Statistical Modeling by Wavelets


 Victor Warren
 2 years ago
 Views:
Transcription
1 Statistical Modeling by Wavelets BRANI VIDAKOVIC Duke University A WileyInterscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto
2 Contents Preface Acknowledgments 1 Introduction 1.1 Wavelet Evolution 1.2 Wavelet Revolution 1.3 Wavelets and Statistics 1.4 An Appetizer: California Earthquakes 2 Prerequisites 2.1 General 2.2 Hilbert Spaces Projection Theorem Orthonormal Sets Reproducing Kernel Hilbert Spaces 2.3 Fourier Transformation Basic Properties Poisson Summation Formula and Sampling Theorem xi xiii V
3 Vi CONTENTS FourierSeries Discrete Fourier Transform Heisenberg 's Uncertainty Principle Some Important Function Spaces Fundamentals of Signal Processing Exercises 40 3 Wavelets Continuous Wavelet Transformation Basic Properties Wavelets for Continuous Transformations Discretization ofthe Continuous Wavelet Transform Multiresolution Analysis Derivation of a Wavelet Function Some Important Wavelet Bases Haar's Wavelets Shannon 's Wavelets Meyer's Wavelets Franklin 's Wavelets Daubechies' Compactly Supported Wavelets Some Extensions Regularity of Wavelets The Least Asymmetrie Daubechies' Wavelets: Symmlets Approximations and Characterizations of Functional Spaces DaubechiesLagarias Algorithm Moment Conditions Interpolating (Cardinal) Wavelets PollenType Parameterization of'wavelets Exercises 96 4 Discrete Wavelet Transformations Introduction The Cascade Algorithm The Operator Notation of DWT Discrete Wavelet Transformations as Linear Transformations Exercises 117
4 CONTENTS VII 5 Some Generalizations Coiflets Construction of Coiflets Biorthogonal Wavelets Construction of Biorthogonal Wavelets BSpline Wavelets Wavelet Packets Basic Properties of Wavelet Packets Wavelet Packet Tables Best Basis Selection Some Cost Measures and the Best Basis Algorithm edecimated and Stationary Wavelet Transformations edecimated Wavelet Transformation Stationary (NonDecimated) Wavelet Transformation Periodic Wavelet Transformations Multivariate Wavelet Transformations Discussion Exercises Wavelet Shrinkage Shrinkage Method Linear Wavelet Regression Estimators Wavelet Kernels Local Constant Fit Estimators The Simplest NonLinear Wavelet Shrinkage: Thresholding Variable Selection and Thresholding Oracular Riskfor Thresholding Rules Why the Wavelet Shrinkage Works Almost Sure Convergence of Wavelet Shrinkage Estimators General Minimax Paradigm Translation of Minimaxity Results to the Wavelet Domain Thresholding Policies and Thresholding Rules Exact Risk Analysis of Thresholding Rules Large Sample Properties of f 189
5 VÜi CONTENTS Some Other Shrinkage Rules How to Select a Threshold Mallat's Model and Induced Percentile Thresholding Universal Threshold A Threshold Based on Stein 's Unbiased Estimator ofrisk CrossValidation Thresholding as atesting Problem Lorentz Curve Thresholding Block Thresholding Estimators Other Methods and References Exercises Density Estimation Orthogonal Series Density Estimators Wavelet Density Estimation ÖSequence Density Estimators Bias and Variance of Linear Wavelet Density Estimators Linear Wavelet Density Estimators in a More General Setting NonLinear Wavelet Density Estimators Global Thresholding Estimator NonNegative Density Estimators Estimating the Square Root of a Density Density Estimation by NonNegative Wavelets Other Methods Multivariate Wavelet Density Estimators Density Estimation as a Regression Problem CrossValidation Estimator Multiscale Estimator Estimation of a Derivative of a Density Exercises Bayesian Methods in Wavelets Motiv ational Examples Smooth Shrinkage Bayesian Thresholding 255
6 CONTENTS ix MAPPrinciple Density Estimation Problem Füll Bayesian Model Discussion and References Exercises Wavelets and Random Processes Stationary Time Series Wavelets and Stationary Processes Wavelet Transformations of Stationary Processes Whitening of Stationary Processes KarhunenLoeveLike Expansions 9.3 Estimation of Spectral Densities Gao 's Algorithm NonGaussian Stationary Processes 9.4 Wavelet Spectrum Wavelet Spectrum ofa Stationary Time Series Scalogram and Periodicities 9.5 LongMemory Processes Wavelets and Fractional Brownian Motion Estimating Spectral Exponents in SelfSimilar Processes Quantifying the Whitening Property of Wavelet Transformations for fbm Processes Discussion and References Exercises WaveletBased Random Variables and Densities Scaling Function as a Density WaveletBased Random Variables Random Densities via Wavelets Tree Algorithm Properties of WaveletBased Random Densities Random Densities With Constraints Smoothness Constraints Constraints on Symmetry Constraints on Modality Skewed Random Densities 313
7 X CONTENTS 10.6 Exercises Miscellaneous Statistical Applications Deconvolution Problems Wavelet Vaguelette Decompositions Pursuit Methods Moments of Order Statistics Wavelets and Statistical Turbulence K41 Theory Townsend's Decompositions Software and WWW Resources for Wavelet Analysis Commercial Wavelet Software Free Wavelet Software Some WWW Resources Exercises 342 References 345 Notation Index 371 Author Index 373 Subject Index 379
Wavelet Analysis Based Estimation of Probability Density function of Wind Data
, pp.2334 http://dx.doi.org/10.14257/ijeic.2014.5.3.03 Wavelet Analysis Based Estimation of Probability Density function of Wind Data Debanshee Datta Department of Mechanical Engineering Indian Institute
More informationAdvanced Signal Processing and Digital Noise Reduction
Advanced Signal Processing and Digital Noise Reduction Saeed V. Vaseghi Queen's University of Belfast UK WILEY HTEUBNER A Partnership between John Wiley & Sons and B. G. Teubner Publishers Chichester New
More informationA Wavelet Based Prediction Method for Time Series
A Wavelet Based Prediction Method for Time Series Cristina Stolojescu 1,2 Ion Railean 1,3 Sorin Moga 1 Philippe Lenca 1 and Alexandru Isar 2 1 Institut TELECOM; TELECOM Bretagne, UMR CNRS 3192 LabSTICC;
More informationAdvanced Linear Modeling
Ronald Christensen Advanced Linear Modeling Multivariate, Time Series, and Spatial Data; Nonparametric Regression and Response Surface Maximization Second Edition Springer Preface to the Second Edition
More informationINTRODUCTORY STATISTICS
INTRODUCTORY STATISTICS FIFTH EDITION Thomas H. Wonnacott University of Western Ontario Ronald J. Wonnacott University of Western Ontario WILEY JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore
More informationProbability and Statistics
Probability and Statistics Syllabus for the TEMPUS SEE PhD Course (Podgorica, April 4 29, 2011) Franz Kappel 1 Institute for Mathematics and Scientific Computing University of Graz Žaneta Popeska 2 Faculty
More informationUnivariate and Multivariate Methods PEARSON. Addison Wesley
Time Series Analysis Univariate and Multivariate Methods SECOND EDITION William W. S. Wei Department of Statistics The Fox School of Business and Management Temple University PEARSON Addison Wesley Boston
More informationPoint Lattices in Computer Graphics and Visualization how signal processing may help computer graphics
Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics Dimitri Van De Ville Ecole Polytechnique Fédérale de Lausanne Biomedical Imaging Group dimitri.vandeville@epfl.ch
More informationAN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEYINTERSCIENCE A John Wiley & Sons, Inc.,
More informationMATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
More informationBusiness Analytics. Methods, Models, and Decisions. James R. Evans : University of Cincinnati PEARSON
Business Analytics Methods, Models, and Decisions James R. Evans : University of Cincinnati PEARSON Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London
More informationGraduate Programs in Statistics
Graduate Programs in Statistics Course Titles STAT 100 CALCULUS AND MATR IX ALGEBRA FOR STATISTICS. Differential and integral calculus; infinite series; matrix algebra STAT 195 INTRODUCTION TO MATHEMATICAL
More informationCS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen
CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 3: DATA TRANSFORMATION AND DIMENSIONALITY REDUCTION Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major
More informationWavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let)
Wavelet analysis In the case of Fourier series, the orthonormal basis is generated by integral dilation of a single function e jx Every 2πperiodic squareintegrable function is generated by a superposition
More informationMultivariate Statistical Inference and Applications
Multivariate Statistical Inference and Applications ALVIN C. RENCHER Department of Statistics Brigham Young University A WileyInterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim
More informationEmpirical ModelBuilding and Response Surfaces
Empirical ModelBuilding and Response Surfaces GEORGE E. P. BOX NORMAN R. DRAPER Technische Universitat Darmstadt FACHBEREICH INFORMATIK BIBLIOTHEK InvortarNf.. Sachgsbiete: Standort: New York John Wiley
More informationVery Preliminary Program
Very Preliminary Program Two of the participants will give Colloquium talks before the meeting. The workshop it self starts on Friday morning. All talks will take place in Lockett, 277. The room is equipped
More informationInstitute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
More informationLecture Notes for ECE 361. Fall 1995
Introduction to Digital Communication Systems Lecture Notes for ECE 361 Fall 1995 Dilip V. Sarwate Department of Electrical and Computer Engineering University of Illinois at UrbanaChampaign Urbana, Illinois
More informationSampling 50 Years After Shannon
Sampling 50 Years After Shannon MICHAEL UNSER, FELLOW, IEEE This paper presents an account of the current state of sampling, 50 years after Shannon s formulation of the sampling theorem. The emphasis is
More informationMeasuring Line Edge Roughness: Fluctuations in Uncertainty
Tutor6.doc: Version 5/6/08 T h e L i t h o g r a p h y E x p e r t (August 008) Measuring Line Edge Roughness: Fluctuations in Uncertainty Line edge roughness () is the deviation of a feature edge (as
More informationSoftware and Hardware Solutions for Accurate Data and Profitable Operations. Miguel J. Donald J. Chmielewski Contributor. DuyQuang Nguyen Tanth
Smart Process Plants Software and Hardware Solutions for Accurate Data and Profitable Operations Miguel J. Bagajewicz, Ph.D. University of Oklahoma Donald J. Chmielewski Contributor DuyQuang Nguyen Tanth
More informationSTA 4273H: Statistical Machine Learning
STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct
More informationGeneralized Inverse of Matrices and its Applications
Generalized Inverse of Matrices and its Applications C. RADHAKRISHNA RAO, Sc.D., F.N.A., F.R.S. Director, Research and Training School Indian Statistical Institute SUJIT KUMAR MITRA, Ph.D. Professor of
More informationCASCADE models or multiplicative processes make especially
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 3, APRIL 1999 971 Scaling Analysis of Conservative Cascades, with Applications to Network Traffic A. C. Gilbert, W. Willinger, Member, IEEE, and A.
More informationDigital Image Processing
Digital Image Processing Using MATLAB Second Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive Steven L. Eddins The MathWorks, Inc. Gatesmark Publishing A Division
More informationFiltering method in wireless sensor network management based on EMD algorithm and multi scale wavelet analysis
Available online www.ocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(6):912918 Research Article ISSN : 09757384 CODEN(USA) : JCPRC5 Filtering method in wireless sensor network management
More informationFundamentals of Actuarial Mathematics
Fundamentals of Actuarial Mathematics S. David Promislow York University, Toronto, Canada John Wiley & Sons, Ltd Contents Preface Notation index xiii xvii PARTI THE DETERMINISTIC MODEL 1 1 Introduction
More informationSNMP Simple Network Measurements Please!
SNMP Simple Network Measurements Please! Matthew Roughan (+many others) 1 Outline Part I: SNMP traffic data Simple Network Management Protocol Why? How? What? Part II: Wavelets
More informationContents. List of Figures. List of Tables. List of Examples. Preface to Volume IV
Contents List of Figures List of Tables List of Examples Foreword Preface to Volume IV xiii xvi xxi xxv xxix IV.1 Value at Risk and Other Risk Metrics 1 IV.1.1 Introduction 1 IV.1.2 An Overview of Market
More informationAdvanced Topics in Statistical Process Control
Advanced Topics in Statistical Process Control The Power of Shewhart s Charts Second Edition Donald J. Wheeler SPC Press Knoxville, Tennessee Contents Preface to the Second Edition Preface The Shewhart
More informationCapturing the Complete Multifractal Characteristics of Network Traffic
Capturing the Complete Multifractal Characteristics of Network Traffic Trang Dinh Dang, Sándor Molnár, István Maricza High Speed Networks Laboratory, Dept. of Telecommunications & Telematics Budapest University
More informationFunctional Data Analysis of MALDI TOF Protein Spectra
Functional Data Analysis of MALDI TOF Protein Spectra Dean Billheimer dean.billheimer@vanderbilt.edu. Department of Biostatistics Vanderbilt University Vanderbilt Ingram Cancer Center FDA for MALDI TOF
More informationPROBABILITY AND STATISTICS. Ma 527. 1. To teach a knowledge of combinatorial reasoning.
PROBABILITY AND STATISTICS Ma 527 Course Description Prefaced by a study of the foundations of probability and statistics, this course is an extension of the elements of probability and statistics introduced
More informationNotes for STA 437/1005 Methods for Multivariate Data
Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.
More informationAdvances in Stochastic Models for Reliability, Quality and Safety
Advances in Stochastic Models for Reliability, Quality and Safety Waltraud Kahle Elart von Collani Jürgen Franz Uwe Jensen Editors Birkhäuser Boston Basel Berlin Preface List of Contributors List of Tables
More informationSPEECH SIGNAL CODING FOR VOIP APPLICATIONS USING WAVELET PACKET TRANSFORM A
International Journal of Science, Engineering and Technology Research (IJSETR), Volume, Issue, January SPEECH SIGNAL CODING FOR VOIP APPLICATIONS USING WAVELET PACKET TRANSFORM A N.Rama Tej Nehru, B P.Sunitha
More informationExploratory Data Analysis with MATLAB
Computer Science and Data Analysis Series Exploratory Data Analysis with MATLAB Second Edition Wendy L Martinez Angel R. Martinez Jeffrey L. Solka ( r ec) CRC Press VV J Taylor & Francis Group Boca Raton
More informationSummary Nonstationary Time Series Multitude of Representations Possibilities from Applied Computational Harmonic Analysis Tests of Stationarity
Nonstationary Time Series, Priestley s Evolutionary Spectra and Wavelets Guy Nason, School of Mathematics, University of Bristol Summary Nonstationary Time Series Multitude of Representations Possibilities
More informationMaster of Mathematical Finance: Course Descriptions
Master of Mathematical Finance: Course Descriptions CS 522 Data Mining Computer Science This course provides continued exploration of data mining algorithms. More sophisticated algorithms such as support
More informationIntegrated Wavelet Denoising Method for HighFrequency Financial Data Forecasting
Integrated Wavelet Denoising Method for HighFrequency Financial Data Forecasting Edward W. Sun KEDGE Business School, France YiTing Chen School of Computer Science National Chiao Tung University, Taiwan
More informationThe Big 50 Revision Guidelines for S1
The Big 50 Revision Guidelines for S1 If you can understand all of these you ll do very well 1. Know what is meant by a statistical model and the Modelling cycle of continuous refinement 2. Understand
More informationFRACTIONAL INTEGRALS AND DERIVATIVES. Theory and Applications
FRACTIONAL INTEGRALS AND DERIVATIVES Theory and Applications Stefan G. Samko Rostov State University, Russia Anatoly A. Kilbas Belorussian State University, Minsk, Belarus Oleg I. Marichev Belorussian
More informationSchneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i.
New York, NY, USA: Basic Books, 2013. p i. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=2 New York, NY, USA: Basic Books, 2013. p ii. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=3 New
More informationStatistics Graduate Courses
Statistics Graduate Courses STAT 7002Topics in StatisticsBiological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.
More information3: Summary Statistics
3: Summary Statistics Notation Let s start by introducing some notation. Consider the following small data set: 4 5 30 50 8 7 4 5 The symbol n represents the sample size (n = 0). The capital letter X denotes
More informationESSENTIAL COMPUTATIONAL FLUID DYNAMICS
ESSENTIAL COMPUTATIONAL FLUID DYNAMICS Oleg Zikanov WILEY JOHN WILEY & SONS, INC. CONTENTS PREFACE xv 1 What Is CFD? 1 1.1. Introduction / 1 1.2. Brief History of CFD / 4 1.3. Outline of the Book / 6 References
More informationMoving Least Squares Approximation
Chapter 7 Moving Least Squares Approimation An alternative to radial basis function interpolation and approimation is the socalled moving least squares method. As we will see below, in this method the
More information20142015 The Master s Degree with Thesis Course Descriptions in Industrial Engineering
20142015 The Master s Degree with Thesis Course Descriptions in Industrial Engineering Compulsory Courses IENG540 Optimization Models and Algorithms In the course important deterministic optimization
More informationMethods for Metaanalysis in Medical Research
Methods for Metaanalysis in Medical Research Alex J. Sutton University of Leicester, UK Keith R. Abrams University of Leicester, UK David R. Jones University of Leicester, UK Trevor A. Sheldon University
More informationNMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.
NMR SPECTROSCOPY Basic Principles, Concepts, and Applications in Chemistry Harald Günther University of Siegen, Siegen, Germany Second Edition Translated by Harald Günther JOHN WILEY & SONS Chichester
More informationIllPosed Problems in Probability and Stability of Random Sums. Lev B. Klebanov, Tomasz J. Kozubowski, and Svetlozar T. Rachev
IllPosed Problems in Probability and Stability of Random Sums By Lev B. Klebanov, Tomasz J. Kozubowski, and Svetlozar T. Rachev Preface This is the first of two volumes concerned with the illposed problems
More informationIntroduction to Time Series Analysis and Forecasting. 2nd Edition. Wiley Series in Probability and Statistics
Brochure More information from http://www.researchandmarkets.com/reports/3024948/ Introduction to Time Series Analysis and Forecasting. 2nd Edition. Wiley Series in Probability and Statistics Description:
More informationA multiscale approach to InSAR time series analysis
A multiscale approach to InSAR time series analysis M. Simons, E. Hetland, P. Muse, Y. N. Lin & C. DiCaprio U Interferogram stack time A geophysical perspective on deformation tomography Examples: Long
More informationCalculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum
Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic
More informationInternational Transmission of Stock Market Movements : A Wavelet Analysis on MENA Stock Markets
International Transmission of Stock Market Movements : A Wavelet Analysis on MENA Stock Markets Hahn Shik Lee Department of Economics Sogang University Seoul, KOREA October 2001 This is a preliminary draft
More informationSignal Denoising Using Wavelets
Signal Denoising Using Wavelets Project Report Author: Rami Cohen (rc@tx.technion.ac.il) http://tx.technion.ac.il/ rc Department of Electrical Engineering Technion, Israel Institute of Technology Winter
More informationImproving Demand Forecasting
Improving Demand Forecasting 2 nd July 2013 John Tansley  CACI Overview The ideal forecasting process: Efficiency, transparency, accuracy Managing and understanding uncertainty: Limits to forecast accuracy,
More informationAnalysis of Financial Time Series
Analysis of Financial Time Series Analysis of Financial Time Series Financial Econometrics RUEY S. TSAY University of Chicago A WileyInterscience Publication JOHN WILEY & SONS, INC. This book is printed
More informationTwo Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering
Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering Department of Industrial Engineering and Management Sciences Northwestern University September 15th, 2014
More informationAn Introduction to Machine Learning
An Introduction to Machine Learning L5: Novelty Detection and Regression Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au Tata Institute, Pune,
More informationApplied Linear Algebra I Review page 1
Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties
More informationDigital Image Processing
GONZ_FMv3.qxd 7/26/07 9:05 AM Page i Digital Image Processing Third Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive Upper Saddle River, NJ 07458 GONZ_FMv3.qxd 7/26/07
More informationDATA ANALYTICS USING R
DATA ANALYTICS USING R Duration: 90 Hours Intended audience and scope: The course is targeted at fresh engineers, practicing engineers and scientists who are interested in learning and understanding data
More informationProbabilistic properties and statistical analysis of network traffic models: research project
Probabilistic properties and statistical analysis of network traffic models: research project The problem: It is commonly accepted that teletraffic data exhibits selfsimilarity over a certain range of
More informationExample 1: Calculate and compare RiskMetrics TM and Historical Standard Deviation Compare the weights of the volatility parameter using,, and.
3.6 Compare and contrast different parametric and nonparametric approaches for estimating conditional volatility. 3.7 Calculate conditional volatility using parametric and nonparametric approaches. Parametric
More informationNonLife Insurance Mathematics
Thomas Mikosch NonLife Insurance Mathematics An Introduction with the Poisson Process Second Edition 4y Springer Contents Part I Collective Risk Models 1 The Basic Model 3 2 Models for the Claim Number
More informationMarket Risk Analysis. Quantitative Methods in Finance. Volume I. The Wiley Finance Series
Brochure More information from http://www.researchandmarkets.com/reports/2220051/ Market Risk Analysis. Quantitative Methods in Finance. Volume I. The Wiley Finance Series Description: Written by leading
More informationAlgebra I Credit Recovery
Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,
More informationMATHEMATICS (MATH) 3. Provides experiences that enable graduates to find employment in sciencerelated
194 / Department of Natural Sciences and Mathematics MATHEMATICS (MATH) The Mathematics Program: 1. Provides challenging experiences in Mathematics, Physics, and Physical Science, which prepare graduates
More informationMathematical Modeling and Methods of Option Pricing
Mathematical Modeling and Methods of Option Pricing This page is intentionally left blank Mathematical Modeling and Methods of Option Pricing Lishang Jiang Tongji University, China Translated by Canguo
More informationQUANTITATIVE METHODS. for Decision Makers. Mik Wisniewski. Fifth Edition. FT Prentice Hall
Fifth Edition QUANTITATIVE METHODS for Decision Makers Mik Wisniewski Senior Research Fellow, Department of Management Science, University of Strathclyde Business School FT Prentice Hall FINANCIAL TIMES
More informationFour Essays on the Empirical Properties of Stock Market Volatility
Four Essays on the Empirical Properties of Stock Market Volatility Thesis Presented to the Faculty of Economics and Social Sciences of the University of Fribourg (Switzerland) in fulfillment of the requirements
More informationRF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS
RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. 4y Springer Contents Preface xiii Chapter 1. Introduction 1 1.1. Wireless Systems 1 1.1.1. Mobile Communications
More informationModeling Heterogeneous Network Traffic in Wavelet Domain
634 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 5, OCTOBER 2001 Modeling Heterogeneous Network Traffic in Wavelet Domain Sheng Ma, Member, IEEE, Chuanyi Ji Abstract Heterogeneous network traffic possesses
More informationHurst parameter estimation on fractional Brownian motion and its application to the development of the zebrafish
Hurst parameter estimation on fractional Brownian motion and its application to the development of the zebrafish Menglong FU Supervisor: Paul Bourgine July 7, 2013 Abstract In order to distinguish different
More informationAlgebra 1 Course Title
Algebra 1 Course Title Course wide 1. What patterns and methods are being used? Course wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
More informationWavelet Thresholding for Non (Necessarily) Gaussian Noise
Wavelet Thresholding for Non (Necessarily Gaussian Noise Dissertation zur Erlangung des Doktorgrades der Mathematischen Fakultät der AlbertLudwigsUniversität Freiburg i. Br. vorgelegt von Roland Averkamp
More informationEvolutionary denoising based on an estimation of Hölder exponents with oscillations.
Evolutionary denoising based on an estimation of Hölder exponents with oscillations. Pierrick Legrand,, Evelyne Lutton and Gustavo Olague CICESE, Research Center, Applied Physics Division Centro de Investigación
More informationStatistical Analysis with Missing Data
Statistical Analysis with Missing Data Second Edition RODERICK J. A. LITTLE DONALD B. RUBIN WILEY INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface PARTI OVERVIEW AND BASIC APPROACHES
More informationMODERN PORTFOLIO THEORY AND INVESTMENT ANALYSIS
MODERN PORTFOLIO THEORY AND INVESTMENT ANALYSIS EIGHTH EDITION INTERNATIONAL STUDENT VERSION EDWIN J. ELTON Leonard N. Stern School of Business New York University MARTIN J. GRUBER Leonard N. Stern School
More informationAn Introduction to the Wavelet Analysis of Time Series
An Introduction to the Wavelet Analysis of Time Series Don Percival Applied Physics Lab, University of Washington, Seattle Dept. of Statistics, University of Washington, Seattle MathSoft, Inc., Seattle
More informationMaster of Arts in Mathematics
Master of Arts in Mathematics Administrative Unit The program is administered by the Office of Graduate Studies and Research through the Faculty of Mathematics and Mathematics Education, Department of
More informationLecture 3: Continuous distributions, expected value & mean, variance, the normal distribution
Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution 8 October 2007 In this lecture we ll learn the following: 1. how continuous probability distributions differ
More informationLecture 18: The TimeBandwidth Product
WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 18: The TimeBandwih Product Prof.Prof.V.M.Gadre, EE, IIT Bombay 1 Introduction In this lecture, our aim is to define the time Bandwih Product,
More informationNumerical Methods for Engineers
Steven C. Chapra Berger Chair in Computing and Engineering Tufts University RaymondP. Canale Professor Emeritus of Civil Engineering University of Michigan Numerical Methods for Engineers With Software
More informationComputational Optical Imaging  Optique Numerique.  Deconvolution 
Computational Optical Imaging  Optique Numerique  Deconvolution  Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method
More informationForecasting Gold Return Using Wavelet Analysis
World Applied Sciences Journal 19 (2): 276280, 2012 ISSN 18184952; IDOSI Publications, 2012 DOI: 10.5829/idosi.wasj.2012.19.02.933 Forecasting Gold Return Using Wavelet Analysis Mahdi Nouri, Ali Reza
More informationProbability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special DistributionsVI Today, I am going to introduce
More information11. Time series and dynamic linear models
11. Time series and dynamic linear models Objective To introduce the Bayesian approach to the modeling and forecasting of time series. Recommended reading West, M. and Harrison, J. (1997). models, (2 nd
More informationPricing and calibration in local volatility models via fast quantization
Pricing and calibration in local volatility models via fast quantization Parma, 29 th January 2015. Joint work with Giorgia Callegaro and Martino Grasselli Quantization: a brief history Birth: back to
More informationWaveletbased prediction of oil prices
Chaos, Solitons and Fractals 25 (2005) 265 275 www.elsevier.com/locate/chaos Waveletbased prediction of oil prices Shahriar Yousefi a, Ilona Weinreich b, *, Dominik Reinarz b a The Econometric Group,
More informationA SimulationBased lntroduction Using Excel
Quantitative Finance A SimulationBased lntroduction Using Excel Matt Davison University of Western Ontario London, Canada CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint
More informationSOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY
3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 6, 24 Paper No. 296 SOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY ASHOK KUMAR SUMMARY One of the important
More informationQUALITY ENGINEERING PROGRAM
QUALITY ENGINEERING PROGRAM Production engineering deals with the practical engineering problems that occur in manufacturing planning, manufacturing processes and in the integration of the facilities and
More informationEnhancement of scanned documents in Besov spaces using wavelet domain representations
Enhancement of scanned documents in Besov spaces using wavelet domain representations Kathrin Berkner 1 Ricoh Innovations, Inc., 2882 Sand Hill Road, Suite 115, Menlo Park, CA 94025 ABSTRACT After scanning,
More informationNumerical Analysis An Introduction
Walter Gautschi Numerical Analysis An Introduction 1997 Birkhauser Boston Basel Berlin CONTENTS PREFACE xi CHAPTER 0. PROLOGUE 1 0.1. Overview 1 0.2. Numerical analysis software 3 0.3. Textbooks and monographs
More informationTime Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication
Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Thomas Reilly Data Physics Corporation 1741 Technology Drive, Suite 260 San Jose, CA 95110 (408) 2168440 This paper
More informationA Coefficient of Variation for Skewed and HeavyTailed Insurance Losses. Michael R. Powers[ 1 ] Temple University and Tsinghua University
A Coefficient of Variation for Skewed and HeavyTailed Insurance Losses Michael R. Powers[ ] Temple University and Tsinghua University Thomas Y. Powers Yale University [June 2009] Abstract We propose a
More informationIntroduction to Machine Learning. Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011
Introduction to Machine Learning Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011 1 Outline 1. What is machine learning? 2. The basic of machine learning 3. Principles and effects of machine learning
More information