Demystifying BGP: By Jeffrey Papen Thursday, May 15th, 2003

Size: px
Start display at page:

Download "Demystifying BGP: By Jeffrey Papen Thursday, May 15th, 2003"

Transcription

1 Demystifying BGP: All across the Internet, the Border Gateway Protocol, or BGP, is used to direct network traffic from one site to another. Here's a look at how BGP works. By Jeffrey Papen Thursday, May 15th, 2003 Many system administrators refer to networking and the Border Gateway Protocol (BGP) in particular as black magic or voodoo, a domain not to be trifled with and one best left to the highlyspecialized network shaman. Perhaps, but not every village can afford a network shaman; often, it s up to the local system administrator to perform all the miracles. If your servers are accessed from the Internet and you have or are considering redundant Internet connections (say, a pair of T1 circuits), understanding BGP what it does, how it works, and how you can leverage it to your benefit is a real advantage. With BGP, you can solve network performance problems faster than your ISP, independently work around ISP outages, and increase your overall uptime. As you ll see, BGP is critical to the operation of the Internet. And while BGP is a large and complex protocol, it s not magic. (But don t tell that to the local villagers. Increase uptime and they ll come to worship you.) To connect to an Internet server, your computer must be able to send requests to a host and, reciprocally, that host must be able to send replies back to you. But how does your request reach the remote host, and in the case of the remote host, how does its reply reach you? First, each computer connected to the Internet has an Internet Protocol (IP) address. The IP address, like a street address, uniquely identifies each machine and describes where the machine can be found. To send a packet to a server, your machine simply addresses the packet to the server s IP address and sends it off. If your machine and the server are connected to the same physical network, the packet is delivered directly (via Ethernet or another local-area connection technology). However, if the two machines are connected to different physical networks, a relay or router has to direct the traffic from one point to another. For example, if your machine is on one subnet of Ethernet and the server is on a separate subnet, a router acts as a gateway to direct the traffic from one subnet to the other. Of course, as the gateway, the router has to know about the address spaces of both subnets to do the transfer. And in general, that s what routers do: routers know how to connect endpoints or at least know how to direct traffic to move it closer to its ultimate destination. Depending on how distant two computers are, more than one router may handle the traffic, with each router or hop moving the traffic closer and closer to its target. On some networks, the router s (or routers ) maps or routing tables can be configured manually at installation and left alone thereafter. More frequently though, static configurations are unworkable because they don t scale. Instead, routing tables are usually maintained automatically using routing protocols, which allow routers to exchange and share subnet location or topology automatically.

2 Whenever two routers talk to each via a routing protocol, other they exchange information about subnets (routes) they know about. As these route advertisements propagate from one router to another, the network collectively learns how to get packets from point A to point B efficiently. In many networks there s more than one path from A to B. When given many paths between A and B, a router simply picks the path with the best metric, whatever that metric may be (typically, based either on path costs or distances). And if a network link goes down, the routers on each end of the link purposefully forget the routes accessible on the other end, as the link is no longer usable. Updated topology percolate through the network. When the link comes back up, the routers update each other again, calculating new metrics on the fly based on the new reachability information. Inside a network, internal routing protocols such as RIP, EIGRP, OSPF, and IS-IS are used to dynamically advertise routes to route local traffic efficiently. (Which internal protocol a site chooses depends on hardware support, staff experience, and internal policy). However, across the Internet at large, only one external routing protocol is used to exchange route information: the Border Gateway Protocol (BGP). BGP advertises your routes the subnets that your network delivers traffic to to other networks. Or, as network engineer Avi Freedman describes it, BGP advertises your routes to other networks When you advertise routes, [think] of those route advertisements as promises to carry data to the IP space represented in the route being advertised. For example, if you advertise /24 (the Class C starting at and ending at ), you promise that if someone sends you data destined for any address in [that space], you know how to carry that data to its ultimate destination. As an example, BBN (soon to be part of the Level3 network) owns the huge subnet /8.BBN breaks this huge subnet of more than sixteen million addresses down into many thousands of smaller subnets, and all of the routers within BBN learn about each of these smaller subnets via an internal routing protocol. However, other large ISPs like UUNet or Sprint don t need to know (and don t want to know) about the internal topology and details of the BBN network. As far as another ISP is concerned, if a packet s destination falls within the subnet /8, it s content to send the traffic to BBN and let BBN route the traffic the rest of the way. In fact, Sprint s and UUNet s routers would be overwhelmed if they were required to keep track of every route to every subnet on the Internet. Instead, BBN uses BGP to advertise a single /8 route to its BGP neighbors (its peers). Route aggregation such as this goes a long way to keeping the Internet s global routing table manageable. The global routing table is a collection of all routes across the Internet, and currently contains about 123,000 routes (and growing). Beating Alternate Paths to Your Door In effect, BGP is like a road map for the Internet: BGP lists all of the major subnets, records the major routes between those subnets, and lets you advertise which network paths provide the best route to your destinations. (Once inside your network, internal routing protocols act as street maps to deliver traffic the last mile to a specific address.) Of course, if your site is connected to the Internet via one Internet Service Provider (ISP) a configuration called a single-homed site all incoming and outgoing Internet traffic traverses a single path between your network and the network of your ISP. BGP is not particularly useful for single-homed sites since there are no optional routes to advertise.

3 On the other hand, BGP allows multi-homed sites those sites with connections to more than one ISP to immediately direct or redirect traffic through alternate paths or routeswithout waiting for the assistance of its ISPs. With BGP, a multi-homed site can independently control the route of its inbound and outbound traffic, allowing the site to avoid congested corridors and outages. For example, if your site has two T1 circuits connected to two different ISPs and one T1 fails, BGP allows the routers to detect the failure and automatically update Internet-wide routing tables so that traffic is sent over the remaining circuit. This happens quickly and automatically with no user intervention. When the failed circuit returns, it s smoothly put back into service. Users within your network or accessing your network from anywhere on the Internet often have no idea that anything was amiss. In contrast, if your site is single-homed, you re at the mercy of your ISP: their congestion isyour congestion, and their outage is your outage. Obviously, BGP reduces a site s dependence on any one ISP, a considerable business continuity risk. But implemented well, BGP also provides for better response times. By choosing shorter and/or faster end-to-end paths, users can enjoy quicker web page loads, faster file transfers, among other direct benefits. And although it s not an explicit goal of BGP, many multi-homing configurations achieve a kind of load balancing that allows simultaneous use of redundant circuits rather than using just one connection with the other connections used only as backups. Like Digital Breadcrumbs As we ve seen, BGP is designed to exchange routing information between multi-homed sites such as ISPs. Here s how BGP works. In BGP, a subnet (whether it s as large as BBN s or just a small range of addresses) is referred to as an Autonomous System, or AS. Each AS has its own AS Number, or ASN, used to identify that AS to the world. (AS Numbers aren t hard to get; in fact, any multi-homed site qualifies for one.) Table One shows the ASNs of a number of ISPs. Table One: Some ASNs and the subnet each represents ASN Network 3356 Level Global Crossing 2529 Demon UK 4589 Easynet 5459 LINX ASNs are fundamental to BGP: Every time a route is advertised within BGP, the route is stamped with the ASN of the router doing the advertising (propagating). A sequence of ASNs form an AS- Path, a kind of digital trail that literally reflects how the route became known to any router.

4 For example, when your network wants to advertise itself via BGP a process calledoriginating a route your BGP router creates a new, empty AS-Path (a null path) and advertises your network to each of its external peers. By convention, whenever your BGP router advertises your route to an external BGP router, your BGP router prepends your ASN to the AS-Path. (So AS-Paths that you originated and are stored on a remote BGP router end with your ASN.) Next, just as your router stamped its ASN in the AS-Path when it advertised your route, each of your BGP peer routers prepends its ASN to the AS-Path, and in turn, advertises the route to each of its external BGP peers. This propagating/stamping step continues ad infinitum as each AS prepends its ASN to the AS-Path and passes the route along. (To avoid loops, a BGP router ignores any routing advertisement that contains its own ASN anywhere in the AS-Path.) Figure One shows a number of AS-Path options for traffic originating at Peak Web Hosting and destined for the London Internet Exchange (LINX). Because PeakWebHosting connects to eight different ISPs, there are eight paths to LINX, although some paths may converge on the way to the destination (for example, PSI goes to Verio). Figure One: Some AS-Paths known by PeakWebHosting s BGP routers AS path: 6453[Teleglobe], 3356[Level3], 2529[Demon UK], 5459[LINX] AS path: 20248[NetVMG], 3356[Level3], 2529[Demon UK], 5459[LINX] AS path: 3356[Level3], 2529[Demon UK], 5459[LINX] AS path: 174[PSI/Cogent], 2914[Verio], 5413[GX Networks], 5459[LINX] AS path: 2914[Verio], 5413[GX Networks], 5459[LINX] AS path: 19151[WebUseNet], 3257[Tiscali Backbone], 5459[LINX] AS path: 6327[Shaw Cable], 4589[Easynet], 5459[LINX] AS path: 3549[Global Crossing], 5459[LINX] Figure One is interesting because it shows how just a handful of Autonomous Systems are interconnected. However, it shows only a small fraction of AS-Paths known to Peak Web Hosting. Interestingly, what AS-Paths a system retains and uses processes called AS filtering and policy routing, respectively can affect performance, both in the router itself and globally across the Internet. Not All Autonomous Systems are Equal While all multi-homed sites qualify for an ASN, not all ASNs are known to every BGP router. Obviously, not every BGP router is connected to every other BGP router, but to keep the global routing table manageable, many ISPs choose to ignore advertisements from Autonomous Systems with small IP address spaces.

5 For example, most ISPs filter (ignore) routes with a subnet mask longer than /20 (i.e., /21, /22, /23, /24, etc). So, the size of your address pool can affect how far your AS-Path propagates. In some instances, more efficient routes are ignored because other ISPs simply haven t heard about you. Figure Two pictures a dual-homed network served by two ISPs. The network, mysite.com, is served by ISP A and ISP B; ISP A is the primary ISP since mysite.com s address space, /24 (which represents 256 hosts), is allocated from ISP A s address space of /16 (which represents 65,536 hosts). ISPs C and D filter all route advertisements smaller than /20 In the figure, a dual-homed router at mysite.com advertises its /24address space to both ISP A and ISP B. Because mysite.com s address space is part of ISP A s address space, ISP A doesn t advertise mysite.com s route explicitly. Instead, it aggregates mysite.com s address space into its own and advertises that much larger block, a /16 address space. ISP B, however, does not aggregate mysite.com s addresses into a larger pool because the two address pools are disjoint. ISP B simply propagates mysite.com s address block as-is. Since ISPs rarely filter customer advertisements based on the length of the subnet mask, the /24 network is known to both ISPs. However, the filtering policies of other networks further upstream may prevent learning about every available routing option. In Figure Two, ISPs C and D filter all route advertisements smaller than /20. So, ISP C and D ignore any routes through ISP B to mysite.com. Both ISP C and D use only ISP A to reach mysite.com because the larger aggregate /16, which contains the subnet /24, passes the /20 or larger filtering criteria. ISP D could reach mysite.com most quickly via D to B, but since mysite.com s routes are filtered by ISPs C and D due to the size of its address space, mysite.com s traffic takes the longer D to C to A path. (By the way, if ISP A goes down, ISPs C and D will not learn about mysite.com via ISP B. And if ISP A s link to mysite.com goes down, but ISP B is directly connected to ISP A, then ISP A will hand traffic destined to mysite.com to ISP B only if ISP A does not filter in the same manner of ISPs C and D.) It is quite common to find sites whose largest assigned subnets are smaller than a /20. While the ISPs for those sites will not filter (their customers ) route advertisements, there is no guarantee that other ISPs will propagate the advertisements. Ultimately, you may not be able to tell how far your routing advertisements will propagate. In practice, this is not a problem for most sites, but it is important to understand how this BGP feature can affect your site. Also, the size of your advertised subnets only affects the path selection for your inbound traffic. To avoid this problem, a site should have a large enough subnet assigned either from its ISP or its routing registry. While it s technically possible to have your own address space allocated from a routing registry like ARIN (for the Americas; RIPE services Europe, and APNIC services the Asian Pacific region) and assigned to your network, it may be difficult to justify allocating 2,000 host addresses. Instead, routing registries prefer that companies that need less than one thousand addresses or so get a unique address space from an ISP, who allocates it from their own pool.

6 Tuning BGP As you ve seen, all routes in a BGP routing table are summaries of network connections somewhere out on the Internet. And, as shown in the previous section, AS-Paths reflect how each route was advertised, providing a kind of diagnostic of routing on the Internet. Indeed, that topology information is invaluable. You can use information gleaned from AS-Paths to avoid known, poorly performing networks, and use the AS-Path to determine the shortest path to a given target. However, shortest doesn t always mean best. Indeed, the shortest AS-Path (the number of Autonomous Systems the route passed through) is a misleading notion, one that often causes confusion because it suggests that BGP has more information than is actually available. First, BGP lacks any knowledge of a network s physical topology, so a single AS hop to cross an AS or ISP could actually require any number of router hops to cross that network. In addition, BGP employs no network performance data when making routing decisions. Latency (slowness), congestion (saturation), jitter (wide disparities in latency that cause packets to arrive out of order), and packet loss (oversubscription of circuits) across each route remain unknown to BGP. To BGP, an almost-saturated megabit T1 circuit and a completely unused 622 megabit OC-12 appear the same. The AS-Path is just one of many BGP attributes that accompany each route as it s advertised across the Internet. While AS-Paths, ASNs, and address spaces provide some helpful hints about route metrics, if BGP is left to its own devices, it would choose sub-optimal paths at least some of the time. For example, without some knobs and dials affecting the BGP decision-making process, BGP would select a two-hop AS-path with 30 individual router hops over a four-hop AS-path with only four router hops. Policy routing lets the network or system administrator override BGP s default behavior to leverage longer, but better performing paths. For example, BGP can be used to direct traffic down a relatively longer, but higher capacity OC-12 connection rather than saturating a smaller T1 with a shorter path to a given destination. A routing policy matches a given criteria and then performs some action, usually adjusting a BGP route s attributes. If a particular match is not successful, the routing policy continues until a match succeeds or the policy ends. To understand policy routing, one must understand the steps BGP uses for determining the best path to reach each destination prefix. A BGP router s first criteria for determining the best route is to find which route in its routing table most closely matches the target address. If a BGP router is looking for the best path for the destination and there s a choice between /24 or /8, the more specific/24 route is used. This is called a routing table longest match. There is no way to override BGP s longest match functionality. No amount of policy routing can change the preference of a /20 route over a more specific /24 route (other than not learning the /24).

7 To get around this feature, networks often de-aggregate their advertisements and leak more specific routes to influence outside networks routing decisions. However, these leaked routes are still subject to the same filtering problems as illustrated in Figure Two, and leaked routes are looked upon as poor netiquette because they increase the global routing table size. Beyond the routing table longest match, different vendors implement the BGP path selection criteria slightly differently. Some add extra knobs to tune the routing policy and each vendor checks BGP attributes in a slightly different order. However, there are some similarities: 1. The first BGP attribute checked by all vendors is called local-preference, and it s just that: the preference a site ascribes to a given route that s local only to that AS. Across external BGP sessions, all local-preference attributes are reset to the default of 100. Internal BGP neighbors do not alter local-preference unless local router policy dictates otherwise. A higher local-preference is considered more preferred. When two different routes to the same destination have the same local-preference, the path selection process continues. 2. The next BGP attribute considered is AS-Path hop count. Shorter hop counts are preferred over longer AS-Path hop counts. AS-Path padding is a common method to influence inbound path selection. Networks not wanting a particular inbound path used may pad their route advertisement s AS-Path. AS-Path padding prepends the local AS number multiple times making the route s AS-Path appear artificially long (see policy routing example #2). Unfortunately, this method can easily be overridden by adjusting the local-preference to select a route with a longer AS-Path. The BGP route selection process has many more steps (approximately 10), but the most important is often the last one. If a given router learns a prefix from multiple ISPs and each route has the same local-preference, the same length AS-Path, and all other BGP path attributes are identical, then the final BGP selection criteria is which external BGP neighbor the routes were learned from has the lowest IP address. While this may seen an odd candidate for a tie breaker, all BGP routers in the same AS must ultimately make the same routing decision to avoid routing loops. Many methods and styles exist for implementing policy routing, and there are many reasons for taking on the effort to tune routing techniques. Policy routing is often used to balance traffic across multiple links. Policy routing is also commonly used to save money. When two alternate paths exist to the same target network, where each has the same relative performance, directing traffic down the cheapest path is to the company s advantage. To reduce the amount of traffic an ISP has to carry across (pay for) its own network, a variation on this method called hot potato routing directs traffic to the closest egress point off the network even if another, possibly more optimal, path exists but requires traffic remain on the local network longer. Cold potato routing keeps traffic on an ISP s network as long as possible delivering the traffic to the egress point as close to the target as possible to (hopefully) increase performance. Deploying BGP BGP is a wonderful and rich protocol allowing sites with connections to multiple ISPs control over their routing choices and Internet performance. Almost every router manufacturer supports BGP on

8 a wide range of models, and since BGP is an open standard, routers from multiple vendors should interoperate just fine, even within the same network. Multi-homing is key to providing uptime, and BGP is key to making multi-homing work well. Configuring BGP Routers While internal routing protocols auto-discover all of their neighbors and automatically begin exchanging routing information, BGP only connects with peers that are explicitly declared and described in a configuration file. To setup a BGP peer session, you need only two pieces of information: the peer router s interface IP address and its ASN. Here s a minimal Juniper Networks BGP router configuration that establishes a peer session: protocols { bgp { group { ISP_A { peer-as 12345; neighbor ; } } } } And here s a sample Cisco BGP router configuration: Router bgp Neighbor remote-as In both snippets, the BGP router with AS is being instructed to peer with a neighbor at , which has ASN

9 A UCLA Computer Science graduate, Jeffrey Papen formerly configured Yahoo! s and Excite s BGP peering and policy routing. When not evangelizing Juniper Networks or multi-homing Peak Web Hosting, Jeffrey consults for BGP networking. He can be reached atjeffrey@papen.com.

Troubleshooting Network Performance with Alpine

Troubleshooting Network Performance with Alpine Troubleshooting Network Performance with Alpine Jeffrey Papen As a Network Engineer, I am often annoyed by slow Internet performance caused by network issues like congestion, fiber cuts, and packet loss.

More information

Using the Border Gateway Protocol for Interdomain Routing

Using the Border Gateway Protocol for Interdomain Routing CHAPTER 12 Using the Border Gateway Protocol for Interdomain Routing The Border Gateway Protocol (BGP), defined in RFC 1771, provides loop-free interdomain routing between autonomous systems. (An autonomous

More information

Module 12 Multihoming to the Same ISP

Module 12 Multihoming to the Same ISP Module 12 Multihoming to the Same ISP Objective: To investigate various methods for multihoming onto the same upstream s backbone Prerequisites: Module 11 and Multihoming Presentation The following will

More information

Border Gateway Protocol Best Practices

Border Gateway Protocol Best Practices Border Gateway Protocol Best Practices By Clifton Funakura The Internet has grown into a worldwide network supporting a wide range of business applications. Many companies depend on the Internet for day-to-day

More information

ETHEL THE AARDVARK GOES BGP ROUTING

ETHEL THE AARDVARK GOES BGP ROUTING Fable Of Contents ISP TECH TALK by Avi Freedman ETHEL THE AARDVARK GOES BGP ROUTING In this exciting column we'll actually walk through configuring a Cisco router for BGP. It's very important, however,

More information

Border Gateway Protocol (BGP)

Border Gateway Protocol (BGP) Border Gateway Protocol (BGP) Petr Grygárek rek 1 Role of Autonomous Systems on the Internet 2 Autonomous systems Not possible to maintain complete Internet topology information on all routers big database,

More information

Border Gateway Protocol BGP4 (2)

Border Gateway Protocol BGP4 (2) Border Gateway Protocol BGP4 (2) Professor Richard Harris School of Engineering and Advanced Technology (SEAT) Presentation Outline Border Gateway Protocol - Continued Computer Networks - 1/2 Learning

More information

Simple Multihoming. ISP Workshops. Last updated 30 th March 2015

Simple Multihoming. ISP Workshops. Last updated 30 th March 2015 Simple Multihoming ISP Workshops Last updated 30 th March 2015 1 Why Multihome? p Redundancy n One connection to internet means the network is dependent on: p Local router (configuration, software, hardware)

More information

Network Level Multihoming and BGP Challenges

Network Level Multihoming and BGP Challenges Network Level Multihoming and BGP Challenges Li Jia Helsinki University of Technology jili@cc.hut.fi Abstract Multihoming has been traditionally employed by enterprises and ISPs to improve network connectivity.

More information

Multihoming and Multi-path Routing. CS 7260 Nick Feamster January 29. 2007

Multihoming and Multi-path Routing. CS 7260 Nick Feamster January 29. 2007 Multihoming and Multi-path Routing CS 7260 Nick Feamster January 29. 2007 Today s Topic IP-Based Multihoming What is it? What problem is it solving? (Why multihome?) How is it implemented today (in IP)?

More information

Simple Multihoming. ISP/IXP Workshops

Simple Multihoming. ISP/IXP Workshops Simple Multihoming ISP/IXP Workshops 1 Why Multihome? Redundancy One connection to internet means the network is dependent on: Local router (configuration, software, hardware) WAN media (physical failure,

More information

Disaster Recovery Design Ehab Ashary University of Colorado at Colorado Springs

Disaster Recovery Design Ehab Ashary University of Colorado at Colorado Springs Disaster Recovery Design Ehab Ashary University of Colorado at Colorado Springs As a head of the campus network department in the Deanship of Information Technology at King Abdulaziz University for more

More information

Internet Routing Protocols Lecture 04 BGP Continued

Internet Routing Protocols Lecture 04 BGP Continued Internet Routing Protocols Lecture 04 BGP Continued Advanced Systems Topics Lent Term, 008 Timothy G. Griffin Computer Lab Cambridge UK Two Types of BGP Sessions AS External Neighbor (EBGP) in a different

More information

How To Understand Bg

How To Understand Bg Table of Contents BGP Case Studies...1 BGP4 Case Studies Section 1...3 Contents...3 Introduction...3 How Does BGP Work?...3 ebgp and ibgp...3 Enabling BGP Routing...4 Forming BGP Neighbors...4 BGP and

More information

BGP Terminology, Concepts, and Operation. Chapter 6 2007 2010, Cisco Systems, Inc. All rights reserved. Cisco Public

BGP Terminology, Concepts, and Operation. Chapter 6 2007 2010, Cisco Systems, Inc. All rights reserved. Cisco Public BGP Terminology, Concepts, and Operation 1 IGP versus EGP Interior gateway protocol (IGP) A routing protocol operating within an Autonomous System (AS). RIP, OSPF, and EIGRP are IGPs. Exterior gateway

More information

ITRI CCL. IP Routing Primer. Paul C. Huang, Ph.D. ITRI / CCL / N300. CCL/N300; Paul Huang 1999/6/2 1

ITRI CCL. IP Routing Primer. Paul C. Huang, Ph.D. ITRI / CCL / N300. CCL/N300; Paul Huang 1999/6/2 1 IP Routing Primer Paul C. Huang, Ph.D. ITRI / / N300 /N300; Paul Huang 1999/6/2 1 Basic Addressing / Subnetting Class A 0 Network Host Host Host 127 networks / 16,777,216 hosts Class A natural mask 255.0.0.0

More information

Inter-domain Routing Basics. Border Gateway Protocol. Inter-domain Routing Basics. Inter-domain Routing Basics. Exterior routing protocols created to:

Inter-domain Routing Basics. Border Gateway Protocol. Inter-domain Routing Basics. Inter-domain Routing Basics. Exterior routing protocols created to: Border Gateway Protocol Exterior routing protocols created to: control the expansion of routing tables provide a structured view of the Internet by segregating routing domains into separate administrations

More information

Internet inter-as routing: BGP

Internet inter-as routing: BGP Internet inter-as routing: BGP BGP (Border Gateway Protocol): the de facto standard BGP provides each AS a means to: 1. Obtain subnet reachability information from neighboring ASs. 2. Propagate the reachability

More information

BGP. 1. Internet Routing

BGP. 1. Internet Routing BGP 1. Internet Routing (C) Herbert Haas 2005/03/11 1 Internet Routing Interior Gateway Protocols (IGPs) not suitable for Inter-ISP routing Technical metrics only No policy features Inter-ISP routing is

More information

Advanced BGP Policy. Advanced Topics

Advanced BGP Policy. Advanced Topics Advanced BGP Policy George Wu TCOM690 Advanced Topics Route redundancy Load balancing Routing Symmetry 1 Route Optimization Issues Redundancy provide multiple alternate paths usually multiple connections

More information

Routing in Small Networks. Internet Routing Overview. Agenda. Routing in Large Networks

Routing in Small Networks. Internet Routing Overview. Agenda. Routing in Large Networks Routing in Small Networks Internet Routing Overview AS, IGP,, BGP in small networks distance vector or link state protocols like RIP or OSPF can be used for dynamic routing it is possible that every router

More information

HP Networking BGP and MPLS technology training

HP Networking BGP and MPLS technology training Course overview HP Networking BGP and MPLS technology training (HL046_00429577) The HP Networking BGP and MPLS technology training provides networking professionals the knowledge necessary for designing,

More information

Exterior Gateway Protocols (BGP)

Exterior Gateway Protocols (BGP) Exterior Gateway Protocols (BGP) Internet Structure Large ISP Large ISP Stub Dial-Up ISP Small ISP Stub Stub Stub Autonomous Systems (AS) Internet is not a single network! The Internet is a collection

More information

Module 7. Routing and Congestion Control. Version 2 CSE IIT, Kharagpur

Module 7. Routing and Congestion Control. Version 2 CSE IIT, Kharagpur Module 7 Routing and Congestion Control Lesson 4 Border Gateway Protocol (BGP) Specific Instructional Objectives On completion of this lesson, the students will be able to: Explain the operation of the

More information

Dove siamo? Architecture of Dynamic Routing

Dove siamo? Architecture of Dynamic Routing Dove siamo? Algoritmi di routing Protocolli di routing» Intra dominio (IGP)» Inter dominio (EGP) Le slides relative a questo argomenti sono tratte da Interdomain Routing and The Border Gateway Protocol

More information

IK2205 Inter-domain Routing

IK2205 Inter-domain Routing IK2205 Inter-domain Routing Lecture 5 Voravit Tanyingyong, voravit@kth.se Outline Redundancy, Symmetry, and Load Balancing Redundancy Symmetry Load balancing Scenarios Controlling Routing Inside the AS

More information

Transitioning to BGP. ISP Workshops. Last updated 24 April 2013

Transitioning to BGP. ISP Workshops. Last updated 24 April 2013 Transitioning to BGP ISP Workshops Last updated 24 April 2013 1 Scaling the network How to get out of carrying all prefixes in IGP 2 Why use BGP rather than IGP? p IGP has Limitations: n The more routing

More information

Based on Computer Networking, 4 th Edition by Kurose and Ross

Based on Computer Networking, 4 th Edition by Kurose and Ross Computer Networks Internet Routing Based on Computer Networking, 4 th Edition by Kurose and Ross Intra-AS Routing Also known as Interior Gateway Protocols (IGP) Most common Intra-AS routing protocols:

More information

GregSowell.com. Mikrotik Routing

GregSowell.com. Mikrotik Routing Mikrotik Routing Static Dynamic Routing To Be Discussed RIP Quick Discussion OSPF BGP What is Routing Wikipedia has a very lengthy explanation http://en.wikipedia.org/wiki/routing In the context of this

More information

APNIC elearning: BGP Basics. Contact: training@apnic.net. erou03_v1.0

APNIC elearning: BGP Basics. Contact: training@apnic.net. erou03_v1.0 erou03_v1.0 APNIC elearning: BGP Basics Contact: training@apnic.net Overview What is BGP? BGP Features Path Vector Routing Protocol Peering and Transit BGP General Operation BGP Terminology BGP Attributes

More information

Inter-domain Routing. Outline. Border Gateway Protocol

Inter-domain Routing. Outline. Border Gateway Protocol Inter-domain Routing Outline Border Gateway Protocol Internet Structure Original idea Backbone service provider Consumer ISP Large corporation Consumer ISP Small corporation Consumer ISP Consumer ISP Small

More information

Fireware How To Dynamic Routing

Fireware How To Dynamic Routing Fireware How To Dynamic Routing How do I configure my Firebox to use BGP? Introduction A routing protocol is the language a router speaks with other routers to share information about the status of network

More information

Chapter 49 Border Gateway Protocol version 4 (BGP-4)

Chapter 49 Border Gateway Protocol version 4 (BGP-4) Chapter 49 Border Gateway Protocol version 4 (BGP-4) Introduction... 1-3 Overview of BGP-4... 1-3 BGP Operation... 1-5 BGP Attributes... 1-6 BGP Route Selection... 1-8 Classless Inter-domain Routing (CIDR)

More information

Table of Contents. Cisco How Does Load Balancing Work?

Table of Contents. Cisco How Does Load Balancing Work? Table of Contents How Does Load Balancing Work?...1 Document ID: 5212...1 Introduction...1 Prerequisites...1 Requirements...1 Components Used...1 Conventions...1 Load Balancing...1 Per Destination and

More information

Bell Aliant. Business Internet Border Gateway Protocol Policy and Features Guidelines

Bell Aliant. Business Internet Border Gateway Protocol Policy and Features Guidelines Bell Aliant Business Internet Border Gateway Protocol Policy and Features Guidelines Effective 05/30/2006, Updated 1/30/2015 BGP Policy and Features Guidelines 1 Bell Aliant BGP Features Bell Aliant offers

More information

Internet Firewall CSIS 4222. Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS 4222. net15 1. Routers can implement packet filtering

Internet Firewall CSIS 4222. Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS 4222. net15 1. Routers can implement packet filtering Internet Firewall CSIS 4222 A combination of hardware and software that isolates an organization s internal network from the Internet at large Ch 27: Internet Routing Ch 30: Packet filtering & firewalls

More information

Interdomain Routing. Project Report

Interdomain Routing. Project Report Interdomain Routing Project Report Network Infrastructure improvement proposal To Company A Team 4: Zhang Li Bin Yang Md. Safiqul Islam Saurabh Arora Network Infrastructure Improvement Interdomain routing

More information

APNIC elearning: BGP Attributes

APNIC elearning: BGP Attributes APNIC elearning: BGP Attributes Contact: training@apnic.net erou04_v1.0 Overview BGP Attributes Well-known and Optional Attributes AS Path AS Loop Detection ibgp and ebgp Next Hop Next Hop Best Practice

More information

Routing Protocol - BGP

Routing Protocol - BGP Routing Protocol - BGP BGP Enterprise Network BGP ISP AS 3000 AS 2000 BGP is using between Autonomous Systems BGP(cont.) RFC 1771(BGPv4) Support CIDR Transfer the AS information to reach destination Using

More information

Multihomed BGP Configurations

Multihomed BGP Configurations Multihomed BGP Configurations lvaro Retana Cisco IOS Deployment and Scalability 1 genda General Considerations Multihomed Networks Best Current Practices 2 The Basics General Considerations 3 General Considerations

More information

BGP4 Case Studies/Tutorial

BGP4 Case Studies/Tutorial BGP4 Case Studies/Tutorial Sam Halabi-cisco Systems The purpose of this paper is to introduce the reader to the latest in BGP4 terminology and design issues. It is targeted to the novice as well as the

More information

Outline. EE 122: Interdomain Routing Protocol (BGP) BGP Routing. Internet is more complicated... Ion Stoica TAs: Junda Liu, DK Moon, David Zats

Outline. EE 122: Interdomain Routing Protocol (BGP) BGP Routing. Internet is more complicated... Ion Stoica TAs: Junda Liu, DK Moon, David Zats Outline EE 22: Interdomain Routing Protocol (BGP) Ion Stoica TAs: Junda Liu, DK Moon, David Zats http://inst.eecs.berkeley.edu/~ee22/fa9 (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues

More information

The OpenDNS Global Network Delivers a Secure Connection Every Time. Everywhere.

The OpenDNS Global Network Delivers a Secure Connection Every Time. Everywhere. The OpenDNS Global Network Delivers a Secure Connection Every Time. Everywhere. Network Performance Users devices create multiple simultaneous connections each time we exchange data with other Internet

More information

IP Routing Configuring RIP, OSPF, BGP, and PBR

IP Routing Configuring RIP, OSPF, BGP, and PBR 13 IP Routing Configuring RIP, OSPF, BGP, and PBR Contents Overview..................................................... 13-6 Routing Protocols.......................................... 13-6 Dynamic Routing

More information

DEGREE THESIS. Improving Network Performance by Implementing the Path Control Tools. Derick Kolle Nduge, Augustine Chika, Mohammednur Ibrahim

DEGREE THESIS. Improving Network Performance by Implementing the Path Control Tools. Derick Kolle Nduge, Augustine Chika, Mohammednur Ibrahim Network Design and Computer Management, 120 HP DEGREE THESIS Improving Network Performance by Implementing the Path Control Tools Derick Kolle Nduge, Augustine Chika, Mohammednur Ibrahim Network Project

More information

BGP Multihoming Techniques

BGP Multihoming Techniques BGP Multihoming Techniques Philip Smith SANOG 12 6th-14th August 2008 Kathmandu 1 Presentation Slides Available on ftp://ftp-eng.cisco.com /pfs/seminars/sanog12-multihoming.pdf And on the

More information

BGP Multihoming Techniques

BGP Multihoming Techniques BGP Multihoming Techniques Philip Smith , Oakland 2001, Cisco Systems, Inc. All rights reserved. 1 Presentation Slides Available on NANOG Web site www.nanog.org/mtg-0110/smith.html Available

More information

DD2491 p1 2008. Load balancing BGP. Johan Nicklasson KTHNOC/NADA

DD2491 p1 2008. Load balancing BGP. Johan Nicklasson KTHNOC/NADA DD2491 p1 2008 Load balancing BGP Johan Nicklasson KTHNOC/NADA Dual home When do you need to be dual homed? How should you be dual homed? Same provider. Different providers. What do you need to have in

More information

BGP Multihoming Techniques

BGP Multihoming Techniques BGP Multihoming Techniques Philip Smith 26th July - 4th August 2006 Karachi 1 Presentation Slides Available on ftp://ftp-eng.cisco.com /pfs/seminars/sanog8-multihoming.pdf And on the SANOG8

More information

A Link Load Balancing Solution for Multi-Homed Networks

A Link Load Balancing Solution for Multi-Homed Networks A Link Load Balancing Solution for Multi-Homed Networks Overview An increasing number of enterprises are using the Internet for delivering mission-critical content and applications. By maintaining only

More information

Understanding Route Redistribution & Filtering

Understanding Route Redistribution & Filtering Understanding Route Redistribution & Filtering When to Redistribute and Filter PAN-OS 5.0 Revision B 2013, Palo Alto Networks, Inc. www.paloaltonetworks.com Contents Overview... 3 Route Redistribution......

More information

BGP Attributes and Path Selection

BGP Attributes and Path Selection BGP Attributes and Path Selection ISP Workshops Last updated 29 th March 2015 1 BGP Attributes BGP s policy tool kit 2 What Is an Attribute?... Next Hop AS Path MED...... p Part of a BGP Update p Describes

More information

BGP1 Multihoming and Traffic Engineering

BGP1 Multihoming and Traffic Engineering 83950 Telecommunications Laboratory Course BGP1 BGP1 Multihoming and Traffic Engineering date & time student # name 1 2 bgp-tyo.tex,v 1.11 2005/04/18 14:09:14 ams Exp 1/17 Part I Home Assignment 1 General

More information

How do I configure multi-wan in Routing Table mode?

How do I configure multi-wan in Routing Table mode? How do I configure multi-wan in Routing Table mode? Fireware/Multi-WAN This document applies to: Appliance Firebox X Core / Firebox X Core e-series / Firebox X Peak / Firebox X Peak e-series Appliance

More information

Routing Protocols. Interconnected ASes. Hierarchical Routing. Hierarchical Routing

Routing Protocols. Interconnected ASes. Hierarchical Routing. Hierarchical Routing Routing Protocols scale: with 200 million destinations: can t store all dest s in routing tables! routing table exchange would swamp links! Hierarchical Routing Our routing study thus far - idealization

More information

Effective BGP Load Balancing Using "The Metric System" A real-world guide to BGP traffic engineering

Effective BGP Load Balancing Using The Metric System A real-world guide to BGP traffic engineering Effective BGP Load Balancing Using "The Metric System" A real-world guide to BGP traffic engineering NANOG45 January 26, 2009 Dani Roisman droisman ~ at ~ peakwebconsulting.com Introductions Slide 1 Why

More information

Internet inter-as routing: BGP

Internet inter-as routing: BGP Internet inter-as routing: BGP BGP (Border Gateway Protocol): the de facto standard BGP provides each AS a means to: 1. Obtain subnet reachability information from neighboring ASs. 2. Propagate the reachability

More information

Router and Routing Basics

Router and Routing Basics Router and Routing Basics Malin Bornhager Halmstad University Session Number 2002, Svenska-CNAP Halmstad University 1 Routing Protocols and Concepts CCNA2 Routing and packet forwarding Static routing Dynamic

More information

Introduction to Routing

Introduction to Routing Introduction to Routing How traffic flows on the Internet Philip Smith pfs@cisco.com RIPE NCC Regional Meeting, Moscow, 16-18 18 June 2004 1 Abstract Presentation introduces some of the terminologies used,

More information

Chapter 6: Implementing a Border Gateway Protocol Solution for ISP Connectivity

Chapter 6: Implementing a Border Gateway Protocol Solution for ISP Connectivity : Implementing a Border Gateway Protocol Solution for ISP Connectivity CCNP ROUTE: Implementing IP Routing ROUTE v6 1 Objectives Describe basic BGP terminology and operation, including EBGP and IBGP. Configure

More information

Lecture 18: Border Gateway Protocol"

Lecture 18: Border Gateway Protocol Lecture 18: Border Gateway Protocol" CSE 123: Computer Networks Alex C. Snoeren HW 3 due Wednesday! Some figures courtesy Mike Freedman Lecture 18 Overview" Path-vector Routing Allows scalable, informed

More information

Load balancing and traffic control in BGP

Load balancing and traffic control in BGP DD2491 p2 2011 Load balancing and traffic control in BGP Olof Hagsand KTH CSC 1 Issues in load balancing Load balancing: spread traffic on several paths instead of a single. Why? Use resources better Can

More information

Configuring a Gateway of Last Resort Using IP Commands

Configuring a Gateway of Last Resort Using IP Commands Configuring a Gateway of Last Resort Using IP Commands Document ID: 16448 Contents Introduction Prerequisites Requirements Components Used Conventions ip default gateway ip default network Flag a Default

More information

Effective BGP Load Balancing Using "The Metric System" A real-world guide to BGP traffic engineering

Effective BGP Load Balancing Using The Metric System A real-world guide to BGP traffic engineering Effective BGP Load Balancing Using "The Metric System" A real-world guide to BGP traffic engineering NANOG46 June 14, 2009 Dani Roisman droisman ~ at ~ peakwebconsulting ~ dot ~ com Introductions Slide

More information

Administra0via. STP lab due Wednesday (in BE 301a!), 5/15 BGP quiz Thursday (remember required reading), 5/16

Administra0via. STP lab due Wednesday (in BE 301a!), 5/15 BGP quiz Thursday (remember required reading), 5/16 BGP Brad Smith Administra0via How are the labs going? This week STP quiz Thursday, 5/9 Next week STP lab due Wednesday (in BE 301a!), 5/15 BGP quiz Thursday (remember required reading), 5/16 Following

More information

Address Scheme Planning for an ISP backbone Network

Address Scheme Planning for an ISP backbone Network Address Scheme Planning for an ISP backbone Network Philip Smith Consulting Engineering, Office of the CTO Version 0.1 (draft) LIST OF FIGURES 2 INTRODUCTION 3 BACKGROUND 3 BUSINESS MODEL 3 ADDRESS PLAN

More information

Internet Protocol version 4 Part I

Internet Protocol version 4 Part I Internet Protocol version 4 Part I Claudio Cicconetti International Master on Information Technology International Master on Communication Networks Engineering Table of Contents

More information

CS 457 Lecture 19 Global Internet - BGP. Fall 2011

CS 457 Lecture 19 Global Internet - BGP. Fall 2011 CS 457 Lecture 19 Global Internet - BGP Fall 2011 Decision Process Calculate degree of preference for each route in Adj-RIB-In as follows (apply following steps until one route is left): select route with

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

CSC458 Lecture 6. Homework #1 Grades. Inter-domain Routing IP Addressing. Administrivia. Midterm will Cover Following Topics

CSC458 Lecture 6. Homework #1 Grades. Inter-domain Routing IP Addressing. Administrivia. Midterm will Cover Following Topics CSC458 Lecture 6 Inter-domain Routing IP Addressing Stefan Saroiu http://www.cs.toronto.edu/syslab/courses/csc458 University of Toronto at Mississauga Homework #1 Grades Fraction of Students 100 80 60

More information

BGP-4 Case Studies. Nenad Krajnovic. e-mail: krajko@etf.bg.ac.yu

BGP-4 Case Studies. Nenad Krajnovic. e-mail: krajko@etf.bg.ac.yu BGP-4 Case Studies Nenad Krajnovic e-mail: krajko@etf.bg.ac.yu Today topics load balancing over multiple links multihoming to a single provider multihoming to different providers following defaults inside

More information

BGP Multihoming Techniques. Philip Smith <philip@apnic.net> APRICOT 2012 21 st February 2 nd March 2012 New Delhi

BGP Multihoming Techniques. Philip Smith <philip@apnic.net> APRICOT 2012 21 st February 2 nd March 2012 New Delhi BGP Multihoming Techniques Philip Smith APRICOT 2012 21 st February 2 nd March 2012 New Delhi Presentation Slides p Available on n http://thyme.apnic.net/ftp/seminars/ APRICOT2012-BGP-Multihoming.pdf

More information

Intelligent Routing Platform White Paper

Intelligent Routing Platform White Paper White Paper Table of Contents 1. Executive Summary...3 2. The Challenge of a Multi-Homed Environment...4 3. Network Congestion and Blackouts...4 4. Intelligent Routing Platform...5 4.1 How It Works...5

More information

Chapter 2 Lab 2-2, EIGRP Load Balancing

Chapter 2 Lab 2-2, EIGRP Load Balancing Chapter 2 Lab 2-2, EIGRP Load Balancing Topology Objectives Background Review a basic EIGRP configuration. Explore the EIGRP topology table. Identify successors, feasible successors, and feasible distances.

More information

B. Quoitin, S. Uhlig, C. Pelsser, L. Swinnen and O. Bonaventure

B. Quoitin, S. Uhlig, C. Pelsser, L. Swinnen and O. Bonaventure Interdomain traffic engineering with BGP B. Quoitin, S. Uhlig, C. Pelsser, L. Swinnen and O. Bonaventure Abstract Traffic engineering is performed by means of a set of techniques that can be used to better

More information

Understanding Large Internet Service Provider Backbone Networks

Understanding Large Internet Service Provider Backbone Networks Understanding Large Internet Service Provider Backbone Networks Joel M. Gottlieb IP Network Management & Performance Department AT&T Labs Research Florham Park, New Jersey joel@research.att.com Purpose

More information

BGP Multihoming. Why Multihome? Why Multihome? Why Multihome? Why Multihome? Why Multihome? Redundancy. Reliability

BGP Multihoming. Why Multihome? Why Multihome? Why Multihome? Why Multihome? Why Multihome? Redundancy. Reliability Why Multihome? BGP Multihoming ISP/IXP Redundancy One connection to internet means the network is dependent on: Local router (configuration, software, hardware) WN media (physical failure, carrier failure)

More information

Outline. Internet Routing. Alleviating the Problem. DV Algorithm. Routing Information Protocol (RIP) Link State Routing. Routing algorithms

Outline. Internet Routing. Alleviating the Problem. DV Algorithm. Routing Information Protocol (RIP) Link State Routing. Routing algorithms Outline Internet Routing Venkat Padmanabhan Microsoft Research 9 pril 2001 Routing algorithms distance-vector (DV) link-state (LS) Internet Routing border gateway protocol (BGP) BGP convergence paper Venkat

More information

--BGP 4 White Paper Ver.1.0-- BGP-4 in Vanguard Routers

--BGP 4 White Paper Ver.1.0-- BGP-4 in Vanguard Routers BGP-4 in Vanguard Routers 1 Table of Contents Introduction to BGP... 6 BGP terminology... 6 AS (Autonomous system):... 6 AS connection:... 6 BGP Speaker:... 6 BGP Neighbor/Peer:... 7 BGP Session:... 7

More information

Instructor Notes for Lab 3

Instructor Notes for Lab 3 Instructor Notes for Lab 3 Do not distribute instructor notes to students! Lab Preparation: Make sure that enough Ethernet hubs and cables are available in the lab. The following tools will be used in

More information

Border Gateway Protocol (BGP-4)

Border Gateway Protocol (BGP-4) Vanguard Applications Ware IP and LAN Feature Protocols Border Gateway Protocol (BGP-4) Notice 2008 Vanguard Networks 25 Forbes Blvd Foxboro, MA 02035 Phone: (508) 964 6200 Fax: (508) 543 0237 All rights

More information

Active measurements: networks. Prof. Anja Feldmann, Ph.D. Dr. Nikolaos Chatzis Georgios Smaragdakis, Ph.D.

Active measurements: networks. Prof. Anja Feldmann, Ph.D. Dr. Nikolaos Chatzis Georgios Smaragdakis, Ph.D. Active measurements: networks Prof. Anja Feldmann, Ph.D. Dr. Nikolaos Chatzis Georgios Smaragdakis, Ph.D. Outline Organization of Internet routing Types of domains Intra- and inter-domain routing Intra-domain

More information

MPLS WAN Explorer. Enterprise Network Management Visibility through the MPLS VPN Cloud

MPLS WAN Explorer. Enterprise Network Management Visibility through the MPLS VPN Cloud MPLS WAN Explorer Enterprise Network Management Visibility through the MPLS VPN Cloud Executive Summary Increasing numbers of enterprises are outsourcing their backbone WAN routing to MPLS VPN service

More information

Cisco Router Configuration Tutorial

Cisco Router Configuration Tutorial Cisco Router Configuration Tutorial Cisco Inter-network Operating System: Cisco IOS Modes of Operation The Cisco IOS software provides access to several different command modes. Each command mode provides

More information

Week 4 / Paper 1. Open issues in Interdomain Routing: a survey

Week 4 / Paper 1. Open issues in Interdomain Routing: a survey Week 4 / Paper 1 Open issues in Interdomain Routing: a survey Marcelo Yannuzzi, Xavier Masip-Bruin, Olivier Bonaventure IEEE Network, Nov.-Dec. 2005, vol. 19, no. 6, pp. 49 56 Main point There are many

More information

Simplify Your Route to the Internet:

Simplify Your Route to the Internet: Expert Reference Series of White Papers Simplify Your Route to the Internet: Three Advantages of Using LISP 1-800-COURSES www.globalknowledge.com Simplify Your Route to the Internet: Three Advantages of

More information

BGP Multihoming Techniques

BGP Multihoming Techniques BGP Multihoming Techniques Philip Smith , Seoul, South Korea August 2003 1 Presentation Slides Available on ftp://ftp-eng.cisco.com/pfs/seminars/ 2 Preliminaries Presentation has many configuration

More information

Route Discovery Protocols

Route Discovery Protocols Route Discovery Protocols Columbus, OH 43210 Jain@cse.ohio-State.Edu http://www.cse.ohio-state.edu/~jain/ 1 Overview Building Routing Tables Routing Information Protocol Version 1 (RIP V1) RIP V2 OSPF

More information

ISP Case Study. UUNET UK (1997) ISP/IXP Workshops. ISP/IXP Workshops. 1999, Cisco Systems, Inc.

ISP Case Study. UUNET UK (1997) ISP/IXP Workshops. ISP/IXP Workshops. 1999, Cisco Systems, Inc. ISP Case Study UUNET UK (1997) ISP/IXP Workshops ISP/IXP Workshops 1999, Cisco Systems, Inc. 1 Acknowledgements Thanks are due to UUNET UK for allowing the use of their configuration information and network

More information

The Case for Source Address Routing in Multihoming Sites

The Case for Source Address Routing in Multihoming Sites The Case for Source Address Dependent Routing in Multihoming Marcelo Bagnulo, Alberto García-Martínez, Juan Rodríguez, Arturo Azcorra. Universidad Carlos III de Madrid Av. Universidad, 30. Leganés. Madrid.

More information

IAB IPv6 Multi-Homing BOF. Jason Schiller Senior Internet Network Engineer IP Core Infrastructure Engineering UUNET / MCI

IAB IPv6 Multi-Homing BOF. Jason Schiller Senior Internet Network Engineer IP Core Infrastructure Engineering UUNET / MCI IAB IPv6 Multi-Homing BOF Jason Schiller Senior Internet Network Engineer IP Core Infrastructure Engineering UUNET / MCI Multi-homing Problems Inbound to the destination traffic engineering is needed Current

More information

Gateway of last resort is 192.208.10.5 to network 192.208.10.0

Gateway of last resort is 192.208.10.5 to network 192.208.10.0 RTB#sh ip bgp BGP table version is 14, local router ID is 203.250.15.10 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal Origin codes: i - IGP, e - EGP,? - incomplete Network

More information

Beginning BGP. Peter J. Welcher. Introduction. When Do We Need BGP?

Beginning BGP. Peter J. Welcher. Introduction. When Do We Need BGP? Beginning BGP Peter J. Welcher Introduction At the time I'm writing this, it is time to register for Networkers / CCIE recertification. I just signed up for Denver. You'll probably be reading this around

More information

Network Connection Considerations for Microsoft Response Point 1.0 Service Pack 2

Network Connection Considerations for Microsoft Response Point 1.0 Service Pack 2 Network Connection Considerations for Microsoft Response Point 1.0 Service Pack 2 Updated: February 2009 Microsoft Response Point is a small-business phone solution that is designed to be easy to use and

More information

Load balancing and traffic control in BGP

Load balancing and traffic control in BGP DD2491 p2 2009/2010 Load balancing and traffic control in BGP Olof Hagsand KTH /CSC 1 Issues in load balancing Load balancing: spread traffic on several paths instead of a single. Why? Use resources better

More information

Introduction to Routing and Packet Forwarding. Routing Protocols and Concepts Chapter 1

Introduction to Routing and Packet Forwarding. Routing Protocols and Concepts Chapter 1 Introduction to Routing and Packet Forwarding Routing Protocols and Concepts Chapter 1 1 1 Objectives Identify a router as a computer with an OS and hardware designed for the routing process. Demonstrate

More information

Interdomain Routing. Outline

Interdomain Routing. Outline Interdomain Routing David Andersen 15-744 Spring 2007 Carnegie Mellon University Outline What does the Internet look like? Relationships between providers Enforced by: Export filters and import ranking

More information

TechBrief Introduction

TechBrief Introduction TechBrief Introduction Leveraging Redundancy to Build Fault-Tolerant Networks The high demands of e-commerce and Internet applications have required networks to exhibit the same reliability as the public

More information

How To Set Up Bgg On A Network With A Network On A Pb Or Pb On A Pc Or Ipa On A Bg On Pc Or Pv On A Ipa (Netb) On A Router On A 2

How To Set Up Bgg On A Network With A Network On A Pb Or Pb On A Pc Or Ipa On A Bg On Pc Or Pv On A Ipa (Netb) On A Router On A 2 61200860L1-29.4E March 2012 Configuration Guide Configuring Border Gateway Protocol in AOS for Releases Prior to 18.03.00/R10.1.0 This guide only addresses BGP in AOS data products using AOS firmware prior

More information