínio do tempo

26 R Shannon Energy Envelope

27 R Shannon Energy/Entropy

28 Representations Continuous Wavelet Transform Discrete Wavelet Transform Stationary Wavelet Transform S-Transform Empirical Mode Decomposition Hilbert-Huang Transform R Time-Frequency Domain

29 R Digiscope Results

30 R istethoscope Results

31 Segmentation We can divide the Segmentation phase into 2 sub-phases: Peak Detection Boundary Detection S

32 S Peak Detection

33 S Boundary Detection

34 S Convolution

35 Idea! Use a filter in the SWT that looks like the S1/S2 in order to determine their boundaries! S

36 Stationary Wavelet Transform g 3 [n] Scale 3 Coeffs g 1 [n] g 2 [n] h 2 [n] h 3 [n] Scale 2 Coeffs x[n] h 1 [n] Scale 1 Coeffs g j [n] 2 g j+1 [n] Daubechies 38 h j [n] 2 h j+1 [n] S

37 Problem g 3 [n] Scale 3 Coeffs g 2 [n] h 3 [n] g 1 [n] h 2 [n] Scale 2 Coeffs x[n] g j [n] h j [n] 2 2 h 1 [n] g j+1 [n] h j+1 [n] Scale 1 Coeffs Stationary Wavelet Transform S

38 Problema... x[n] g 1 [n] g 9 [n] ( ) h 10 [n] S Signal becomes completely deformed!

39 Solution Lets use the Convolution s Associative property!... x[n] g 1 [n] g 9 [n] h 10 [n] ( ) =... x[n] g 1 [n] g 9 [n] h 10 [n] ( ) S

40 Solution x[n]... g 1 [n] g 9 [n] h 10 [n] ( ) S

41 Signal Transformation: Digiscope x[n] Shannon energy (x[n]) S

42 Signal Transformation: istethoscope x[n] Shannon entropy (x[n]) S

43 S Shannon Energy

44 S Wavelet Coefficients

45 S Inflection Points

46 Segment Descriptors - Maximum S

47 Segment Descriptors - S1/S2 - Sistole/Diastole S

48 S

49 S PASCAL Challenge Results

50 S Determining Boundaries

51 Determining Boundaries Variation between Segments Longest Increasing/Decreasing Sub-sequence S

52 Variation Between Segments(a 1 ) Maximum length of segment Minimum length Of segment S

53 Longest Increasing/Decreasing Sub-sequence(a 2 ) Longest Increasing Sub-Sequence Longest Decreasing Sub-Sequence S

54 Baseline Method(a 3 ) Maior sub-sequência crescente Maior sub-sequência decrescente S

55 Results Média +- desvio padrão (ms) S

56 Classification

57 Préprocessamento Classification Segmentação S1/S2/sistole/diastole?!

58 Individual descriptor - Máximo This segment s descriptor C

59 Expanded Descriptor - Máximo This segment s descriptor C

60 Combination of descriptors: - Máximo Individual This segment s descriptor C

61 Combination of descriptors: - Máximo Expanded This segment s descriptor C

62 Results: Combination of Descriptors C

63 Conclusion

64 Conclusion Spectral Analysis Evaluation of different types of Representations New peak detection algorithm 2 new boundary detection algorithms Article publication in Computing in Cardiology 2013

65 Thank you!

Structural Health Monitoring Tools (SHMTools)

Structural Health Monitoring Tools (SHMTools) Structural Health Monitoring Tools (SHMTools) Parameter Specifications LANL/UCSD Engineering Institute LA-CC-14-046 c Copyright 2014, Los Alamos National Security, LLC All rights reserved. May 30, 2014

More information

Co-integration of Stock Markets using Wavelet Theory and Data Mining

Co-integration of Stock Markets using Wavelet Theory and Data Mining Co-integration of Stock Markets using Wavelet Theory and Data Mining R.Sahu P.B.Sanjeev rsahu@iiitm.ac.in sanjeev@iiitm.ac.in ABV-Indian Institute of Information Technology and Management, India Abstract

More information

WAVEFORM DICTIONARIES AS APPLIED TO THE AUSTRALIAN EXCHANGE RATE

WAVEFORM DICTIONARIES AS APPLIED TO THE AUSTRALIAN EXCHANGE RATE Sunway Academic Journal 3, 87 98 (26) WAVEFORM DICTIONARIES AS APPLIED TO THE AUSTRALIAN EXCHANGE RATE SHIRLEY WONG a RAY ANDERSON Victoria University, Footscray Park Campus, Australia ABSTRACT This paper

More information

Interpretation of Heart Sound Signal through Automated Artifact-Free Segmentation

Interpretation of Heart Sound Signal through Automated Artifact-Free Segmentation Research * Corresponding author Goutam Saha, PhD Professor Department of Electronics and Electrical Communication Engineering Indian Institute of Technology Kharagpur 721302, India E-mail: gsaha@ece.iitkgp.ernet.in

More information

Analysis/resynthesis with the short time Fourier transform

Analysis/resynthesis with the short time Fourier transform Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis

More information

Detection of Atrial Fibrillation in ECGs

Detection of Atrial Fibrillation in ECGs Tracy Chou, Yuriko Tamura, and Ian Wong {tychou, ytamura, ianw}@stanford.edu. Overview Automatic detection and classification of arrhythmia in electrocardiograms (ECG) provides a framework for efficient

More information

Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let)

Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let) Wavelet analysis In the case of Fourier series, the orthonormal basis is generated by integral dilation of a single function e jx Every 2π-periodic square-integrable function is generated by a superposition

More information

Filtering method in wireless sensor network management based on EMD algorithm and multi scale wavelet analysis

Filtering method in wireless sensor network management based on EMD algorithm and multi scale wavelet analysis Available online www.ocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(6):912-918 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Filtering method in wireless sensor network management

More information

Detection and Classification of Abnormal Respiratory Sounds on a Resource-constraint Mobile Device

Detection and Classification of Abnormal Respiratory Sounds on a Resource-constraint Mobile Device Detection and Classification of Abnormal Respiratory Sounds on a Resource-constraint Mobile Device Chinazunwa Uwaoma Department of Computing Faculty of Science and Technology The University of the West

More information

Detection of Heart Diseases by Mathematical Artificial Intelligence Algorithm Using Phonocardiogram Signals

Detection of Heart Diseases by Mathematical Artificial Intelligence Algorithm Using Phonocardiogram Signals International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 3 No. 1 May 2013, pp. 145-150 2013 Innovative Space of Scientific Research Journals http://www.issr-journals.org/ijias/ Detection

More information

Alignment and Preprocessing for Data Analysis

Alignment and Preprocessing for Data Analysis Alignment and Preprocessing for Data Analysis Preprocessing tools for chromatography Basics of alignment GC FID (D) data and issues PCA F Ratios GC MS (D) data and issues PCA F Ratios PARAFAC Piecewise

More information

Signal Processing for Speech Recognition

Signal Processing for Speech Recognition Signal Processing for Speech Recognition Once a signal has been sampled, we have huge amounts of data, often 20,000 16 bit numbers a second! We need to find ways to concisely capture the properties of

More information

Low Contrast Image Enhancement Based On Undecimated Wavelet Transform with SSR

Low Contrast Image Enhancement Based On Undecimated Wavelet Transform with SSR International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-4, Issue-02 E-ISSN: 2347-2693 Low Contrast Image Enhancement Based On Undecimated Wavelet Transform with SSR

More information

Seismic data interpolation using a fast generalized Fourier transform

Seismic data interpolation using a fast generalized Fourier transform Seismic data interpolation using a fast generalized Fourier transform Mostafa Naghizadeh and Kris Innanen CREWES University of Calgary CREWES annual sponsor s meeting Banff, Alberta 2 December 2010 Outlines:

More information

Short-time FFT, Multi-taper analysis & Filtering in SPM12

Short-time FFT, Multi-taper analysis & Filtering in SPM12 Short-time FFT, Multi-taper analysis & Filtering in SPM12 Computational Psychiatry Seminar, FS 2015 Daniel Renz, Translational Neuromodeling Unit, ETHZ & UZH 20.03.2015 Overview Refresher Short-time Fourier

More information

DAMAGE ASSESSMENT OF REINFORCED CONCRETE BEAMS USING HILBERT-HUANG TRANSFORM

DAMAGE ASSESSMENT OF REINFORCED CONCRETE BEAMS USING HILBERT-HUANG TRANSFORM DAMAGE ASSESSMENT OF REINFORCED CONCRETE BEAMS USING HILBERT-HUANG TRANSFORM S.S. Law and X.Q. Zhu Department of Civil and Structural Engineering The Hong Kong Polytechnic University, Hung Hom, Kowloon,

More information

Crowdclustering with Sparse Pairwise Labels: A Matrix Completion Approach

Crowdclustering with Sparse Pairwise Labels: A Matrix Completion Approach Outline Crowdclustering with Sparse Pairwise Labels: A Matrix Completion Approach Jinfeng Yi, Rong Jin, Anil K. Jain, Shaili Jain 2012 Presented By : KHALID ALKOBAYER Crowdsourcing and Crowdclustering

More information

Accelerometer-Based Transportation Mode Detection on Smartphones

Accelerometer-Based Transportation Mode Detection on Smartphones Accelerometer-Based Transportation Mode Detection on Smartphones Samuli Hemminki, Petteri Nurmi, Sasu Tarkoma Helsinki Insitute for Information Technology HIIT PO Box 68, Department of Computer Science

More information

L9: Cepstral analysis

L9: Cepstral analysis L9: Cepstral analysis The cepstrum Homomorphic filtering The cepstrum and voicing/pitch detection Linear prediction cepstral coefficients Mel frequency cepstral coefficients This lecture is based on [Taylor,

More information

An Intelligent Diagnostic System for Congenital Heart Defects

An Intelligent Diagnostic System for Congenital Heart Defects Vol. 4, No. 7, 03 An Intelligent Diagnostic System for Congenital Heart Defects Amir Mohammad Amiri Dept. Electrical and Electronic Engineering (DIEE) University of Cagliari Cagliari, Italy Abstract congenital

More information

A Sound Analysis and Synthesis System for Generating an Instrumental Piri Song

A Sound Analysis and Synthesis System for Generating an Instrumental Piri Song , pp.347-354 http://dx.doi.org/10.14257/ijmue.2014.9.8.32 A Sound Analysis and Synthesis System for Generating an Instrumental Piri Song Myeongsu Kang and Jong-Myon Kim School of Electrical Engineering,

More information

Fourier Descriptors For Shape Recognition. Applied to Tree Leaf Identification By Tyler Karrels

Fourier Descriptors For Shape Recognition. Applied to Tree Leaf Identification By Tyler Karrels Fourier Descriptors For Shape Recognition Applied to Tree Leaf Identification By Tyler Karrels Why investigate shape description? Hard drives keep getting bigger. Digital cameras allow us to capture, store,

More information

SGN-1158 Introduction to Signal Processing Test. Solutions

SGN-1158 Introduction to Signal Processing Test. Solutions SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:

More information

Musical Instrument Identification Using Wavelets and eural etworks

Musical Instrument Identification Using Wavelets and eural etworks Musical Instrument Identification Using Wavelets and eural etworks Jeffrey Livingston Nathan Shepard EE371D Intro. To Neural Networks Electrical and Computer Engineering Department The University of Texas

More information

A Tutorial on Fourier Analysis

A Tutorial on Fourier Analysis A Tutorial on Fourier Analysis Douglas Eck University of Montreal NYU March 26 1.5 A fundamental and three odd harmonics (3,5,7) fund (freq 1) 3rd harm 5th harm 7th harmm.5 1 2 4 6 8 1 12 14 16 18 2 1.5

More information

ECG Signal Analysis Using Wavelet Transforms

ECG Signal Analysis Using Wavelet Transforms Bulg. J. Phys. 35 (2008) 68 77 ECG Signal Analysis Using Wavelet Transforms C. Saritha, V. Sukanya, Y. Narasimha Murthy Department of Physics and Electronics, S.S.B.N. COLLEGE (Autonomous) Anantapur 515

More information

Wavelet Analysis Based Estimation of Probability Density function of Wind Data

Wavelet Analysis Based Estimation of Probability Density function of Wind Data , pp.23-34 http://dx.doi.org/10.14257/ijeic.2014.5.3.03 Wavelet Analysis Based Estimation of Probability Density function of Wind Data Debanshee Datta Department of Mechanical Engineering Indian Institute

More information

DSP Laboratory Work S. Laboratory exercises with TMS320C5510 DSK

DSP Laboratory Work S. Laboratory exercises with TMS320C5510 DSK DSP Laboratory Work 521485S Laboratory exercises with TMS320C5510 DSK Jari Hannuksela Information Processing Laboratory Dept. of Electrical and Information Engineering, University of Oulu ovember 14, 2008

More information

Centroid Distance Function and the Fourier Descriptor with Applications to Cancer Cell Clustering

Centroid Distance Function and the Fourier Descriptor with Applications to Cancer Cell Clustering Centroid Distance Function and the Fourier Descriptor with Applications to Cancer Cell Clustering By, Swati Bhonsle Alissa Klinzmann Mentors Fred Park Department of Mathematics Ernie Esser Department of

More information

Image Compression Using Wavelet Methods

Image Compression Using Wavelet Methods Image Compression Using Wavelet Methods Yasir S. AL - MOUSAWY*,1, Safaa S. MAHDI 1 *Corresponding author *,1 Medical Eng. Dept., Al-Nahrain University, Baghdad, Iraq Yasir_bio@yahoo.com, dr_safaaisoud@yahoo.com

More information

IMPLEMENTATION OF FIR FILTER USING EFFICIENT WINDOW FUNCTION AND ITS APPLICATION IN FILTERING A SPEECH SIGNAL

IMPLEMENTATION OF FIR FILTER USING EFFICIENT WINDOW FUNCTION AND ITS APPLICATION IN FILTERING A SPEECH SIGNAL IMPLEMENTATION OF FIR FILTER USING EFFICIENT WINDOW FUNCTION AND ITS APPLICATION IN FILTERING A SPEECH SIGNAL Saurabh Singh Rajput, Dr.S.S. Bhadauria Department of Electronics, Madhav Institute of Technology

More information

Functional Data Analysis of MALDI TOF Protein Spectra

Functional Data Analysis of MALDI TOF Protein Spectra Functional Data Analysis of MALDI TOF Protein Spectra Dean Billheimer dean.billheimer@vanderbilt.edu. Department of Biostatistics Vanderbilt University Vanderbilt Ingram Cancer Center FDA for MALDI TOF

More information

SNMP Simple Network Measurements Please!

SNMP Simple Network Measurements Please! SNMP Simple Network Measurements Please! Matthew Roughan (+many others) 1 Outline Part I: SNMP traffic data Simple Network Management Protocol Why? How? What? Part II: Wavelets

More information

ECG SIGNAL PROCESSING AND HEART RATE FREQUENCY DETECTION METHODS

ECG SIGNAL PROCESSING AND HEART RATE FREQUENCY DETECTION METHODS ECG SIGNAL PROCESSING AND HEART RATE FREQUENCY DETECTION METHODS J. Parak, J. Havlik Department of Circuit Theory, Faculty of Electrical Engineering Czech Technical University in Prague Abstract Digital

More information

3D Medical Image Enhancement based on Wavelet Transforms

3D Medical Image Enhancement based on Wavelet Transforms YAVARIABDI et al.: 1 3D Medical Image Enhancement based on Wavelet Transforms Amir Yavariabdi amir.yavariabdi@u-clermont1.fr Chafik Samir chafik.samir@u-clermont1.fr Adrien Bartoli adrien.bartoli@u-clermont1.fr

More information

Time series analysis of data from stress ECG

Time series analysis of data from stress ECG Communications to SIMAI Congress, ISSN 827-905, Vol. 3 (2009) DOI: 0.685/CSC09XXX Time series analysis of data from stress ECG Camillo Cammarota Dipartimento di Matematica La Sapienza Università di Roma,

More information

Statistical Modeling by Wavelets

Statistical Modeling by Wavelets Statistical Modeling by Wavelets BRANI VIDAKOVIC Duke University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto Contents Preface

More information

Speech Signal Processing: An Overview

Speech Signal Processing: An Overview Speech Signal Processing: An Overview S. R. M. Prasanna Department of Electronics and Electrical Engineering Indian Institute of Technology Guwahati December, 2012 Prasanna (EMST Lab, EEE, IITG) Speech

More information

Adaptive feature selection for rolling bearing condition monitoring

Adaptive feature selection for rolling bearing condition monitoring Adaptive feature selection for rolling bearing condition monitoring Stefan Goreczka and Jens Strackeljan Otto-von-Guericke-Universität Magdeburg, Fakultät für Maschinenbau Institut für Mechanik, Universitätsplatz,

More information

A Flexible Method for Envelope Estimation in Empirical Mode Decomposition

A Flexible Method for Envelope Estimation in Empirical Mode Decomposition A Flexible Method for Envelope Estimation in Empirical Mode Decomposition Yoshikazu Washizawa 1, Toshihisa Tanaka 2,1, Danilo P. Mandic 3, and Andrzej Cichocki 1 1 Brain Science Institute, RIKEN, 2-1,

More information

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19 Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and

More information

A Wavelet Based Prediction Method for Time Series

A Wavelet Based Prediction Method for Time Series A Wavelet Based Prediction Method for Time Series Cristina Stolojescu 1,2 Ion Railean 1,3 Sorin Moga 1 Philippe Lenca 1 and Alexandru Isar 2 1 Institut TELECOM; TELECOM Bretagne, UMR CNRS 3192 Lab-STICC;

More information

SPEECH SIGNAL CODING FOR VOIP APPLICATIONS USING WAVELET PACKET TRANSFORM A

SPEECH SIGNAL CODING FOR VOIP APPLICATIONS USING WAVELET PACKET TRANSFORM A International Journal of Science, Engineering and Technology Research (IJSETR), Volume, Issue, January SPEECH SIGNAL CODING FOR VOIP APPLICATIONS USING WAVELET PACKET TRANSFORM A N.Rama Tej Nehru, B P.Sunitha

More information

FEATURE EXTRACTION OF EEG SIGNAL USING WAVELET TRANSFORM FOR AUTISM CLASSIFICATION

FEATURE EXTRACTION OF EEG SIGNAL USING WAVELET TRANSFORM FOR AUTISM CLASSIFICATION FEATURE EXTRACTION OF EEG SIGNAL USING WAVELET TRANSFORM FOR AUTISM CLASSIFICATION Lung Chuin Cheong, Rubita Sudirman and Siti Suraya Hussin Faculty of Electrical Engineering, Universiti Teknologi Malaysia

More information

Chapter 10 Introduction to Time Series Analysis

Chapter 10 Introduction to Time Series Analysis Chapter 1 Introduction to Time Series Analysis A time series is a collection of observations made sequentially in time. Examples are daily mortality counts, particulate air pollution measurements, and

More information

USING CORRELATION COEFFICIENT IN ECG WAVEFORM FOR ARRHYTHMIA DETECTION

USING CORRELATION COEFFICIENT IN ECG WAVEFORM FOR ARRHYTHMIA DETECTION BIOMEDICAL ENGINEERING- APPLICATIONS, BASIS & COMMUNICATIONS USING CORRELATION COEFFICIENT IN ECG WAVEFORM FOR ARRHYTHMIA DETECTION 147 CHUANG-CHIEN CHIU 1,2, TONG-HONG LIN 1 AND BEN-YI LIAU 2 1 Institute

More information

Open Access A Facial Expression Recognition Algorithm Based on Local Binary Pattern and Empirical Mode Decomposition

Open Access A Facial Expression Recognition Algorithm Based on Local Binary Pattern and Empirical Mode Decomposition Send Orders for Reprints to reprints@benthamscience.ae The Open Electrical & Electronic Engineering Journal, 2014, 8, 599-604 599 Open Access A Facial Expression Recognition Algorithm Based on Local Binary

More information

Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1

Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1 Data Mining 1 Introduction 2 Data Mining methods Alfred Holl Data Mining 1 1 Introduction 1.1 Motivation 1.2 Goals and problems 1.3 Definitions 1.4 Roots 1.5 Data Mining process 1.6 Epistemological constraints

More information

Digitals filters in heart sound analysis

Digitals filters in heart sound analysis International Journal of Clinical Medicine Research 2014; 1(3): 97-108 Published online August 30, 2014 (http://www.aascit.org/journal/ijcmr) Digitals filters in heart sound analysis L. Hamza Cherif, M.

More information

Compressive Sensing. Examples in Image Compression. Lecture 4, July 30, Luiz Velho Eduardo A. B. da Silva Adriana Schulz

Compressive Sensing. Examples in Image Compression. Lecture 4, July 30, Luiz Velho Eduardo A. B. da Silva Adriana Schulz Compressive Sensing Examples in Image Compression Lecture 4, July, 09 Luiz Velho Eduardo A. B. da Silva Adriana Schulz Today s Lecture Discuss applications of CS in image compression Evaluate CS efficiency

More information

Matlab GUI for WFB spectral analysis

Matlab GUI for WFB spectral analysis Matlab GUI for WFB spectral analysis Jan Nováček Department of Radio Engineering K13137, CTU FEE Prague Abstract In the case of the sound signals analysis we usually use logarithmic scale on the frequency

More information

Nonlinear Signal Analysis: Time-Frequency Perspectives

Nonlinear Signal Analysis: Time-Frequency Perspectives TECHNICAL NOTES Nonlinear Signal Analysis: Time-Frequency Perspectives T. Kijewski-Correa 1 and A. Kareem 2 Abstract: Recently, there has been growing utilization of time-frequency transformations for

More information

Biomedical Signal Processing Experiences A gray box model for Gait signal generation Parkinson Gate Signal Processing Spectral Analysis of Parkinson G

Biomedical Signal Processing Experiences A gray box model for Gait signal generation Parkinson Gate Signal Processing Spectral Analysis of Parkinson G Biomedical Signal Processing Experiences Ayyoob Jafari 1 Biomedical Signal Processing Experiences A gray box model for Gait signal generation Parkinson Gate Signal Processing Spectral Analysis of Parkinson

More information

Alternative Biometric as Method of Information Security of Healthcare Systems

Alternative Biometric as Method of Information Security of Healthcare Systems Alternative Biometric as Method of Information Security of Healthcare Systems Ekaterina Andreeva Saint-Petersburg State University of Aerospace Instrumentation Saint-Petersburg, Russia eandreeva89@gmail.com

More information

Advanced Signal Analysis Method to Evaluate the Laser Welding Quality

Advanced Signal Analysis Method to Evaluate the Laser Welding Quality Advanced Signal Analysis Method to Evaluate the Laser Welding Quality Giuseppe D Angelo FIAT Research Center Process Research Dept. - 10043 Orbassano, Italy giuseppe.dangelo@crf.it 20 Novembre, 2010 General

More information

ECE438 - Laboratory 9: Speech Processing (Week 2)

ECE438 - Laboratory 9: Speech Processing (Week 2) Purdue University: ECE438 - Digital Signal Processing with Applications 1 ECE438 - Laboratory 9: Speech Processing (Week 2) October 6, 2010 1 Introduction This is the second part of a two week experiment.

More information

FID. Vol. 21 No. 4 Dec Chinese Journal of Magnetic Resonance (NMR) Gabor, NMR ( FID) NMR FID. Gabor. Gabor. , Gabor , NMR FID.

FID. Vol. 21 No. 4 Dec Chinese Journal of Magnetic Resonance (NMR) Gabor, NMR ( FID) NMR FID. Gabor. Gabor. , Gabor , NMR FID. 21 4 2004 12 Chinese Journal of Magnetic Resonance Vol 21 No 4 Dec 2004 : 100024556 (2004) 0420435209 Gabor FID 1 3 2, (1, 230039 ; 2, 230022) : Gabor, (NMR FID) NMR FID, NMR FID,, NMR FID, Gabor Gabor

More information

Advanced Signal Processing and Digital Noise Reduction

Advanced Signal Processing and Digital Noise Reduction Advanced Signal Processing and Digital Noise Reduction Saeed V. Vaseghi Queen's University of Belfast UK WILEY HTEUBNER A Partnership between John Wiley & Sons and B. G. Teubner Publishers Chichester New

More information

Classification of Electrocardiogram Anomalies

Classification of Electrocardiogram Anomalies Classification of Electrocardiogram Anomalies Karthik Ravichandran, David Chiasson, Kunle Oyedele Stanford University Abstract Electrocardiography time series are a popular non-invasive tool used to classify

More information

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic

More information

Network Traffic Characterization using Energy TF Distributions

Network Traffic Characterization using Energy TF Distributions Network Traffic Characterization using Energy TF Distributions Angelos K. Marnerides a.marnerides@comp.lancs.ac.uk Collaborators: David Hutchison - Lancaster University Dimitrios P. Pezaros - University

More information

OSE801 Engineering System Identification Fall 2012 Lecture 5: Fourier Analysis: Introduction

OSE801 Engineering System Identification Fall 2012 Lecture 5: Fourier Analysis: Introduction OSE801 Engineering System Identification Fall 2012 Lecture 5: Fourier Analysis: Introduction Instructors: K. C. Park and I. K. Oh (Division of Ocean Systems Engineering) System-Identified State Space Model

More information

Advances in Signal Processing to Reduce Lift-off Noise in Eddy Current Tests

Advances in Signal Processing to Reduce Lift-off Noise in Eddy Current Tests PIERS ONLINE, VOL. 3, NO. 4, 27 57 Advances in Signal Processing to Reduce Lift-off Noise in Eddy Current Tests M. Cacciola, A. Gasparics 2, F. C. Morabito, M. Versaci, and V. Barrile Universitá Mediterranea

More information

PIXEL-LEVEL IMAGE FUSION USING BROVEY TRANSFORME AND WAVELET TRANSFORM

PIXEL-LEVEL IMAGE FUSION USING BROVEY TRANSFORME AND WAVELET TRANSFORM PIXEL-LEVEL IMAGE FUSION USING BROVEY TRANSFORME AND WAVELET TRANSFORM Rohan Ashok Mandhare 1, Pragati Upadhyay 2,Sudha Gupta 3 ME Student, K.J.SOMIYA College of Engineering, Vidyavihar, Mumbai, Maharashtra,

More information

DYNAMIC FUZZY PATTERN RECOGNITION WITH APPLICATIONS TO FINANCE AND ENGINEERING LARISA ANGSTENBERGER

DYNAMIC FUZZY PATTERN RECOGNITION WITH APPLICATIONS TO FINANCE AND ENGINEERING LARISA ANGSTENBERGER DYNAMIC FUZZY PATTERN RECOGNITION WITH APPLICATIONS TO FINANCE AND ENGINEERING LARISA ANGSTENBERGER Kluwer Academic Publishers Boston/Dordrecht/London TABLE OF CONTENTS FOREWORD ACKNOWLEDGEMENTS XIX XXI

More information

CHAPTER 5 CORONARY ANGIOGRAM VIDEO COMPRESSION USING WAVELET BASED CONTOURLET TRANSFORM AND REGION OF INTEREST TECHNIQUE

CHAPTER 5 CORONARY ANGIOGRAM VIDEO COMPRESSION USING WAVELET BASED CONTOURLET TRANSFORM AND REGION OF INTEREST TECHNIQUE 123 CHAPTER 5 CORONARY ANGIOGRAM VIDEO COMPRESSION USING WAVELET BASED CONTOURLET TRANSFORM AND REGION OF INTEREST TECHNIQUE 5.1 INTRODUCTION Coronary angiograms play an important role in the diagnosis

More information

Noise Removal in Speech Processing Using Spectral Subtraction

Noise Removal in Speech Processing Using Spectral Subtraction Journal of Signal and Information Processing, 24, 5, 32-4 Published Online May 24 in SciRes. http://www.scirp.org/journal/jsip http://dx.doi.org/.4236/jsip.24.526 Noise Removal in Speech Processing Using

More information

BLIND SOURCE SEPARATION OF SPEECH AND BACKGROUND MUSIC FOR IMPROVED SPEECH RECOGNITION

BLIND SOURCE SEPARATION OF SPEECH AND BACKGROUND MUSIC FOR IMPROVED SPEECH RECOGNITION BLIND SOURCE SEPARATION OF SPEECH AND BACKGROUND MUSIC FOR IMPROVED SPEECH RECOGNITION P. Vanroose Katholieke Universiteit Leuven, div. ESAT/PSI Kasteelpark Arenberg 10, B 3001 Heverlee, Belgium Peter.Vanroose@esat.kuleuven.ac.be

More information

BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES

BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES 123 CHAPTER 7 BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES 7.1 Introduction Even though using SVM presents

More information

Feature Vector Selection for Automatic Classification of ECG Arrhythmias

Feature Vector Selection for Automatic Classification of ECG Arrhythmias Feature Vector Selection for Automatic Classification of ECG Arrhythmias Ch.Venkanna 1, B. Raja Ganapathi 2 Assistant Professor, Dept. of ECE, G.V.P. College of Engineering (A), Madhurawada, A.P., India

More information

CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen

CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 3: DATA TRANSFORMATION AND DIMENSIONALITY REDUCTION Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major

More information

The Discrete Fourier Transform

The Discrete Fourier Transform The Discrete Fourier Transform Introduction The discrete Fourier transform (DFT) is a fundamental transform in digital signal processing, with applications in frequency analysis, fast convolution, image

More information

Available from Deakin Research Online:

Available from Deakin Research Online: This is the authors final peered reviewed (post print) version of the item published as: Adibi,S 2014, A low overhead scaled equalized harmonic-based voice authentication system, Telematics and informatics,

More information

PREDICTION AND ANALYSIS OF ECG SIGNAL BEHAVIOR USING SOFT COMPUTING

PREDICTION AND ANALYSIS OF ECG SIGNAL BEHAVIOR USING SOFT COMPUTING IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 5, May 2014, 199-206 Impact Journals PREDICTION AND ANALYSIS OF

More information

5MD00. Assignment Introduction. Luc Waeijen 16-12-2014

5MD00. Assignment Introduction. Luc Waeijen 16-12-2014 5MD00 Assignment Introduction Luc Waeijen 16-12-2014 Contents EEG application Background on EEG Early Seizure Detection Algorithm Implementation Details Super Scalar Assignment Description Tooling (simple

More information

THE EFFECT OF MOTHER WAVELET AND SUBBAND CHOICE ON CLUSTERING OF IMAGES DATABASE

THE EFFECT OF MOTHER WAVELET AND SUBBAND CHOICE ON CLUSTERING OF IMAGES DATABASE THE EFFECT OF MOTHER WAVELET AND SUBBAND CHOICE ON CLUSTERING OF IMAGES DATABASE Salim Lahmiri 1 1 Department of Computer Science, University of Quebec at Montreal Montreal, Canada Lahmiri.salim@courrier.uqam.ca

More information

Enhancement of scanned documents in Besov spaces using wavelet domain representations

Enhancement of scanned documents in Besov spaces using wavelet domain representations Enhancement of scanned documents in Besov spaces using wavelet domain representations Kathrin Berkner 1 Ricoh Innovations, Inc., 2882 Sand Hill Road, Suite 115, Menlo Park, CA 94025 ABSTRACT After scanning,

More information

INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS

INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS #. INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS Mark A. Pinsky Northwestern University BROOKS/COLE * THOMSON LEARNING Australia Canada Mexico Singapore Spain United Kingdom United States 1 FOURIER SERIES

More information

Probabilistic Inter-Disturbance Interval Estimation for Bearing Fault Diagnosis

Probabilistic Inter-Disturbance Interval Estimation for Bearing Fault Diagnosis MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Probabilistic Inter-Disturbance Interval Estimation for Bearing Fault Diagnosis Kevin Wilson TR29-6 October 29 Abstract We describe a new method

More information

Digital image processing

Digital image processing Digital image processing The two-dimensional discrete Fourier transform and applications: image filtering in the frequency domain Introduction Frequency domain filtering modifies the brightness values

More information

Implementation of FIR Filter using Adjustable Window Function and Its Application in Speech Signal Processing

Implementation of FIR Filter using Adjustable Window Function and Its Application in Speech Signal Processing International Journal of Advances in Electrical and Electronics Engineering 158 Available online at www.ijaeee.com & www.sestindia.org/volume-ijaeee/ ISSN: 2319-1112 Implementation of FIR Filter using

More information

EDGE-PRESERVING SMOOTHING OF HIGH-RESOLUTION IMAGES WITH A PARTIAL MULTIFRACTAL RECONSTRUCTION SCHEME

EDGE-PRESERVING SMOOTHING OF HIGH-RESOLUTION IMAGES WITH A PARTIAL MULTIFRACTAL RECONSTRUCTION SCHEME EDGE-PRESERVING SMOOTHING OF HIGH-RESOLUTION IMAGES WITH A PARTIAL MULTIFRACTAL RECONSTRUCTION SCHEME Jacopo Grazzini, Antonio Turiel and Hussein Yahia Air Project Departament de Física Fondamental INRIA

More information

Big Data: Image & Video Analytics

Big Data: Image & Video Analytics Big Data: Image & Video Analytics How it could support Archiving & Indexing & Searching Dieter Haas, IBM Deutschland GmbH The Big Data Wave 60% of internet traffic is multimedia content (images and videos)

More information

Hurst parameter estimation on fractional Brownian motion and its application to the development of the zebrafish

Hurst parameter estimation on fractional Brownian motion and its application to the development of the zebrafish Hurst parameter estimation on fractional Brownian motion and its application to the development of the zebrafish Menglong FU Supervisor: Paul Bourgine July 7, 2013 Abstract In order to distinguish different

More information

Chapter 14. MPEG Audio Compression

Chapter 14. MPEG Audio Compression Chapter 14 MPEG Audio Compression 14.1 Psychoacoustics 14.2 MPEG Audio 14.3 Other Commercial Audio Codecs 14.4 The Future: MPEG-7 and MPEG-21 14.5 Further Exploration 1 Li & Drew c Prentice Hall 2003 14.1

More information

University of Zagreb Faculty of Electrical Engineering and Computing

University of Zagreb Faculty of Electrical Engineering and Computing University of Zagreb Faculty of Electrical Engineering and Computing Can we predict cardiac events? - Our experience on atrial fibrillation prediction after CABG Ratko Magjarević First Symposium ''Toward

More information

Shape Descriptors for Non-rigid Shapes with a Single Closed Contour

Shape Descriptors for Non-rigid Shapes with a Single Closed Contour IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 424-429, 2000. Shape Descriptors for Non-rigid Shapes with a Single Closed Contour Longin Jan Latecki and Rolf Lakämper and Ulrich Eckhardt

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Transcription of polyphonic signals using fast filter bank( Accepted version ) Author(s) Foo, Say Wei;

More information

Network traffic: Scaling

Network traffic: Scaling Network traffic: Scaling 1 Ways of representing a time series Timeseries Timeseries: information in time domain 2 Ways of representing a time series Timeseries FFT Timeseries: information in time domain

More information

Title: Zero-pad effects on conditional simulation and application of spatially-varying earthquake motions.

Title: Zero-pad effects on conditional simulation and application of spatially-varying earthquake motions. Cover page Title: Zero-pad effects on conditional simulation and application of spatially-varying earthquake motions. Authors: Nguyen Van Dinh 1 and Biswajit Basu 2 1, 2 School of Engineering, Trinity

More information

Sound and Music Computing: Rhythm Analysis and Music Mashups

Sound and Music Computing: Rhythm Analysis and Music Mashups Sound and Music Computing: Rhythm Analysis and Music Mashups Matthew Davies Sound and Music Computing Group INESC TEC, Porto Sistemas Multimedia, 28/04/15 About me PhD, Centre for Digital Music, QMUL,

More information

Part II Redundant Dictionaries and Pursuit Algorithms

Part II Redundant Dictionaries and Pursuit Algorithms Aisenstadt Chair Course CRM September 2009 Part II Redundant Dictionaries and Pursuit Algorithms Stéphane Mallat Centre de Mathématiques Appliquées Ecole Polytechnique Sparsity in Redundant Dictionaries

More information

DESIGN OF VLSI ARCHITECTURE USING 2D DISCRETE WAVELET TRANSFORM

DESIGN OF VLSI ARCHITECTURE USING 2D DISCRETE WAVELET TRANSFORM INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND SCIENCE DESIGN OF VLSI ARCHITECTURE USING 2D DISCRETE WAVELET TRANSFORM Lavanya Pulugu 1, Pathan Osman 2 1 M.Tech Student, Dept of ECE, Nimra

More information

Classic EEG (ERPs)/ Advanced EEG. Quentin Noirhomme

Classic EEG (ERPs)/ Advanced EEG. Quentin Noirhomme Classic EEG (ERPs)/ Advanced EEG Quentin Noirhomme Outline Origins of MEEG Event related potentials Time frequency decomposition i Source reconstruction Before to start EEGlab Fieldtrip (included in spm)

More information

Redundant Wavelet Transform Based Image Super Resolution

Redundant Wavelet Transform Based Image Super Resolution Redundant Wavelet Transform Based Image Super Resolution Arti Sharma, Prof. Preety D Swami Department of Electronics &Telecommunication Samrat Ashok Technological Institute Vidisha Department of Electronics

More information

Removal of Noise from MRI using Spectral Subtraction

Removal of Noise from MRI using Spectral Subtraction International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 3 (2014), pp. 293-298 International Research Publication House http://www.irphouse.com Removal of Noise

More information

GENDER RECOGNITION SYSTEM USING SPEECH SIGNAL

GENDER RECOGNITION SYSTEM USING SPEECH SIGNAL GENDER RECOGNITION SYSTEM USING SPEECH SIGNAL Md. Sadek Ali 1, Md. Shariful Islam 1 and Md. Alamgir Hossain 1 1 Dept. of Information & Communication Engineering Islamic University, Kushtia 7003, Bangladesh.

More information

Mesh Smoothing. Mark Pauly )NPUT $ATA 2EMOVAL OF TOPOLOGICAL AND GEOMETRICAL ERRORS !NALYSIS OF SURFACE QUALITY 3URFACE SMOOTHING FOR NOISE REMOVAL

Mesh Smoothing. Mark Pauly )NPUT $ATA 2EMOVAL OF TOPOLOGICAL AND GEOMETRICAL ERRORS !NALYSIS OF SURFACE QUALITY 3URFACE SMOOTHING FOR NOISE REMOVAL )NPUT $ATA 2ANGE 3CAN #!$ 4OMOGRAPHY 2EMOVAL OF TOPOLOGICAL AND GEOMETRICAL ERRORS!NALYSIS OF SURFACE QUALITY 3URFACE SMOOTHING FOR NOISE REMOVAL Mesh Smoothing 0ARAMETERIZATION Mark Pauly 3IMPLIFICATION

More information

Quiz 1 for Name: Good luck! 20% 20% 20% 20% Quiz page 1 of 16

Quiz 1 for Name: Good luck! 20% 20% 20% 20% Quiz page 1 of 16 Quiz 1 for 6.034 Name: 20% 20% 20% 20% Good luck! 6.034 Quiz page 1 of 16 Question #1 30 points 1. Figure 1 illustrates decision boundaries for two nearest-neighbour classifiers. Determine which one of

More information