TURKISH ORACLE USER GROUP
|
|
|
- Barrie Powell
- 10 years ago
- Views:
Transcription
1 TURKISH ORACLE USER GROUP Data Mining in 30 Minutes Husnu Sensoy Global Maksimum Data & Information Tech. Founder VLDB Expert
2 Agenda Who am I? Different problems of Data Mining In database data mining?!? German Credit Ad-hoc Attacks DBMS_PREDICTIVE_ANALYTICS Attribute Importance Training/Validation Set Training Evaluation Conclusion
3 Who am I? Co-Founder of TROUG Oracle ACED on BI DBA of The Year 2009 Senior Member of Oracle DWH CAB Exadata Implementation Specialist
4 Data Mining Data Information Knowledge In DWH 1.0 we have accumulated sufficient amount of columns and rows. Classical reporting is nothing both rotating, folding, cutting, and pasting the same data again and again. It is just DATA TRANSFORMATION. User should infer the information and knowledge if lucky. Data Mining is all about creating information/insight about your business. Data Scientists are/will be the actual founders of BI environment what we have meant a few decades ago.
5 Different Problems of Data Mining Classification Regression Outlier Detection Basket Analysis Social Network Analysis Sentiment Analysis
6 In Database Data Mining 90% of data mining is all about finding the correct inputs In contrast to common belief using fancy algorithms will not improve your results by large factors Finding correct inputs is a matter of Join Group By Densification Database Management Systems are still the best place to handle those operations
7 German Credit Scoring SOLVING A SAMPLE PROBLEM
8 Details of SAMPLE DATA 20 Different Inputs A few examples Status of existing checking account Credit History Purpose Credit amount. Details : Classification Target: 1 for Good for Credit, 2 for Bad for Credit
9 Adhoc Attacks The first trials are always (and should be) adhoc. What is the distribution of Good and Bad Candidates? (Prior) Do we need any strafied sampling? What is the distribution of Good and Bad Candidates given that a variable X get value Y? (Posterior) Correlation between each variable and target value?
10 Data Mining at Speed of Light DBMS_PREDICTIVE_ANALYTICS functions allow us to perform mining activity very quickly: PREDICT: Support Vector Machine (SVM) model to perform credit score prediction. PROFILE: Decision Tree based explanatory model EXPLAIN: Minimum Descriptive Length (MDL) based attribute importance algorithm.
11 Attribute Importance Some mining problems may contain extremely high number of attributes: Amazon Access Sample : attributes Amazon Commerce Reviews Set : attributes URL Reputation: attributes Reducing the number of attributes before any analysis will let you See trees in forest Move quickly Use less resources
12 Training vs. Validation Set In order to deliver unbiased performance results for data models, training and validation sets should be exclusive. There are different techniques used in literature %X validation vs %(100-X) training K-fold cross validation Ensure that your method is Suitable for your problem type Statistically stable and sound.
13 Model Build Oracle Data Miner offers several algorithms for data modeling Naïve Bayesian Decision Tree Generalize Linear Model (GLM) Support Vector Machine Remember that all model requires a unique identifier in data set.
14 Evaluation & Scoring Obviously final point is on how well you did with your model. This step is usually told to be evaluation Once you are sure that your model is sufficiently accurate final step is to score a given customer for credit Batch Real-time
15 Conclusion Remember that 90% of data modeling is all about adhoc attacks. That makes in database mining very appealing A crude understanding of your data might save huge amount of time. Some problems may ask for input set reduction DBMS_PREDICTIVE_ANALYTICS is the adhoc way of data modeling. For model evaluation & scoring use prediction and prediction_probability operators of SQL.
16 TEŞEKKÜRLER Husnu Sensoy
What Are They Thinking? With Oracle Application Express and Oracle Data Miner
What Are They Thinking? With Oracle Application Express and Oracle Data Miner Roel Hartman Brendan Tierney Agenda Who are we The Scenario Graphs & Charts in APEX - Live Demo Oracle Data Miner & DBA tasks
Anomaly and Fraud Detection with Oracle Data Mining 11g Release 2
Oracle 11g DB Data Warehousing ETL OLAP Statistics Anomaly and Fraud Detection with Oracle Data Mining 11g Release 2 Data Mining Charlie Berger Sr. Director Product Management, Data
Azure Machine Learning, SQL Data Mining and R
Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Overview This 4-day class is the first of the two data science courses taught by Rafal Lukawiecki. Some of the topics will be
Microsoft Azure Machine learning Algorithms
Microsoft Azure Machine learning Algorithms Tomaž KAŠTRUN @tomaz_tsql [email protected] http://tomaztsql.wordpress.com Our Sponsors Speaker info https://tomaztsql.wordpress.com Agenda Focus on explanation
The Data Mining Process
Sequence for Determining Necessary Data. Wrong: Catalog everything you have, and decide what data is important. Right: Work backward from the solution, define the problem explicitly, and map out the data
The? Data: Introduction and Future
The? Data: Introduction and Future Husnu Sensoy Global Maksimum Data & Information Technologies Global Maksimum Data & Information Technologies The Data Company Massive Data Unstructured Data Insight Information
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
Data Mining + Business Intelligence. Integration, Design and Implementation
Data Mining + Business Intelligence Integration, Design and Implementation ABOUT ME Vijay Kotu Data, Business, Technology, Statistics BUSINESS INTELLIGENCE - Result Making data accessible Wider distribution
Cross Validation. Dr. Thomas Jensen Expedia.com
Cross Validation Dr. Thomas Jensen Expedia.com About Me PhD from ETH Used to be a statistician at Link, now Senior Business Analyst at Expedia Manage a database with 720,000 Hotels that are not on contract
Oracle Data Mining. Concepts 11g Release 2 (11.2) E16808-07
Oracle Data Mining Concepts 11g Release 2 (11.2) E16808-07 June 2013 Oracle Data Mining Concepts, 11g Release 2 (11.2) E16808-07 Copyright 2005, 2013, Oracle and/or its affiliates. All rights reserved.
SAP Predictive Analytics: An Overview and Roadmap. Charles Gadalla, SAP @cgadalla SESSION CODE: 603
SAP Predictive Analytics: An Overview and Roadmap Charles Gadalla, SAP @cgadalla SESSION CODE: 603 Advanced Analytics SAP Vision Embed Smart Agile Analytics into Decision Processes to Deliver Business
Predictive modelling around the world 28.11.13
Predictive modelling around the world 28.11.13 Agenda Why this presentation is really interesting Introduction to predictive modelling Case studies Conclusions Why this presentation is really interesting
Data Mining. Dr. Saed Sayad. University of Toronto 2010 [email protected]. http://chem-eng.utoronto.ca/~datamining/
Data Mining Dr. Saed Sayad University of Toronto 2010 [email protected] http://chem-eng.utoronto.ca/~datamining/ 1 Data Mining Data mining is about explaining the past and predicting the future by
Tax Fraud in Increasing
Preventing Fraud with Through Analytics Satya Bhamidipati Data Scientist Business Analytics Product Group Copyright 2014 Oracle and/or its affiliates. All rights reserved. 2 Tax Fraud in Increasing 27%
Exadata V2 + Oracle Data Mining 11g Release 2 Importing 3 rd Party (SAS) dm models
Exadata V2 + Oracle Data Mining 11g Release 2 Importing 3 rd Party (SAS) dm models Charlie Berger Sr. Director Product Management, Data Mining Technologies Oracle Corporation [email protected]
COPYRIGHTED MATERIAL. Contents. List of Figures. Acknowledgments
Contents List of Figures Foreword Preface xxv xxiii xv Acknowledgments xxix Chapter 1 Fraud: Detection, Prevention, and Analytics! 1 Introduction 2 Fraud! 2 Fraud Detection and Prevention 10 Big Data for
Oracle Advanced Analytics Oracle R Enterprise & Oracle Data Mining
Oracle Advanced Analytics Oracle R Enterprise & Oracle Data Mining R The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated
BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376
Course Director: Dr. Kayvan Najarian (DCM&B, [email protected]) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.
Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data
CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear
How can we discover stocks that will
Algorithmic Trading Strategy Based On Massive Data Mining Haoming Li, Zhijun Yang and Tianlun Li Stanford University Abstract We believe that there is useful information hiding behind the noisy and massive
Predicting Market Value of Soccer Players Using Linear Modeling Techniques
1 Predicting Market Value of Soccer Players Using Linear Modeling Techniques by Yuan He Advisor: David Aldous Index Introduction ----------------------------------------------------------------------------
WebFOCUS RStat. RStat. Predict the Future and Make Effective Decisions Today. WebFOCUS RStat
Information Builders enables agile information solutions with business intelligence (BI) and integration technologies. WebFOCUS the most widely utilized business intelligence platform connects to any enterprise
Car Insurance. Prvák, Tomi, Havri
Car Insurance Prvák, Tomi, Havri Sumo report - expectations Sumo report - reality Bc. Jan Tomášek Deeper look into data set Column approach Reminder What the hell is this competition about??? Attributes
Data Mining. Nonlinear Classification
Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15
Defending Networks with Incomplete Information: A Machine Learning Approach. Alexandre Pinto [email protected] @alexcpsec @MLSecProject
Defending Networks with Incomplete Information: A Machine Learning Approach Alexandre Pinto [email protected] @alexcpsec @MLSecProject Agenda Security Monitoring: We are doing it wrong Machine Learning
Hadoop s Advantages for! Machine! Learning and. Predictive! Analytics. Webinar will begin shortly. Presented by Hortonworks & Zementis
Webinar will begin shortly Hadoop s Advantages for Machine Learning and Predictive Analytics Presented by Hortonworks & Zementis September 10, 2014 Copyright 2014 Zementis, Inc. All rights reserved. 2
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over
2015 Workshops for Professors
SAS Education Grow with us Offered by the SAS Global Academic Program Supporting teaching, learning and research in higher education 2015 Workshops for Professors 1 Workshops for Professors As the market
Starting Smart with Oracle Advanced Analytics
Starting Smart with Oracle Advanced Analytics Great Lakes Oracle Conference Tim Vlamis Thursday, May 19, 2016 Vlamis Software Solutions Vlamis Software founded in 1992 in Kansas City, Missouri Developed
Model Validation Techniques
Model Validation Techniques Kevin Mahoney, FCAS kmahoney@ travelers.com CAS RPM Seminar March 17, 2010 Uses of Statistical Models in P/C Insurance Examples of Applications Determine expected loss cost
Data Mining Part 5. Prediction
Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification
Data Mining Algorithms Part 1. Dejan Sarka
Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka ([email protected]) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses
Obtaining Value from Big Data
Obtaining Value from Big Data Course Notes in Transparency Format technology basics for data scientists Spring - 2014 Jordi Torres, UPC - BSC www.jorditorres.eu @JordiTorresBCN Data deluge, is it enough?
Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features
Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features Charlie Berger, MS Eng, MBA Sr. Director Product Management, Data Mining and Advanced Analytics [email protected] www.twitter.com/charliedatamine
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
This Symposium brought to you by www.ttcus.com
This Symposium brought to you by www.ttcus.com Linkedin/Group: Technology Training Corporation @Techtrain Technology Training Corporation www.ttcus.com Big Data Analytics as a Service (BDAaaS) Big Data
REVIEW OF ENSEMBLE CLASSIFICATION
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IJCSMC, Vol. 2, Issue.
Oracle Data Mining. Concepts 11g Release 2 (11.2) E16808-04
Oracle Data Mining Concepts 11g Release 2 (11.2) E16808-04 August 2010 Oracle Data Mining Concepts, 11g Release 2 (11.2) E16808-04 Copyright 2005, 2010, Oracle and/or its affiliates. All rights reserved.
Data Mining - Evaluation of Classifiers
Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010
MS1b Statistical Data Mining
MS1b Statistical Data Mining Yee Whye Teh Department of Statistics Oxford http://www.stats.ox.ac.uk/~teh/datamining.html Outline Administrivia and Introduction Course Structure Syllabus Introduction to
Equity forecast: Predicting long term stock price movement using machine learning
Equity forecast: Predicting long term stock price movement using machine learning Nikola Milosevic School of Computer Science, University of Manchester, UK [email protected] Abstract Long
How To Use Data Mining For Loyalty Based Management
Data Mining for Loyalty Based Management Petra Hunziker, Andreas Maier, Alex Nippe, Markus Tresch, Douglas Weers, Peter Zemp Credit Suisse P.O. Box 100, CH - 8070 Zurich, Switzerland [email protected],
Advanced Analytics for Call Center Operations
Advanced Analytics for Call Center Operations Ali Cabukel, Senior Data Mining Specialist Global Bilgi Kubra Fenerci Canel, Big Data Solutions Lead Oracle Speaker Bio Ali Çabukel Graduated from Hacettepe
Chapter 6. The stacking ensemble approach
82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described
IBM SPSS Modeler Professional
IBM SPSS Modeler Professional Make better decisions through predictive intelligence Highlights Create more effective strategies by evaluating trends and likely outcomes. Easily access, prepare and model
Predictive Analytics Techniques: What to Use For Your Big Data. March 26, 2014 Fern Halper, PhD
Predictive Analytics Techniques: What to Use For Your Big Data March 26, 2014 Fern Halper, PhD Presenter Proven Performance Since 1995 TDWI helps business and IT professionals gain insight about data warehousing,
Predictive Modeling and Big Data
Predictive Modeling and Presented by Eileen Burns, FSA, MAAA Milliman Agenda Current uses of predictive modeling in the life insurance industry Potential applications of 2 1 June 16, 2014 [Enter presentation
A Logistic Regression Approach to Ad Click Prediction
A Logistic Regression Approach to Ad Click Prediction Gouthami Kondakindi [email protected] Satakshi Rana [email protected] Aswin Rajkumar [email protected] Sai Kaushik Ponnekanti [email protected] Vinit Parakh
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction
Introduction New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.
The Oracle Data Mining Machine Bundle: Zero to Predictive Analytics in Two Weeks Collaborate 15 IOUG
The Oracle Data Mining Machine Bundle: Zero to Predictive Analytics in Two Weeks Collaborate 15 IOUG Presentation #730 Tim Vlamis and Dan Vlamis Vlamis Software Solutions 816-781-2880 www.vlamis.com Presentation
Prerequisites. Course Outline
MS-55040: Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot Description This three-day instructor-led course will introduce the students to the concepts of data mining,
Oracle Data Mining. Concepts 11g Release 1 (11.1) B28129-04
Oracle Data Mining Concepts 11g Release 1 (11.1) B28129-04 May 2008 Oracle Data Mining Concepts, 11g Release 1 (11.1) B28129-04 Copyright 2005, 2008, Oracle. All rights reserved. The Programs (which include
Getting Value from Big Data with Analytics
Getting Value from Big Data with Analytics Edward Roske, CEO Oracle ACE Director [email protected] BLOG: LookSmarter.blogspot.com WEBSITE: www.interrel.com TWITTER: Eroske About interrel Reigning Oracle
Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University [email protected]
Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University [email protected] 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian
Employer Health Insurance Premium Prediction Elliott Lui
Employer Health Insurance Premium Prediction Elliott Lui 1 Introduction The US spends 15.2% of its GDP on health care, more than any other country, and the cost of health insurance is rising faster than
So, how do you pronounce. Jilles Vreeken. Okay, now we can talk. So, what kind of data? binary. * multi-relational
Simply Mining Data Jilles Vreeken So, how do you pronounce Exploratory Data Analysis Jilles Vreeken Jilles Yill less Vreeken Fray can 17 August 2015 Okay, now we can talk. 17 August 2015 The goal So, what
Statistics for BIG data
Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSA-Bulletine 2014) Before
Oracle Data Mining Hands On Lab
Oracle Data Mining Hands On Lab Material provided by Oracle Corporation Vlamis Software Solutions is one of the most respected training organizations in the Oracle Business Intelligence community because
Oracle Big Data Discovery Unlock Potential in Big Data Reservoir
Oracle Big Data Discovery Unlock Potential in Big Data Reservoir Gokula Mishra Premjith Balakrishnan Business Analytics Product Group September 29, 2014 Copyright 2014, Oracle and/or its affiliates. All
Data Mining Part 5. Prediction
Data Mining Part 5. Prediction 5.7 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Linear Regression Other Regression Models References Introduction Introduction Numerical prediction is
Sunnie Chung. Cleveland State University
Sunnie Chung Cleveland State University Data Scientist Big Data Processing Data Mining 2 INTERSECT of Computer Scientists and Statisticians with Knowledge of Data Mining AND Big data Processing Skills:
Knowledge Discovery and Data Mining. Bootstrap review. Bagging Important Concepts. Notes. Lecture 19 - Bagging. Tom Kelsey. Notes
Knowledge Discovery and Data Mining Lecture 19 - Bagging Tom Kelsey School of Computer Science University of St Andrews http://tom.host.cs.st-andrews.ac.uk [email protected] Tom Kelsey ID5059-19-B &
Getting Started with Oracle Data Miner 11g R2. Brendan Tierney
Getting Started with Oracle Data Miner 11g R2 Brendan Tierney Scene Setting This is not about DB log mining This is an introduction to ODM And how ODM can be included in OBIEE (next presentation) Domain
Customer Classification And Prediction Based On Data Mining Technique
Customer Classification And Prediction Based On Data Mining Technique Ms. Neethu Baby 1, Mrs. Priyanka L.T 2 1 M.E CSE, Sri Shakthi Institute of Engineering and Technology, Coimbatore 2 Assistant Professor
Predicting Flight Delays
Predicting Flight Delays Dieterich Lawson [email protected] William Castillo [email protected] Introduction Every year approximately 20% of airline flights are delayed or cancelled, costing
IBM SPSS Modeler 15 In-Database Mining Guide
IBM SPSS Modeler 15 In-Database Mining Guide Note: Before using this information and the product it supports, read the general information under Notices on p. 217. This edition applies to IBM SPSS Modeler
Big Data and Data Science: Behind the Buzz Words
Big Data and Data Science: Behind the Buzz Words Peggy Brinkmann, FCAS, MAAA Actuary Milliman, Inc. April 1, 2014 Contents Big data: from hype to value Deconstructing data science Managing big data Analyzing
Active Learning SVM for Blogs recommendation
Active Learning SVM for Blogs recommendation Xin Guan Computer Science, George Mason University Ⅰ.Introduction In the DH Now website, they try to review a big amount of blogs and articles and find the
Big Data Analytics. An Introduction. Oliver Fuchsberger University of Paderborn 2014
Big Data Analytics An Introduction Oliver Fuchsberger University of Paderborn 2014 Table of Contents I. Introduction & Motivation What is Big Data Analytics? Why is it so important? II. Techniques & Solutions
How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK
How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK Agenda Analytics why now? The process around data and text mining Case Studies The Value of Information
Fraud and Anomaly Detection Using Oracle Advanced Analytic Option 12c
Fraud and Anomaly Detection Using Oracle Advanced Analytic Option 12c Charlie Berger Sr. Director Product Management, Data Mining and Advanced Analytics [email protected] www.twitter.com/charliedatamine
Introduction to Machine Learning Lecture 1. Mehryar Mohri Courant Institute and Google Research [email protected]
Introduction to Machine Learning Lecture 1 Mehryar Mohri Courant Institute and Google Research [email protected] Introduction Logistics Prerequisites: basics concepts needed in probability and statistics
SEIZE THE DATA. 2015 SEIZE THE DATA. 2015
1 Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Deep dive into Haven Predictive Analytics Powered by HP Distributed R and
Machine Learning over Big Data
Machine Learning over Big Presented by Fuhao Zou [email protected] Jue 16, 2014 Huazhong University of Science and Technology Contents 1 2 3 4 Role of Machine learning Challenge of Big Analysis Distributed
The Use of Open Source Is Growing. So Why Do Organizations Still Turn to SAS?
Conclusions Paper The Use of Open Source Is Growing. So Why Do Organizations Still Turn to SAS? Insights from a presentation at the 2014 Hadoop Summit Featuring Brian Garrett, Principal Solutions Architect
INDIAN STATISTICAL INSTITUTE announces Training Program on Statistical Techniques for Data Mining & Business Analytics
INDIAN STATISTICAL INSTITUTE announces Training Program on Statistical Techniques for Data Mining & Business Analytics Date: 29-31 August 2011 Venue : Indian Statistical Institute Bangalore Organized by:
DATA MINING AND WAREHOUSING CONCEPTS
CHAPTER 1 DATA MINING AND WAREHOUSING CONCEPTS 1.1 INTRODUCTION The past couple of decades have seen a dramatic increase in the amount of information or data being stored in electronic format. This accumulation
Oracle Data Miner (Extension of SQL Developer 4.0)
An Oracle White Paper October 2013 Oracle Data Miner (Extension of SQL Developer 4.0) Generate a PL/SQL script for workflow deployment Denny Wong Oracle Data Mining Technologies 10 Van de Graff Drive Burlington,
High-Performance Analytics
High-Performance Analytics David Pope January 2012 Principal Solutions Architect High Performance Analytics Practice Saturday, April 21, 2012 Agenda Who Is SAS / SAS Technology Evolution Current Trends
ALGORITHMIC TRADING USING MACHINE LEARNING TECH-
ALGORITHMIC TRADING USING MACHINE LEARNING TECH- NIQUES: FINAL REPORT Chenxu Shao, Zheming Zheng Department of Management Science and Engineering December 12, 2013 ABSTRACT In this report, we present an
Data are everywhere. IBM projects that every day we generate 2.5 quintillion bytes of data. In relative terms, this means 90
FREE echapter C H A P T E R1 Big Data and Analytics Data are everywhere. IBM projects that every day we generate 2.5 quintillion bytes of data. In relative terms, this means 90 percent of the data in the
Data Mining with Oracle Database 11g Release 2
An Oracle White Paper September 2009 Data Mining with Oracle Database 11g Release 2 Competing on In-Database Analytics Executive Overview... 1 In-Database Data Mining... 1 Key Benefits of Oracle Data Mining...
BIG DATA What it is and how to use?
BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14
MHI3000 Big Data Analytics for Health Care Final Project Report
MHI3000 Big Data Analytics for Health Care Final Project Report Zhongtian Fred Qiu (1002274530) http://gallery.azureml.net/details/81ddb2ab137046d4925584b5095ec7aa 1. Data pre-processing The data given
Mining. Practical. Data. Monte F. Hancock, Jr. Chief Scientist, Celestech, Inc. CRC Press. Taylor & Francis Group
Practical Data Mining Monte F. Hancock, Jr. Chief Scientist, Celestech, Inc. CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor Ei Francis Group, an Informs
Predictive Analytics Certificate Program
Information Technologies Programs Predictive Analytics Certificate Program Accelerate Your Career Offered in partnership with: University of California, Irvine Extension s professional certificate and
KnowledgeSTUDIO HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES
HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES Translating data into business value requires the right data mining and modeling techniques which uncover important patterns within
Improve Model Accuracy with Unstructured Data
IBM SPSS Modeler Premium Improve Model Accuracy with Unstructured Data Highlights Easily access, prepare and integrate structured data and text, Web and survey data Support the entire data mining process
extreme Datamining mit Oracle R Enterprise
extreme Datamining mit Oracle R Enterprise Oliver Bracht Managing Director eoda Matthias Fuchs Senior Consultant ISE Information Systems Engineering GmbH extreme Datamining with Oracle R Enterprise About
