Part A: Chirality (How can you tell if an object is chiral?)

Size: px
Start display at page:

Download "Part A: Chirality (How can you tell if an object is chiral?)"

Transcription

1 hemactivity 7 hirality 1 hemactivity 7 Part A: hirality (ow can you tell if an object is chiral?) Model 1: riterion for Identical-ness Two molecules are identical if models of the two molecules can be superimposed without breaking any bonds. and identical if super-imposable 1. Make two identical models of the following molecule and confirm that they can be superimposed on one another. Use different colored balls for each of the four substituents. If your set has green, orange and purple, use the following color code. green ball = chlorine atom orange ball = bromine atom I purple ball = iodine atom Br 2. witch any two balls on one of your models (leave the other model unchanged). Is this new model identical to your original model? No. 3. Which of the following words describe the relationship between these two models? ircle more than one choice, if appropriate. B and E A. Identical B. tereoisomers (same atom connectivity, but not identical). onformers (can be made identical via single bond rotation) D. onstitutional isomers (same formula, different atom connectivity) E. Mirror images (look like reflections of one another in the mirror)

2 hemactivity 7 hirality 2 4. onsider the following set of molecules. Note: assume each molecule is in its simplest conformation, even if it is not the lowest energy conformation. In this case, assume each cyclohexane ring is in a planar conformation (rather than a chair). A B trans trans cis a) Label each of A- with the word cis or trans, as appropriate. b) Are any two of the set an identical pair? If so which ones. No. c) Which are more similar A&B or B& [circle one]? A&B d) What do A&B have in common that B& do not? A&B are both trans. Definitions: chiral = not identical to its mirror image. (a property of an object) (hiral is Latin for handed. ) enantiomers = a pair of objects that are mirror images but not identical. (a relationship between two objects) (Enantiomers is Latin for opposites. ) diastereomers= a pair of objects that are stereoisomers but not enantiomers (a relationship between two objects) racemic mixture = a 1:1 mixture of a pair of enantiomers. (a special sample of objects) 5. Give an example of an everyday object that is chiral and one that is not chiral. hiral: glove, screw, car, fan, your hand Not hiral: soccer ball, your face (disregarding moles, scars and other imperfections), pencil, any 2D object such as a letter or written word Note: students often say that writing is chiral because, if you hold a page up to a mirror it is impossible to read. But if the writing itself could be lifted off the page and flipped over like a pancake, it would be correct again. 6. Give an example of a pair of everyday objects that are enantiomers. a pair of gloves, or your hands, and L bicycle pedals, righty and lefty scissors, shoes 7. ircle each structure in TQ 4 that is chiral (it may help to draw the mirror image of each). A and B are chiral. a) What is the relationship between A&B (be as specific as possible). A& B are enantiomers (they are also stereoisomers but this is not as specific.) b) What is the relationship between B& (be as specific as possible). B& are diastereomers (they are also stereoisomers but this is not as specific.) c) What is the relationship between A& (be as specific as possible). A& are diastereomers (they are also stereoisomers but this is not as specific.)

3 hemactivity 7 hirality 3 8. T or F: All chiral objects have exactly one enantiomer. If false, give an example from TQ 4. True! Your left hand has exactly one mirror image. An object can not have two different mirror images!! 9. T or F: All diastereomers are chiral. If false, give an example from TQ 4. False. tructure in TQ 4 is a diastereomer of A and B, but it is identical to its mirror image, so it is not chiral. Model 2: Internal Plane of ymmetry (Mirror Plane) It is always true that an object (or molecule) with an internal plane of symmetry is not chiral (not chiral = achiral = identical to its mirror image). internal plane of symmetry bject A bject B 10. bject has a very obvious plane of symmetry (marked with a dotted line), and a not so obvious one. Where is this second plane of symmetry? (Assume the balls are uniform spheres.) The second plane of symmetry is in the plane of the paper.

4 hemactivity 7 hirality 4 bject 11.

5 hemactivity 7 hirality bjects D and E are NT chiral. Indicate the internal mirror plane in each. bject D bject E In bject D there is a mirror plane that cuts the white and gray spheres in half and crosses halfway between the two black spheres. In bject E there is a mirror plane in the plane of the paper. Part B: Absolute onfiguration (ow can you tell if a chiral center is right handed or left handed?) Model 3: A Trick for Determining If a Molecule Is hiral chiral D not chiral chiral not chiral chiral center = carbon (or other atom) with four different groups attached to it. By convention, chiral centers are marked with an. A molecule with one chiral center is always chiral. If a molecule has more than one chiral center it is usually chiral. 13. onstruct an explanation for why each carbon indicated with a 1 is considered to have two identical groups, while the carbons with an are chiral, with four different groups. (int: It has to do with weather the ring is symmetrical or not.) Not hiral hiral Br 3 Br considered two identical groups 3 3 considered two different groups For each of the chiral centers, a mental journey around the ring encounters the substituents in a different order depending on which way you go. For the two s labeled 1, a journey around the ring in either direction is indistinguishable. This means the two parts of the ring attached to this carbon are considered identical groups. 3 3

6 hemactivity 7 hirality onsider the following structures, some of which are chiral. Br N N N 2 3 N ME MPUND a) For some of the chiral centers above (for example, the first one), the is not shown. ow can you tell if an is going into the page or coming out of the page? The "implied" is going the opposite direction of the group shown. For example, in the top-left structure the is going into the page since the group is coming out of the page. b) Mark each chiral center on the structures above with an. c) ircle the three structures at the top of the page that are NT chiral, and for each circled structure, indicate the plane of symmetry (mirror plane). d) ne of the structures you circled is an example of the rare case where a structure contains chiral centers but is not chiral. These molecules are called meso compounds. Label the meso compound above. Information Like gloves each chiral center is either right or left handed. The convention for determining handedness requires we rank four groups attached to a chiral center. ules for anking the Four Groups from highest (3) to lowest (0): The higher the atomic number of an element, the higher its rank. For example: N (atomic # = 7) beats (atomic # = 6), and everything beats (atomic # = 1) In the first round, look at the 1 st shell. This is comprised of the four atoms directly attached to the chiral center of interest. (see 1 st shell, below) If there is a tie in the first round, a second round is necessary in which we look to break the tie by examining atoms attached to the tied groups that are in the 2nd shell. (see example). If there is a tie in the 2 nd round, atoms in the third shell are compared, etc. 3rd shell 2nd shell 1st shell

7 hemactivity 7 hirality For the example on the previous page, a) Based on examination of the first shell, an overall winner (3) and an overall loser (0) can be determined. Mark these atoms with 3 and 0, respectively. b) In the first round there is a tie for ranks 2 and 1. Identify the two atoms that are tied based only on examination of the 1 st shell. c) In this case, examination of the 2 nd shell does NT break the tie and help determine ranks 2 and 1. Explain. d) Based on the 3 rd shell. Mark the two carbons in the 1 st shell as 2 and 1 to complete your ranking of the four atoms attached to the chiral center. Model 4: Nomenclature for hiral enters Each chiral center is designated as either right handed () or left handed (). ight handed chiral centers are called from the Latin word for right: rectus. Left handed chiral centers are called from the Latin word for left: sinister. The or assignment is called the absolute configuration of that chiral center. To determine the absolute configuration of a chiral center such as the one below: I. ank the four groups attached to the chiral center 3, 2, 1 and 0, respectively. II. With your IGT hand, grab the bond to the lowest rank group (use a model at first). Be sure that the 0 group (usually ) is at the pinky end, and the three larger groups are sticking out at the thumb end like a bouquet of flowers. III. If the natural curl of your fingers matches the progression from rank = 1, to rank = 2, to rank = 3 (highest) than the center is right handed or. IV. If the curl of the fingers on your right hand does not match this progression (1-2-3) then the chiral center is left handed (). onfirm the assignment by grabbing this same bond with your left hand and checking that the progression from (highest rank) matches the curl of your fingers. Try your technique on the following examples. ankings are shown using the numbers 0 = lowest, 3 = highest N (#4) going into paper is implied (#4) coming out of paper is implied

8 hemactivity 7 hirality 8 2 F Determine the absolute configuration of each chiral center in the following structures. F Note that the structures in the previous question are the enantiomers of the first row of structures at the top of the page. What happens to the absolute configuration of a molecule if you switch exactly two groups (e.g. and ) attached to a chiral center. If you switch exactly two groups attached to a chiral center, it changes the absolute configuration from to or vice versa. 18. Determine the absolute configuration ( or ) of each chiral center in TQ N Br N 2 3 N N ME MPUND Exercises for Part A: 1. Draw an example of a pair of stereoisomers that are NT enantiomers. What is the name for the relationship between such structures? 2. hade or mark the balls on the object below to generate a chiral object.

9 hemactivity 7 hirality 9 3. onsider the structures below mirror image Br 3 F a) Draw the mirror image of each molecule (the first one is done for you.) b) ircle the structures that are not chiral and use a dotted line to show any internal symmetry planes. Label these structures meso compound. 4. ead the assigned sections in your text and do the assigned problems. Exercises for Part B 5. ometimes a molecule with one or more chiral centers is drawn without giving enough information to determine if the chiral center/s are or. Mark each chiral center below with an. By convention, if there is not enough information given to assign or, we are to assume that the structure represents an even mixture of all stereochemical possibilities. For each structure above, draw all stereoisomers implied by the drawing. ircle those structures that imply a racemic mixture (racemic mixture = 1:1 mixture of exactly two enantiomers).

10 hemactivity 7 hirality Determine the absolute configuration of each chiral center in Exercise 3. Explain why a meso compound must always have a 1:1 ratio of chiral centers to chiral centers. (int: consider what happens to an chiral center when it is reflected in an internal mirror plane.) 7. Label every chiral center on the following molecules with an and an or ; and state whether the molecule as a whole is chiral. N Penicillin G N Alleve (Naproxen) 8. ow many different stereoisomers are there of each molecule in previous question? 9. Most books teach a different and equally good way of figuring out and. Find this section in your textbook by looking in the index under chiral center or absolute configuration. 10. ead the assigned sections in your text and do the assigned problems.

11 hemactivity 7 hirality 11

Isomers Have same molecular formula, but different structures

Isomers Have same molecular formula, but different structures Isomers ave same molecular formula, but different structures Constitutional Isomers Differ in the order of attachment of atoms (different bond connectivity) Stereoisomers Atoms are connected in the same

More information

Molecule Projections

Molecule Projections Key Definitions ü Stereochemistry refers to the chemistry in 3 dimensions (greek stereos = solid). This science was created by Pasteur (1860), van Hoff et LeBel (1874). ü Stereisomers are isomeric molecules

More information

Stereochemistry Tutorial: Drawing Enantiomers and Diastereomers

Stereochemistry Tutorial: Drawing Enantiomers and Diastereomers tereochemistry Tutorial: Drawing Enantiomers and Diastereomers Definitions for vocabulary words can be found in the Illustrated Glossary of rganic Chemistry, available on the course web site. A. Discussion

More information

ORGANIC COMPOUNDS IN THREE DIMENSIONS

ORGANIC COMPOUNDS IN THREE DIMENSIONS (adapted from Blackburn et al., Laboratory Manual to Accompany World of hemistry, 2 nd ed., (1996) Saunders ollege Publishing: Fort Worth) Purpose: To become familiar with organic molecules in three dimensions

More information

Molecular Models Experiment #1

Molecular Models Experiment #1 Molecular Models Experiment #1 Objective: To become familiar with the 3-dimensional structure of organic molecules, especially the tetrahedral structure of alkyl carbon atoms and the planar structure of

More information

Chemistry 1110 Organic Chemistry IUPAC Nomenclature

Chemistry 1110 Organic Chemistry IUPAC Nomenclature hemistry 1110 rganic hemistry IUPA Nomenclature 1 f the approximately 32 million unique chemical compounds presently known, over 95% of them can be classified as organic; i.e., containing carbon. The IUPA

More information

Chem 11 Oa-Section 2. Exam #2. 1 October 2004

Chem 11 Oa-Section 2. Exam #2. 1 October 2004 " Chem 11 Oa-Section 2 Exam #2 1 October 2004 Name: K~ Instructions Please read each question carefully and answer it completely and clearly. Do the problems in the order that is easiest for you. Point

More information

Laboratory 11: Molecular Compounds and Lewis Structures

Laboratory 11: Molecular Compounds and Lewis Structures Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular

More information

5. Structure, Geometry, and Polarity of Molecules

5. Structure, Geometry, and Polarity of Molecules 5. Structure, Geometry, and Polarity of Molecules What you will accomplish in this experiment This experiment will give you an opportunity to draw Lewis structures of covalent compounds, then use those

More information

Molecular Models in Biology

Molecular Models in Biology Molecular Models in Biology Objectives: After this lab a student will be able to: 1) Understand the properties of atoms that give rise to bonds. 2) Understand how and why atoms form ions. 3) Model covalent,

More information

EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY

EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY Purpose: 1. To distinguish between different types of chemical bonds. 2. To predict the polarity of some common molecules from a knowledge of bond

More information

IR Applied to Isomer Analysis

IR Applied to Isomer Analysis DiscovIR-LC TM Application Note 025 April 2008 Deposition and Detection System IR Applied to Isomer Analysis Infrared spectra provide valuable information about local configurations of atoms in molecules.

More information

Absolute Structure Absolute Configuration

Absolute Structure Absolute Configuration Absolute Structure Absolute Configuration Some definitions Absolute Configuration -> spatial arrangement of the atoms for a chiral molecule (R/S, P/M or D/L assignment). Absolute Structure -> spatial arrangement

More information

Final Examination, Organic Chemistry 1 (CHEM 2210) December 2000 Version *A* A. B. C. D.

Final Examination, Organic Chemistry 1 (CHEM 2210) December 2000 Version *A* A. B. C. D. Final Examination, rganic hemistry 1 (EM 2210) December 2000 Version *A* 1. What are the hybridization of, and the geometrical shape around, the nitrogen atom in the following molecule? N 3 3 A. sp, linear

More information

Conjugation is broken completely by the introduction of saturated (sp3) carbon:

Conjugation is broken completely by the introduction of saturated (sp3) carbon: Chapter 16 Conjugation, resonance, and dienes Conjugation relies on the partial overlap of p-orbitals on adjacent double or triple bonds. A common conjugated system involves 1,3-dienes, such as 1,3-butadiene.

More information

cyclohexane cyclopentane Nomenclature Follows same rules as for stright-chain alkanes. Examples: name the following

cyclohexane cyclopentane Nomenclature Follows same rules as for stright-chain alkanes. Examples: name the following Structure and Stereochemistry of Alkanes Reading: Wade chapter 3, sections 3-10- 3-16 Study Problems: 3-43, 3-44, 3-45, 3-46 Key oncepts and Skills: ompare the energies of cycloalkanes, and explain ring

More information

Anti-Markovnikov Addition of H-Br (How does the placement of Br differ in radical vs. polar addition of HBr to an alkene?)

Anti-Markovnikov Addition of H-Br (How does the placement of Br differ in radical vs. polar addition of HBr to an alkene?) hemactivity 21 Anti-Markovnikov Addition of 1 hemactivity 21 Anti-Markovnikov Addition of - (ow does the placement of differ in radical vs. polar addition of to an alkene?) Model 1: Radical Reactions of

More information

Examination of Proton NMR Spectra

Examination of Proton NMR Spectra Examination of Proton NMR Spectra What to Look For 1) Number of Signals --- indicates how many "different kinds" of protons are present. 2) Positions of the Signals --- indicates something about magnetic

More information

Using Proportions to Solve Percent Problems I

Using Proportions to Solve Percent Problems I RP7-1 Using Proportions to Solve Percent Problems I Pages 46 48 Standards: 7.RP.A. Goals: Students will write equivalent statements for proportions by keeping track of the part and the whole, and by solving

More information

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num . ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential

More information

ChemPad3. a tutorial. Ben Shine and Dana Tenneson. May 21, 2008

ChemPad3. a tutorial. Ben Shine and Dana Tenneson. May 21, 2008 ChemPad3 a tutorial Ben Shine and Dana Tenneson May 21, 2008 1 Welcome to ChemPad! ChemPad is a Tablet PC application for students learning introductory organic chemistry. ChemPad allows students to draw

More information

The melting temperature of carbon

The melting temperature of carbon hemical misconceptions 71 The melting temperature of carbon Target level Topics Rationale This exercise is suitable for either 14 16 year olds who have studied bonding and structure and can calculate relative

More information

Group Theory and Molecular Symmetry

Group Theory and Molecular Symmetry Group Theory and Molecular Symmetry Molecular Symmetry Symmetry Elements and perations Identity element E - Apply E to object and nothing happens. bject is unmoed. Rotation axis C n - Rotation of object

More information

Test Bank - Chapter 4 Multiple Choice

Test Bank - Chapter 4 Multiple Choice Test Bank - Chapter 4 The questions in the test bank cover the concepts from the lessons in Chapter 4. Select questions from any of the categories that match the content you covered with students. The

More information

1. What is the hybridization of the indicated atom in the following molecule?

1. What is the hybridization of the indicated atom in the following molecule? Practice Final Exam, Chemistry 2210, rganic Chem I 1. What is the hybridization of the indicated atom in the following molecule? A. sp 3 B. sp 2 C. sp D. not hybridized 2. Name the functional groups in

More information

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds? CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose

More information

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Chapter 4 Educational Goals 1. Given the formula of a molecule, the student will be able to draw the line-bond (Lewis) structure. 2. Understand and construct condensed structural

More information

Directions: T. Trimpe 2005 http://sciencespot.net/

Directions: T. Trimpe 2005 http://sciencespot.net/ Candy Compounds Teacher Information I use this activity after we have discussed ionic and covalent bonds to give my students a chance to practice bonding. I walk around the classroom as students work on

More information

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: ID: A Chapter 6 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When an atom loses an electron, it forms a(n) a. anion. c.

More information

DNA Worksheet BIOL 1107L DNA

DNA Worksheet BIOL 1107L DNA Worksheet BIOL 1107L Name Day/Time Refer to Chapter 5 and Chapter 16 (Figs. 16.5, 16.7, 16.8 and figure embedded in text on p. 310) in your textbook, Biology, 9th Ed, for information on and its structure

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas

More information

Which two rectangles fit together, without overlapping, to make a square?

Which two rectangles fit together, without overlapping, to make a square? SHAPE level 4 questions 1. Here are six rectangles on a grid. A B C D E F Which two rectangles fit together, without overlapping, to make a square?... and... International School of Madrid 1 2. Emily has

More information

Solving Spectroscopy Problems

Solving Spectroscopy Problems Solving Spectroscopy Problems The following is a detailed summary on how to solve spectroscopy problems, key terms are highlighted in bold and the definitions are from the illustrated glossary on Dr. Hardinger

More information

BEGINNER S BRIDGE NOTES. Leigh Harding

BEGINNER S BRIDGE NOTES. Leigh Harding BEGINNER S BRIDGE NOTES Leigh Harding PLAYING THE CARDS IN TRUMP CONTRACTS Don t play a single card until you have planned how you will make your contract! The plan will influence decisions you will have

More information

Acids and Bases: Molecular Structure and Acidity

Acids and Bases: Molecular Structure and Acidity Acids and Bases: Molecular Structure and Acidity Review the Acids and Bases Vocabulary List as needed. Tutorial Contents A. Introduction B. Resonance C. Atomic Radius D. Electronegativity E. Inductive

More information

Assessment Schedule 2013 Chemistry: Demonstrate understanding of the properties of organic compounds (91391)

Assessment Schedule 2013 Chemistry: Demonstrate understanding of the properties of organic compounds (91391) NCEA Level 3 Chemistry (91391) 2013 page 1 of 8 Assessment Schedule 2013 Chemistry: Demonstrate understanding of the properties of organic compounds (91391) Evidence Statement Q Evidence Achievement Achievement

More information

MOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It?

MOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It? NAME PARTNERS SECTION DATE_ MOLES, MOLECULES, FORMULAS This activity is designed to introduce a convenient unit used by chemists and to illustrate uses of the unit. Part I: What Is a Mole And Why Are Chemists

More information

OA3-10 Patterns in Addition Tables

OA3-10 Patterns in Addition Tables OA3-10 Patterns in Addition Tables Pages 60 63 Standards: 3.OA.D.9 Goals: Students will identify and describe various patterns in addition tables. Prior Knowledge Required: Can add two numbers within 20

More information

CH101/105, GENERAL CHEMISTRY LABORATORY

CH101/105, GENERAL CHEMISTRY LABORATORY CH101/105, GENERAL CHEMITRY LABORATORY LABORATORY LECTURE 5 EXPERIMENT 5: LEWI TRUCTURE AND MOLECULAR HAPE Lecture topics I. LEWI TRUCTURE a) calculation of the valence electron numbers; b) choosing the

More information

Paper 1. Calculator not allowed. Mathematics test. First name. Last name. School. Remember KEY STAGE 3 TIER 4 6

Paper 1. Calculator not allowed. Mathematics test. First name. Last name. School. Remember KEY STAGE 3 TIER 4 6 Ma KEY STAGE 3 Mathematics test TIER 4 6 Paper 1 Calculator not allowed First name Last name School 2007 Remember The test is 1 hour long. You must not use a calculator for any question in this test. You

More information

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each. Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals

More information

PRACTICE PROBLEMS, CHAPTERS 1-3

PRACTICE PROBLEMS, CHAPTERS 1-3 PRATIE PRBLEMS, APTERS 1-3 (overed from h. 3: Alkane and Alkyl alide nomenclature only) 1. The atomic number of boron is 5. The correct electronic configuration of boron is: A. 1s 2 2s 3 B. 1s 2 2p 3.

More information

Assessment For The California Mathematics Standards Grade 6

Assessment For The California Mathematics Standards Grade 6 Introduction: Summary of Goals GRADE SIX By the end of grade six, students have mastered the four arithmetic operations with whole numbers, positive fractions, positive decimals, and positive and negative

More information

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20 Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

More information

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR)

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) WHAT IS H-NMR SPECTROSCOPY? References: Bruice 14.1, 14.2 Introduction NMR or nuclear magnetic resonance spectroscopy is a technique used to determine

More information

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy Theory behind NMR: In the late 1940 s, physical chemists originally developed NMR spectroscopy to study different properties of atomic nuclei,

More information

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

More information

Visualizing Molecular Orbitals: A MacSpartan Pro Experience

Visualizing Molecular Orbitals: A MacSpartan Pro Experience Introduction Name(s) Visualizing Molecular Orbitals: A MacSpartan Pro Experience In class we have discussed Lewis structures, resonance, VSEPR, hybridization and molecular orbitals. These concepts are

More information

Alkanes. Chapter 1.1

Alkanes. Chapter 1.1 Alkanes Chapter 1.1 Organic Chemistry The study of carbon-containing compounds and their properties What s so special about carbon? Carbon has 4 bonding electrons. Thus, it can form 4 strong covalent bonds

More information

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked. GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all

More information

Probabilistic Strategies: Solutions

Probabilistic Strategies: Solutions Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

More information

CONFORMATIONAL ANALYSIS PRACTICE EXERCISES. 1) Draw a Newman projection of the most stable conformation of 2-methylpropane.

CONFORMATIONAL ANALYSIS PRACTICE EXERCISES. 1) Draw a Newman projection of the most stable conformation of 2-methylpropane. CONFORMATIONAL ANALYSIS PRACTICE EXERCISES 1) Draw a Newman projection of the most stable conformation of 2-methylpropane. 2) The structures below are: C 3 C 3 C 3 C 3 A) not isomers. B) conformational

More information

2814 hains, Rings and Spectroscopy June 2003 Mark Scheme 2814 Mark Scheme June 2003 The following annotations may be used when marking: X = incorrect response (errors may also be underlined) ^ = omission

More information

Dr.B.R.AMBEDKAR OPEN UNVERSITY FACULTY OF SCIENCE M.Sc. I year -CHEMISTRY (2013-14) Course I: Inorganic Chemistry

Dr.B.R.AMBEDKAR OPEN UNVERSITY FACULTY OF SCIENCE M.Sc. I year -CHEMISTRY (2013-14) Course I: Inorganic Chemistry M.Sc. I year -CHEMISTRY (2013-14) Course I: Inorganic Chemistry Maximum Marks 15 Minimum Marks - 06 Section A 1X10=10 Answer any One question from the following Two questions a. What is symmetry operation?

More information

39 Symmetry of Plane Figures

39 Symmetry of Plane Figures 39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

More information

Survival Organic Chemistry Part I: Molecular Models

Survival Organic Chemistry Part I: Molecular Models Survival Organic Chemistry Part I: Molecular Models The goal in this laboratory experience is to get you so you can easily and quickly move between empirical formulas, molecular formulas, condensed formulas,

More information

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015)

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015) (Revised 05/22/2015) Introduction In the early 1900s, the chemist G. N. Lewis proposed that bonds between atoms consist of two electrons apiece and that most atoms are able to accommodate eight electrons

More information

CHEM 121. Chapter 18. Name: Date: 1. Which of the following compounds is both an aldose and a hexose? A) Page 1

CHEM 121. Chapter 18. Name: Date: 1. Which of the following compounds is both an aldose and a hexose? A) Page 1 CEM 121. Chapter 18. Name: Date: 1. Which of the following compounds is both an aldose and a hexose? A) B) C) D) Page 1 2. Which of the following structures is that of an L-monosaccharide? A) B) C) D)

More information

Chapter 2: The Chemical Context of Life

Chapter 2: The Chemical Context of Life Chapter 2: The Chemical Context of Life Name Period This chapter covers the basics that you may have learned in your chemistry class. Whether your teacher goes over this chapter, or assigns it for you

More information

Stoichiometry. What is the atomic mass for carbon? For zinc?

Stoichiometry. What is the atomic mass for carbon? For zinc? Stoichiometry Atomic Mass (atomic weight) Atoms are so small, it is difficult to discuss how much they weigh in grams We use atomic mass units an atomic mass unit (AMU) is one twelfth the mass of the catbon-12

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

More information

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions 7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams

More information

Ionic and Metallic Bonding

Ionic and Metallic Bonding Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose

More information

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed

More information

Modelling Compounds. 242 MHR Unit 2 Atoms, Elements, and Compounds

Modelling Compounds. 242 MHR Unit 2 Atoms, Elements, and Compounds 6.3 Figure 6.26 To build the Michael Lee-Chin Crystal at the Royal Ontario Museum, models were used at different stages to convey different types of information. Modelling Compounds The Michael Lee-Chin

More information

Atoms and Molecules. Preparation. Objectives. Standards. Materials. Grade Level: 5-8 Group Size: 20-30 Time: 60 90 Minutes Presenters: 2-4

Atoms and Molecules. Preparation. Objectives. Standards. Materials. Grade Level: 5-8 Group Size: 20-30 Time: 60 90 Minutes Presenters: 2-4 Atoms and Molecules Preparation Grade Level: 5-8 Group Size: 20-30 Time: 60 90 Minutes Presenters: 2-4 Objectives This lesson will enable students to: Describe how atoms are the building blocks of matter

More information

Unit 9 Compounds Molecules

Unit 9 Compounds Molecules Unit 9 Compounds Molecules INTRODUCTION Compounds are the results of combinations of elements. These new substances have unique properties compared to the elements that make them up. Compounds are by far

More information

Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of conditional probability and independence

More information

C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16.

C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16. 129 Lewis Structures G. N. Lewis hypothesized that electron pair bonds between unlike elements in the second (and sometimes the third) row occurred in a way that electrons were shared such that each element

More information

Answer Key, Problem Set 11

Answer Key, Problem Set 11 Chemistry 122 Mines, Spring 2010 Answer Key, Problem Set 11 1. Write the electron configuration for each of the following atoms and ions (use the noble gas abbreviation): (a) Mn: [Ar] 4s 2 3d 5 (Note:

More information

Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D

Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D Electrons in Atoms (std.1d) What are Bohr Models? planetary model in which the negatively-charged electrons orbit a small, positively-charged

More information

Suggested solutions for Chapter 3

Suggested solutions for Chapter 3 s for Chapter PRBLEM Assuming that the molecular ion is the base peak (00% abundance) what peaks would appear in the mass spectrum of each of these molecules: (a) C5Br (b) C60 (c) C64Br In cases (a) and

More information

Grade 7/8 Math Circles November 3/4, 2015. M.C. Escher and Tessellations

Grade 7/8 Math Circles November 3/4, 2015. M.C. Escher and Tessellations Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Tiling the Plane Grade 7/8 Math Circles November 3/4, 2015 M.C. Escher and Tessellations Do the following

More information

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces

More information

Review of Basic Fraction Concepts

Review of Basic Fraction Concepts Review of asic Fraction Concepts Objective To review fractions as parts of a whole (ONE), fractions on number lines, and uses of fractions. www.everydaymathonline.com epresentations etoolkit lgorithms

More information

Bonding & Molecular Shape Ron Robertson

Bonding & Molecular Shape Ron Robertson Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving

More information

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES ATER 10 TE AE MLEULE 10.1 To be the central atom in a compound, the atom must be able to simultaneously bond to at least two other atoms. e,, and cannot serve as central atoms in a Lewis structure. elium

More information

Printing Letters Correctly

Printing Letters Correctly Printing Letters Correctly The ball and stick method of teaching beginners to print has been proven to be the best. Letters formed this way are easier for small children to print, and this print is similar

More information

F322: Chains, Energy and Resources 2.2.4 Alcohols

F322: Chains, Energy and Resources 2.2.4 Alcohols F322: hains, Energy and Resources 2.2.4 Alcohols 167 marks 1. This question is about the six alcohols below. butan-2-ol 2-methylpentan-3-ol propan-1-ol ethane-1,2-diol 2-methylpropan-2-ol propan-2-ol Which

More information

Chapter 18 Symmetry. Symmetry of Shapes in a Plane 18.1. then unfold

Chapter 18 Symmetry. Symmetry of Shapes in a Plane 18.1. then unfold Chapter 18 Symmetry Symmetry is of interest in many areas, for example, art, design in general, and even the study of molecules. This chapter begins with a look at two types of symmetry of two-dimensional

More information

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges. Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

More information

LEWIS DIAGRAMS. by DR. STEPHEN THOMPSON MR. JOE STALEY

LEWIS DIAGRAMS. by DR. STEPHEN THOMPSON MR. JOE STALEY by DR. STEPHEN THOMPSON MR. JOE STALEY The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improvement of Postsecondary Education (FIPSE), United States Department

More information

Junior Cookie CEO Badge Activity Plan 1

Junior Cookie CEO Badge Activity Plan 1 Junior Cookie CEO Badge Activity Plan 1 Badge Purpose: When girls have earned this badge, they ll know more about how to run all parts of their cookie business. Program Essentials Link: Financial Literacy

More information

Stereochemistry of Alkanes and Cycloalkanes

Stereochemistry of Alkanes and Cycloalkanes Stereochemistry of Alkanes and ycloalkanes onformation of ethane: Rotation is possible around - Different arrangements of atoms that can be converted into one another by rotation about single bonds are

More information

An Introduction to Organic Chemistry

An Introduction to Organic Chemistry An Introduction to Organic Chemistry 81 Organic Chemistry Organic chemistry is the study of compounds containing carbon with the exception of simple compounds e.g. carbonates (CO 3 2- ), carbon dioxide

More information

Solving the Rubik's Revenge (4x4x4) Home Pre-Solution Stuff Step 1 Step 2 Step 3 Solution Moves Lists

Solving the Rubik's Revenge (4x4x4) Home Pre-Solution Stuff Step 1 Step 2 Step 3 Solution Moves Lists Solving your Rubik's Revenge (4x4x4) 07/16/2007 12:59 AM Solving the Rubik's Revenge (4x4x4) Home Pre-Solution Stuff Step 1 Step 2 Step 3 Solution Moves Lists Turn this... Into THIS! To solve the Rubik's

More information

3) How many monosaccharides are connected to each other in a disaccharide? A) 1 B) 2 C) 3 D) 4

3) How many monosaccharides are connected to each other in a disaccharide? A) 1 B) 2 C) 3 D) 4 General, Organic, and Biochemistry, 2e (Frost) HOMEWORK Chapter 6 Carbohydrates Life s Sweet Molecules 6.1 Multiple-Choice 1) Which of the following is a polysaccharide? Glucose Sucrose C) Starch D) Maltose

More information

Chapter 8 Concepts of Chemical Bonding

Chapter 8 Concepts of Chemical Bonding Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding

More information

Year 9 mathematics test

Year 9 mathematics test Ma KEY STAGE 3 Year 9 mathematics test Tier 3 5 Paper 2 Calculator allowed First name Last name Class Date Please read this page, but do not open your booklet until your teacher tells you to start. Write

More information

I. ABSTRACT II. III. IV.

I. ABSTRACT II. III. IV. Teaching About Magnets in Kindergarten Grade Level or Special Area: Kindergarten Written by: Lori Dawn Montanez, Swallows Charter Academy, Pueblo West, CO Length of Unit: Five lessons (approximately two

More information

2/10/2011. Stability of Cycloalkanes: Ring Strain. Stability of Cycloalkanes: Ring Strain. 4.3 Stability of Cycloalkanes: Ring Strain

2/10/2011. Stability of Cycloalkanes: Ring Strain. Stability of Cycloalkanes: Ring Strain. 4.3 Stability of Cycloalkanes: Ring Strain 4.3 Stability of Cycloalkanes: Ring Strain Angle strain The strain induced in a molecule when bond angles are forced to deviate from the ideal 109º tetrahedral value (Adolf von Baeyer 1885) Stability of

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory To date, we have looked at three different theories of molecular boning. They are the VSEPR Theory (with Lewis Dot Structures), the Valence Bond Theory (with hybridization) and

More information

Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations

Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations Math Buddies -Grade 4 13-1 Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations Goal: Identify congruent and noncongruent figures Recognize the congruence of plane

More information

Homework Activities for Kindergarten

Homework Activities for Kindergarten Homework Activities for Kindergarten Listed below are several learning activities for your child to complete at home to reinforce skills being taught in school. The sight words are on the last page. Reading

More information

Chapter 12 Organic Compounds with Oxygen and Sulfur

Chapter 12 Organic Compounds with Oxygen and Sulfur Chapter 12 Organic Compounds with Oxygen and Sulfur 1 Alcohols An alcohol contains a hydroxyl group ( OH) that replaces a hydrogen atom in a hydrocarbon. A phenol contains a hydroxyl group ( OH) attached

More information

123.202: Organic and Biological Chemistry Tutorial Answers for gjr s Section Sheet 1

123.202: Organic and Biological Chemistry Tutorial Answers for gjr s Section Sheet 1 123.202: rganic and Biological hemistry Tutorial Answers for gjr s ection heet 1 Question 1. Draw the Lewis structures (dot & cross diagrams) for the following UR molecules: l 2, Pl 3, 3 (Me) 2 & 3 l 2

More information

Chapter 2 The Chemical Context of Life

Chapter 2 The Chemical Context of Life Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living

More information

Part I: Principal Energy Levels and Sublevels

Part I: Principal Energy Levels and Sublevels Part I: Principal Energy Levels and Sublevels As you already know, all atoms are made of subatomic particles, including protons, neutrons, and electrons. Positive protons and neutral neutrons are found

More information