The Effects of Soil Moisture Content on Reflectance Spectra of Soils Using UV-VIS-NIR Spectroscopy ABSTRACT

Size: px
Start display at page:

Download "The Effects of Soil Moisture Content on Reflectance Spectra of Soils Using UV-VIS-NIR Spectroscopy ABSTRACT"

Transcription

1 The Effects of Soil Moisture Content on Reflectance Spectra of Soils Using UV-VIS-NIR Spectroscopy I. Bogrekci, and W. S. Lee Agricultural and Biological Engineering Department University of Florida Gainesville, Florida ABSTRACT This study was conducted to investigate the effects of soil moisture content on reflectance spectra of sandy soils with different phosphorus (P) concentrations using UV-VIS-NIR reflectance spectroscopy. Sandy soils with average particle size of 25 µm were used. Investigations were conducted at, 12.5, 62.5, 175, 375, 75, and 1 mg/kg phosphorus application rates. Three soil moisture contents, i.e., 4%, 8%, and 12 % were investigated. P concentrations of the soil samples were analyzed and reflectance of the samples was measured between nm with a 1 nm interval. Dried soil sample reflected more lights than wet soils in nm. As moisture content of soils increased, reflectance from the soil sample decreased, which indicates that water is a strong light absorber than a sandy soil sample. Wet soil spectra was reconstructed by removing the moisture content effect and compared with the dry spectra of the same soil sample. Absorbance and reconstructed absorbance data were prepared as calibration and validation data sets in order to measure the performance of the spectral signal processing used in the removal of the effect of moisture content on absorbance spectra. A partial least squares (PLS) analysis was applied to the data to predict P concentration before and after processing the spectra. The results showed that spectral signal processing by removing the moisture effect improved considerably P prediction in soils. Keywords: Reflectance, Sensor, Phosphorus, Phosphates, Lake Okeechobee, UV, VIS, NIR, spectroscopy, PLS, moisture content. 1

2 INTRODUCTION Moisture content of soils has been always concern for measurement of soil properties. Many researchers used spectral reflection to determine moisture content of a soil sample. There have been a lot of such research activities, however, only few recent studies were mentioned here. Soil moisture and vegetation cover had a negative influence on the prediction capabilities for both soil properties, organic matter and clay content, using field spectroscopy (Kooistra et al., 23). Galvao and Vitorello (1998) investigated linear relationship (soil lines) between conventional red (R) and NIR in 5-11 nm for the effects of spectral positioning and widths of approximately simulated bands of some broad and narrow band sensors, and for the influence of the chemical constituent and moisture in the soil samples. Hummel et al., (21) studied soil moisture and organic matter prediction of surface and subsurface soils using an NIR sensor. Phosphorus (Lee et al., 23, and Varvel et al., 1999, Bogrekci et al., 23) and phosphates (Yoon et al., 1993) and their spectral sensing were studied. In addition to previous studies, this research investigates both the effect of moisture content on soil reflectance spectra in nm in determining P concentrations from spectral information and remove the effect of moisture on reflectance spectra by re-constructing the wet spectra of a soil sample in order to improve prediction capability of P in soils. OBJECTIVE The objective of this research was to investigate the effects of soil moisture content on reflectance spectra for a sandy soil sample to develop a calibration model for predicting P concentration of unknown samples using diffuse reflectance spectroscopy in ultraviolet (UV), visible (VIS), and near infrared (NIR) regions. MATERIALS AND METHODS Soil sample preparation In order to study the effects of moisture content on reflectance spectra of soils, pure sandy soil was obtained from Edgar, Putnam County in Florida. Sandy soil was graded into three particle sizes using a sieve shaker (RO-TAP, W. S. TYLER, Inc.). Sandy soil particle sizes were 125, 25, 6 µm for fine, medium, and coarse, respectively. Soil samples were leached using.1 molar HCl acid solutions and de-ionized water in order to remove existing P. After leaching, ph and P concentration of sandy soils were analyzed. Soil ph was measured using a ph/temperature meter (HI 991, Hanna Instruments) and soil P was determined using a soil test kit (Luster Leaf Products, Inc.). If P was detected in the soil samples, further leaching was applied. Soil samples were incubated for seven days with all P concentrations. P solution was prepared from potassium phosphate monobasic (KH 2 PO 4, Fisher Scientific). P rates were, 12.5, 62.5, 175, 375, 75, and 1 mg/kg. P solution was added into soil and mixed thoroughly.

3 After each reflectance measurement of the wet soil samples, samples were ovendried at 14 C for 24 hours. The soil samples were sent to a laboratory for chemical analysis of P concentrations. All soil samples were analyzed for total P. Moisture effect experiment Phosphorus application rates with different moisture contents are listed in table 1. After incubation of soil with different P concentrations for seven days, the soil samples were air-dried thoroughly. Different amount of water was added into the dried soil samples to prepare samples with different moisture contents (4%, 8%, and 12% wet basis) and reflectance of the same sample was measured for all soil samples. There were seven different P concentrations, four different moisture contents, and four replications, which produced 112 soil reflectance spectra. Table 1. Sample preparation with different phosphorus concentrations and moisture contents. P Concentration (mg/kg) No P Very low Low Medium High Very high Extremely high Particle Size (µm) Medium (25) ph 6 Moisture Content (%) No moisture (dry) Low Medium High Spectral range (nm) Reflectance measurement A spectrophotometer (Cary 5 Scan UV-VIS-NIR, Varian Inc.) equipped with a diffuse reflectance accessory (DRA-CA-55, Labsphere) was used to collect spectral reflectance data from each soil sample. Reflectance was measured for each soil sample in nm with an increment of 1 nm. Reflectance of the soil samples was measured before and after drying. Spectral signal pre-processing Reflectance of all samples were converted into absorbance before further analysis in order to find relationship between P concentrations and absorption of lights at different wavelength using the Beer-Lambert s law (Williams and Norris, 21). The data was filtered using Savitzky-Golay polynomial convolution filter to remove the noise in the signal (Matlab R12, The MathWorks Inc.). 3

4 Data analysis In order to obtain better performance in sensing P concentrations of soils, the effect of moisture content on absorbance spectrum of a soil sample was removed. P concentrations from absorbance spectra of soils were calculated using both original absorbance spectra of soils with different moisture content and processed absorbance spectra of soils after moisture effect removal. To do this, firstly, moisture content of a soil sample was computed from absorbance spectra. Secondly, the effect of 1% moisture content in soil spectra in nm was calculated. Thirdly, moisture effect on absorbance spectra was removed. Lastly, PLS (Proc PLS, SAS/STAT, SAS Inc.) analysis was conducted with the original and the processed absorbance spectra to predict P concentrations of soils and to measure the performance of water effect removal from the wet soil spectra in determining P concentrations of soils. There were 54 and 53 soil spectra in calibration and validation data sets, respectively. Five spectra were discarded due to being outliers and experimental error. Two wavelengths, 145 nm and 194 nm are well-known water absorption bands (Williams and Norris, 21). The reflectance at 34 nm also presented no change with regard to moisture content and P concentrations. Therefore, these wavelengths were used to calculate moisture determination ratio (MDR) for measuring moisture content of a soil sample. where ( Aλ Aλ 194) MDR = (1) A λ34 MDR = Moisture determination ratio A λ145 = Absorbance at 145 nm A λ194 = Absorbance at 194 nm A λ34 = Absorbance at 34 nm. MDR values were calculated for each spectrum. Based on the MDR values, the samples were classified into different classes. If MDR value of a soil spectrum was less than one, the sample was classified as a dry soil sample. If MDR value of a soil spectrum was between 1 and 2.6, the sample was classified as a soil with 4% moisture content. MDR value of a soil spectrum between 2.6 and 2.88 was classified as a soil with 8% moisture content. MDR value of a soil spectrum more than 2.88 was classified as a soil with 12% moisture content. Also success ratio was calculated as correctly classified number of data was divided by the number of data in the validation set. RESULTS AND DISCUSSION Average reflectance spectra of four wet soil samples with 4%, 8%, and 12% moisture contents and four dry soil samples with no P concentrations are plotted 4

5 in figure 1. Reflectance of dry soils was higher than wet soils in nm. Reflectance decreased with an increase in moisture content for all wavelengths. However, the amount of reflectance change was not constant at all wavelengths due to water-light absorption properties. The water effect was observed as expected on reflectance spectra. Average reflectance of soils with different P concentrations in nm are given in figures 2, 3, 4, and 5 for 4%, 8%, 12% and % (dry) soil moisture contents, respectively. Soil reflectance spectra in showed that reflectance decreased with an increase in soil moisture. As the Beer-Lambert s law explained, reflectance decreased with an increase in P concentrations of soils. This relationship was observed clearly in NIR region for P (figures 2, 3, 4, and 5). However, the amount of reflectance change for each P concentration increase in NIR region became smaller as moisture content increased. In other words, reflectance caused by P concentrations in soils was more distinct for each P concentration if the soil sample was drier. The decrease in the amount of reflectance change for the same P concentrations was caused by moisture increase in soils and therefore, moisture effect should be corrected to improve capability of P prediction models. Correlation coefficient spectra of absorbance and P concentrations are depicted in figure 6 for different soil moisture contents. As seen from correlation coefficient spectra in nm, there is a high correlation between reflectance and P concentrations as the soil sample becomes drier Dry 4% 8% 12% 7 Reflectance (%) Figure 1. Average reflectance of both four wet soil samples at different moisture contents and four dry soils with no P concentrations in nm. 5

6 Reflectance (%) No P Very low Low Medium High Very high Extremely high Figure 2. Average reflectance of four soil samples at 4% moisture content with different P concentrations in nm Reflectance (%) No P Very low Low Medium High Very high Extremely high Figure 3. Average reflectance of four soil samples at 8% moisture content with different P concentrations and in nm. 6

7 6 5 4 Reflectance (%) No P Very low Low Medium High Very high Extremely high Figure 4. Average reflectance of four soil samples at 12% moisture content with different P concentrations and in nm Reflectance (%) No P Very low Low Medium High Very high Extremely high Figure 5. Average reflectance of four dried soil samples with different P concentrations in nm. 7

8 1.8 Correlation coefficient (r) Dry 4% 8% 12% Figure 6. Correlation coefficient spectra between absorbance and P concentrations at different moisture contents in nm. The results for determination of moisture content using MDR (eq.1) are listed in table 2. Using MDR and the defined class range, success ratios were 98.7% and 88.7% for the calibration and validation data sets. Table 2. Classification results of the validation set for determining soil moisture contents using MDR equation. Predicted number of samples Moisture Contents Actual number of samples Dry 4% 8% 12% Equivalent MDR values Dry % % % 3 12 >2.88 Success ratio

9 .6 Dry Wet Re-constructed.5.4 Absorbance Figure 7. Absorbance of a soil sample in wet and dry conditions and reconstructed absorbance of the same soil sample in nm. Absorbance of a wet and dry soil sample and reconstructed spectra from the same wet soil spectra in nm are shown in figure 7. Reconstructed spectra resembled the dry spectra of the same soil sample. This showed that the moisture content removal algorithm successfully reconstructed spectra equivalent to the original dry spectra from the wet spectra in nm. Partial least squares (PLS) analyses were applied to the calibration and validation data sets for both the original and reconstructed absorbance spectra with P concentrations. Soil P concentrations were predicted better when the moisture content effect on absorbance spectra of a soil was removed. Strong relationship (R 2 =.97, figure 8d) between actual and predicted P concentrations of soils was found for the validation data sets. Removing the moisture content effect on absorbance spectra yielded better prediction than original spectra using PLS. Error (root mean square error, RMSE) decreased from 151 mg/kg to 62 mg/kg when the original and reconstructed signals were used, respectively. 9

10 y =.9936x R 2 = y =.9682x R 2 = Predicted P (mg/kg) Predicted P (mg/kg) y =.9714x R 2 =.97 Actual P (mg/kg) (a) y =.9666x R 2 =.97 Actual P (mg/kg) (b) Predicted P (mg/kg) Predicted P (mg/kg) Actual P (mg/kg) (c) Actual P (mg/kg) (d) Figure 8. PLS results for: (a) original absorbance spectra, calibration data, (b) original absorbance spectra, validation data, (c) reconstructed absorbance spectra, calibration data, and (d) reconstructed absorbance spectra, validation data. CONCLUSION Moisture content effect on soil reflectance spectra in sensing soil P concentrations was investigated in UV, VIS, and NIR regions and the influence of moisture on spectra was observed. Correlation coefficient spectra between absorbance and P concentrations showed high correlations in nm. The dry soil spectrum was reconstructed from the wet soil spectrum by removing the moisture content effect. The reconstructed dry soil spectra resembled the original dry soil spectra. Spectral signal processing by removing the moisture effect improved P prediction in soils considerably. Error (RMSE) was reduced from 151 mg/kg to 62 mg/kg when reconstructed absorbance spectra were used. 1

11 ACKNOWLEDGEMENTS This research was supported by the Florida Department of Agriculture and Consumer Services for funding this project. REFERENCES Bogrekci, I., W. S. Lee, and J. Herrera. 23. Assessment of P-concentrations in the Lake Okeechobee drainage basins with spectroscopic reflectance of VIS and NIR. ASAE paper No St. Joseph, Mich.: ASAE. Galvao, L. S. and I. Vitorello Variability of laboratory measured soil lines of soils from southeastern Brazil. Remote Sens. Environ. 63: Hummel, J. W., K. A. Sudduth, and S. E. Hollinger. 21. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Computers and Electronics in Agriculture 32: Kooistra, L., J. Wanders, G. F. Epema, R. S. E. W. Leuven, R. Wehrens, and L. M. C. Buydens. 23. The potential of field spectroscopy for the assessment of sediment properties in river floodplains. Analytica Chimica Acta 484: Lee, W. S., J. F. Sanchez, R. S. Mylavarapu, and J. S. Choe. 23. Estimating chemical properties of Florida soils using spectral reflectance. Trans. ASAE 46(5): Varvel, G. E., M. R. Schlemmer, and J. S. Schepers Relationship between spectral data from an aerial image and soil organic matter and phosphorus levels. Precision Agriculture 1: Williams, P., and K. Norris. 21. Near-infrared technology in the agricultural and food industries. 2nd ed. St. Paul, Minn.: American Association of Cereal Chemists, Inc. Yoon, R. H., G. T. Adel, G. H. Luttrell, R. O. Claus, and K. A. Murphy An optical sensor for on-line analysis of phosphate minerals. Pub. No Florida Institute of Phosphate Research. USA. 11

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

Asian Journal of Food and Agro-Industry ISSN 1906-3040 Available online at www.ajofai.info

Asian Journal of Food and Agro-Industry ISSN 1906-3040 Available online at www.ajofai.info As. J. Food Ag-Ind. 008, (0), - Asian Journal of Food and Agro-Industry ISSN 906-00 Available online at www.ajofai.info Research Article Analysis of NIR spectral reflectance linearization and gradient

More information

Lab #11: Determination of a Chemical Equilibrium Constant

Lab #11: Determination of a Chemical Equilibrium Constant Lab #11: Determination of a Chemical Equilibrium Constant Objectives: 1. Determine the equilibrium constant of the formation of the thiocyanatoiron (III) ions. 2. Understand the application of using a

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

Ultraviolet-Visible (UV-Vis) Spectroscopy Background Information

Ultraviolet-Visible (UV-Vis) Spectroscopy Background Information 1 Ultraviolet-Visible (UV-Vis) Spectroscopy Background Information Instructions for the Operation of the Cary 300 Bio UV-Visible Spectrophotometer See the Thermo OMNIC Help reference on page 49. Ultraviolet-Visible

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

Uses of Derivative Spectroscopy

Uses of Derivative Spectroscopy Uses of Derivative Spectroscopy Application Note UV-Visible Spectroscopy Anthony J. Owen Derivative spectroscopy uses first or higher derivatives of absorbance with respect to wavelength for qualitative

More information

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS Nguyen Dinh Duong Department of Environmental Information Study and Analysis, Institute of Geography, 18 Hoang Quoc Viet Rd.,

More information

QUANTITATIVE INFRARED SPECTROSCOPY. Willard et. al. Instrumental Methods of Analysis, 7th edition, Wadsworth Publishing Co., Belmont, CA 1988, Ch 11.

QUANTITATIVE INFRARED SPECTROSCOPY. Willard et. al. Instrumental Methods of Analysis, 7th edition, Wadsworth Publishing Co., Belmont, CA 1988, Ch 11. QUANTITATIVE INFRARED SPECTROSCOPY Objective: The objectives of this experiment are: (1) to learn proper sample handling procedures for acquiring infrared spectra. (2) to determine the percentage composition

More information

Using the Spectrophotometer

Using the Spectrophotometer Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to

More information

APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING. Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO***

APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING. Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO*** APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO*** *National Institute for Agro-Environmental Sciences 3-1-3 Kannondai Tsukuba

More information

2 Spectrophotometry and the Analysis of Riboflavin

2 Spectrophotometry and the Analysis of Riboflavin 2 Spectrophotometry and the Analysis of Riboflavin Objectives: A) To become familiar with operating the Platereader; B) to learn how to use the Platereader in determining the absorption spectrum of a compound

More information

DETECTION OF COATINGS ON PAPER USING INFRA RED SPECTROSCOPY

DETECTION OF COATINGS ON PAPER USING INFRA RED SPECTROSCOPY DETECTION OF COATINGS ON PAPER USING INFRA RED SPECTROSCOPY Eduard Gilli 1,2 and Robert Schennach 1, 2 1 Graz University of Technology, 8010 Graz, Austria 2 CD-Laboratory for Surface Chemical and Physical

More information

Qualitative NIR Analysis for Ingredients in the Baking Industry

Qualitative NIR Analysis for Ingredients in the Baking Industry Overview The challenge to all baking companies in today s economy is to operate plants as efficiently as possible, with a focus on quality and keeping costs in check. With regulatory issues becoming more

More information

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 SPECTROPHOTOMETRY Absorption Measurements & their Application to Quantitative Analysis study of the interaction of light (or other electromagnetic

More information

Signal to Noise Instrumental Excel Assignment

Signal to Noise Instrumental Excel Assignment Signal to Noise Instrumental Excel Assignment Instrumental methods, as all techniques involved in physical measurements, are limited by both the precision and accuracy. The precision and accuracy of a

More information

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline EXPERIMENT 5 Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline UNKNOWN Submit a clean, labeled 100-mL volumetric flask to the instructor so that your unknown iron solution

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

CROP CLASSIFICATION WITH HYPERSPECTRAL DATA OF THE HYMAP SENSOR USING DIFFERENT FEATURE EXTRACTION TECHNIQUES

CROP CLASSIFICATION WITH HYPERSPECTRAL DATA OF THE HYMAP SENSOR USING DIFFERENT FEATURE EXTRACTION TECHNIQUES Proceedings of the 2 nd Workshop of the EARSeL SIG on Land Use and Land Cover CROP CLASSIFICATION WITH HYPERSPECTRAL DATA OF THE HYMAP SENSOR USING DIFFERENT FEATURE EXTRACTION TECHNIQUES Sebastian Mader

More information

FTIR Instrumentation

FTIR Instrumentation FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation

More information

Chemistry 111 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium

Chemistry 111 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium Chemistry 111 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium Introduction The word equilibrium suggests balance or stability. The fact that a chemical reaction

More information

Erosion Resistance Performance Comparison Of Natracil, Stabilizer And Envirobond s Organic-Lock

Erosion Resistance Performance Comparison Of Natracil, Stabilizer And Envirobond s Organic-Lock Erosion Resistance Performance Comparison Of Natracil, Stabilizer And Envirobond s Organic-Lock Testing conducted at the Envirobond Test Laboratory, Mississauga, ON Canada Erosion Resistance Performance

More information

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare

More information

Integrating the Solar Spectrum

Integrating the Solar Spectrum Integrating the Solar Spectrum PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo January 24, 203 Pop Quiz Note: quiz does not count toward grade

More information

A SOIL TESTING SERVICE FOR FARMERS IN THAILAND, USING MOBILE LABORATORIES

A SOIL TESTING SERVICE FOR FARMERS IN THAILAND, USING MOBILE LABORATORIES A SOIL TESTING SERVICE FOR FARMERS IN THAILAND, USING MOBILE LABORATORIES Narong Chinabut Office of Science for Land Development Land Development Department, Ministry of Agriculture and Cooperatives, Bangkok

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

Chem 131A: Absorbance of Riboflavin

Chem 131A: Absorbance of Riboflavin Chem 131A: Absorbance of Riboflavin Purpose: The purpose of this experiment is to: 1) Familiarize the student with the use of the HP 8452 diode array spectrophotometer, 2) examine the limitations of the

More information

ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS

ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS 1 ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS Buck Scientific Atomic Absorption Spectrophotometer, Model 200 Atomic absorption spectroscopy (AAS) has for many years

More information

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES SEPTEMBER 2012, V 1.1 4878 RONSON CT STE K SAN DIEGO, CA 92111 858-565 - 4227 NANOCOMPOSIX.COM Note to the Reader: We at nanocomposix have published this

More information

Fiber Optic Sampling by UV/Vis and UV/Vis/NIR Spectroscopy

Fiber Optic Sampling by UV/Vis and UV/Vis/NIR Spectroscopy Fiber Optic Sampling by UV/Vis and UV/Vis/NIR Spectroscopy UV/VIS AND UV/VIS/NIR SPECTROSCOPY A P P L I C A T I O N N O T E Introduction The availability and applications of fiber optic sampling in UV/Vis

More information

Non-destructive Detection of Browning of the Inner Scales of Onions using Near-Infrared Spectroscopy

Non-destructive Detection of Browning of the Inner Scales of Onions using Near-Infrared Spectroscopy 野 49菜 茶 業 研 究 所 研 究 報 告 13 : 49 ~ 53 (2014) 49 Non-destructive Detection of Browning of the Inner Scales of Onions using Near-Infrared Spectroscopy Hidekazu Ito and Susumu Morimoto * (Accepted; October

More information

Phosphorus, colorimetry, phosphomolybdate, automated-segmented flow

Phosphorus, colorimetry, phosphomolybdate, automated-segmented flow Phosphorus, colorimetry, phosphomolybdate, automated-segmented flow Parameter and code: Phosphorus, total-in-bottom-material, dry weight, I-6600-88 (mg/kg as P): 00668 1. Application This method is used

More information

Spectrophotometric Determination of the pka of Bromothymol Blue

Spectrophotometric Determination of the pka of Bromothymol Blue Spectrophotometric Determination of the pka of Bromothymol Blue INRODUCION cidbase indicators are compounds that are simply weak acids (or bases) that exhibit different colors depending on whether they

More information

INTERNATIONAL OLIVE COUNCIL

INTERNATIONAL OLIVE COUNCIL INTERNATIONAL OLIVE COUNCIL COI/T.20/Doc. No 19/Rev. 3 February 2015 ENGLISH Original: ENGLISH Príncipe de Vergara, 154 28002 Madrid España Telef.: +34 915 903 638 Fax: +34 915 631 263 - e-mail: iooc@internationaloliveoil.org

More information

Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction

Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and

More information

Chapter 5 -- The Spectrophotometric Determination of the ph of a Buffer. NAME: Lab Section: Date: Sign-Off:

Chapter 5 -- The Spectrophotometric Determination of the ph of a Buffer. NAME: Lab Section: Date: Sign-Off: Chapter 5 -- The Spectrophotometric Determination of the ph of a Buffer NAME: Lab Section: Date: Sign-Off: Chapter 5 -- The Spectrophotometric Determination of the ph of a Buffer Introduction Weak acids,

More information

Alignment and Preprocessing for Data Analysis

Alignment and Preprocessing for Data Analysis Alignment and Preprocessing for Data Analysis Preprocessing tools for chromatography Basics of alignment GC FID (D) data and issues PCA F Ratios GC MS (D) data and issues PCA F Ratios PARAFAC Piecewise

More information

Quantitation of Peptides and Amino Acids with a Synergy HT using UV Fluorescence

Quantitation of Peptides and Amino Acids with a Synergy HT using UV Fluorescence Quantitation of Peptides and Amino Acids with a Synergy HT using UV Fluorescence Introduction Eukaryotic and prokaryotic cells contain a number of compounds that are fluorescent with UV light excitation.

More information

Plant Response to Irrigation Treatments in Arkansas Cotton

Plant Response to Irrigation Treatments in Arkansas Cotton Plant Response to Irrigation Treatments in Arkansas Cotton Sreekala G. Bajwa and Earl D. Vories 1 INTRODUCTION Irrigation of cotton has been increasing throughout the mid-south. In Arkansas, 65% of the

More information

Multivariate Chemometric and Statistic Software Role in Process Analytical Technology

Multivariate Chemometric and Statistic Software Role in Process Analytical Technology Multivariate Chemometric and Statistic Software Role in Process Analytical Technology Camo Software Inc For IFPAC 2007 By Dongsheng Bu and Andrew Chu PAT Definition A system Understand the Process Design

More information

How to calculate reflectance and temperature using ASTER data

How to calculate reflectance and temperature using ASTER data How to calculate reflectance and temperature using ASTER data Prepared by Abduwasit Ghulam Center for Environmental Sciences at Saint Louis University September, 2009 This instructions walk you through

More information

A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation

A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation S.VENKATA RAMANA ¹, S. NARAYANA REDDY ² M.Tech student, Department of ECE, SVU college of Engineering, Tirupati, 517502,

More information

Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY (VERSION 1.

Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY (VERSION 1. Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY I. BACKGROUND (VERSION 1.0) Atomic absorption spectroscopy (AAS) is a widely used

More information

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K.

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. PHYSICAL BASIS OF REMOTE SENSING D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. Keywords: Remote sensing, electromagnetic radiation, wavelengths, target, atmosphere, sensor,

More information

Ultraviolet Spectroscopy

Ultraviolet Spectroscopy Ultraviolet Spectroscopy The wavelength of UV and visible light are substantially shorter than the wavelength of infrared radiation. The UV spectrum ranges from 100 to 400 nm. A UV-Vis spectrophotometer

More information

Uses and Abuses of NIR for Feed Analysis

Uses and Abuses of NIR for Feed Analysis Uses and Abuses of NIR for Feed Analysis Dan Undersander 1 University of Wisconsin Madison, WI Introduction Dairymen use feed and forage testing to reduce feed costs and maximize production. As such, accuracy

More information

Quantifying Bacterial Concentration using a Calibrated Growth Curve

Quantifying Bacterial Concentration using a Calibrated Growth Curve BTEC 4200 Lab 2. Quantifying Bacterial Concentration using a Calibrated Growth Curve Background and References Bacterial concentration can be measured by several methods, all of which you have studied

More information

Ultra-low Sulfur Diesel Classification with Near-Infrared Spectroscopy and Partial Least Squares

Ultra-low Sulfur Diesel Classification with Near-Infrared Spectroscopy and Partial Least Squares 1132 Energy & Fuels 2009, 23, 1132 1133 Communications Ultra-low Sulfur Diesel Classification with Near-Infrared Spectroscopy and Partial Least Squares Jeffrey A. Cramer, Robert E. Morris,* Mark H. Hammond,

More information

Measuring Manganese Concentration Using Spectrophotometry

Measuring Manganese Concentration Using Spectrophotometry Measuring Manganese Concentration Using Spectrophotometry Objectives To use spectroscopy to determine the amount of Manganese is an unknown sample. Scenario Your have just joined a "Green Team" at SMC

More information

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

More information

NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT.

NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT. September 1, 2003 CONCRETE MANUAL 5-694.300 MIX DESIGN 5-694.300 NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT. 5-694.301

More information

Introduction to Fourier Transform Infrared Spectrometry

Introduction to Fourier Transform Infrared Spectrometry Introduction to Fourier Transform Infrared Spectrometry What is FT-IR? I N T R O D U C T I O N FT-IR stands for Fourier Transform InfraRed, the preferred method of infrared spectroscopy. In infrared spectroscopy,

More information

Application Note: Absorbance

Application Note: Absorbance Units Units Theory of absorbance Light absorption occurs when atoms or molecules take up the energy of a photon of light, thereby reducing the transmission of light as it is passed through a sample. Light

More information

Paint it cool! Pigments for solar heat management in paints

Paint it cool! Pigments for solar heat management in paints Paint it cool! Pigments for solar heat management in paints Reflection instead of absorption keeps the coated surface cool Of 1 % solar radiation, % are absorbed at the earth s surface. Absorption 25 %

More information

MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA

MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA Li-Yu Chang and Chi-Farn Chen Center for Space and Remote Sensing Research, National Central University, No. 300, Zhongda Rd., Zhongli

More information

Project 2B Building a Solar Cell (2): Solar Cell Performance

Project 2B Building a Solar Cell (2): Solar Cell Performance April. 15, 2010 Due April. 29, 2010 Project 2B Building a Solar Cell (2): Solar Cell Performance Objective: In this project we are going to experimentally measure the I-V characteristics, energy conversion

More information

HPLC Analysis of Acetaminophen Tablets with Waters Alliance and Agilent Supplies

HPLC Analysis of Acetaminophen Tablets with Waters Alliance and Agilent Supplies HPLC Analysis of Acetaminophen Tablets with Waters Alliance and Agilent Supplies Application Note Small Molecule Pharmaceuticals Authors Jignesh Shah, Tiantian Li, and Anil Sharma Agilent Technologies,

More information

Chemistry 4631. Instrumental Analysis Lecture 1. Chem 4631

Chemistry 4631. Instrumental Analysis Lecture 1. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 1 Syllabus Chemistry 4631 Spring 2016 Lecture: MWF 9:00 9:50 a.m. Chem 352 Attendance is expected. Instructor: Dr. Teresa D. Golden Chem 279, 565-2888, tgolden@unt.edu.

More information

Chemometric Analysis for Spectroscopy

Chemometric Analysis for Spectroscopy Chemometric Analysis for Spectroscopy Bridging the Gap between the State and Measurement of a Chemical System by Dongsheng Bu, PhD, Principal Scientist, CAMO Software Inc. Chemometrics is the use of mathematical

More information

Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs

Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs TracePro Opto-Mechanical Design Software s Fluorescence Property Utility TracePro s Fluorescence Property

More information

Spectrophotometry Practical Lesson on Medical Chemistry and Biochemistry

Spectrophotometry Practical Lesson on Medical Chemistry and Biochemistry Spectrophotometry Practical Lesson on Medical Chemistry and Biochemistry General Medicine Jiřina Crkovská (translated by Jan Pláteník) 2010/2011 1 Spectrophotometry is one of the most widely used instrumental

More information

Back to Basics Fundamentals of Polymer Analysis

Back to Basics Fundamentals of Polymer Analysis Back to Basics Fundamentals of Polymer Analysis Using Infrared & Raman Spectroscopy Molecular Spectroscopy in the Polymer Manufacturing Process Process NIR NIR Production Receiving Shipping QC R&D Routine

More information

FT-NIR for Online Analysis in Polyol Production

FT-NIR for Online Analysis in Polyol Production Application Note: 51594 FT-NIR for Online Analysis in Polyol Production Key Words Acid Number Ethylene Oxide FT-NIR Hydroxyl Value Polyester Polyols Abstract Hydroxyl value and other related parameters

More information

Reaction Stoichiometry and the Formation of a Metal Ion Complex

Reaction Stoichiometry and the Formation of a Metal Ion Complex Reaction Stoichiometry and the Formation of a Metal Ion Complex Objectives The objectives of this laboratory are as follows: To use the method of continuous variation to determine the reaction stoichiometry

More information

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance:

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance: Problem Set 6 UV-Vis Absorption Spectroscopy 13-1. Express the following absorbances in terms of percent transmittance: a 0.051 b 0.918 c 0.379 d 0.261 e 0.485 f 0.072 A = log P o /P = log1/t = - log T

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

Reprint (R22) Avoiding Errors in UV Radiation Measurements. By Thomas C. Larason July 2001. Reprinted from Photonics Spectra, Laurin Publishing

Reprint (R22) Avoiding Errors in UV Radiation Measurements. By Thomas C. Larason July 2001. Reprinted from Photonics Spectra, Laurin Publishing Reprint (R22) Avoiding Errors in UV Radiation Measurements By Thomas C. Larason July 2001 Reprinted from Photonics Spectra, Laurin Publishing Gooch & Housego 4632 36 th Street, Orlando, FL 32811 Tel: 1

More information

Refractive Index Measurement Principle

Refractive Index Measurement Principle Refractive Index Measurement Principle Refractive index measurement principle Introduction Detection of liquid concentrations by optical means was already known in antiquity. The law of refraction was

More information

How Landsat Images are Made

How Landsat Images are Made How Landsat Images are Made Presentation by: NASA s Landsat Education and Public Outreach team June 2006 1 More than just a pretty picture Landsat makes pretty weird looking maps, and it isn t always easy

More information

THE EFFECT OF MOISTURE CONTENT ON DETERMINING CORN HARDNESS FROM GRINDING TIME, GRINDING ENERGY,

THE EFFECT OF MOISTURE CONTENT ON DETERMINING CORN HARDNESS FROM GRINDING TIME, GRINDING ENERGY, THE EFFECT OF MOISTURE CONTENT ON DETERMINING CORN HARDNESS FROM GRINDING TIME, GRINDING ENERGY, AND NEAR INFRARED SPECTROSCOPY P. R Armstrong, J. E. Lingenfelser, L. McKinney ABSTRACT. The Stenvert hardness

More information

Software Approaches for Structure Information Acquisition and Training of Chemistry Students

Software Approaches for Structure Information Acquisition and Training of Chemistry Students Software Approaches for Structure Information Acquisition and Training of Chemistry Students Nikolay T. Kochev, Plamen N. Penchev, Atanas T. Terziyski, George N. Andreev Department of Analytical Chemistry,

More information

where h = 6.62 10-34 J s

where h = 6.62 10-34 J s Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena

More information

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images S. E. Báez Cazull Pre-Service Teacher Program University

More information

Hellma. Where precision becomes an art. Calibration standards for spectrophotometers. 2008 by Hellma www.hellma-worldwide.com

Hellma. Where precision becomes an art. Calibration standards for spectrophotometers. 2008 by Hellma www.hellma-worldwide.com Hellma. Where precision becomes an art. Calibration standards for spectrophotometers 2008 by Hellma www.hellma-worldwide.com Contents Calibration of spectrophotometers 3 Traceability of the calibration

More information

Appendix D.1. Testing Requirements for Infiltration, Bioretention and Sand Filter Subsoils

Appendix D.1. Testing Requirements for Infiltration, Bioretention and Sand Filter Subsoils Appendix D.1 Testing Requirements for Infiltration, Bioretention and Sand Filter Subsoils General Notes Pertinent to All Testing 1. For infiltration trench (I-1) and basin (I-2) practices, a minimum field

More information

Trace Gas Exchange Measurements with Standard Infrared Analyzers

Trace Gas Exchange Measurements with Standard Infrared Analyzers Practical Environmental Measurement Methods Trace Gas Exchange Measurements with Standard Infrared Analyzers Last change of document: February 23, 2007 Supervisor: Charles Robert Room no: S 4381 ph: 4352

More information

Applications of Near Infrared Spectroscopic Analysis in the Food Industry and. Research

Applications of Near Infrared Spectroscopic Analysis in the Food Industry and. Research Applications of Near Infrared Spectroscopic Analysis in the Food Industry and Research Written by Rolf Nilsson for the Food Safety Centre, Tasmanian Institute of Agricultural Research, University of Tasmania,

More information

SPIKE RECOVERY AND DETERMINING A METHOD DETECTION LIMIT Pamela Doolittle, University of Wisconsin Madison, pssemrad@wisc.edu 2014

SPIKE RECOVERY AND DETERMINING A METHOD DETECTION LIMIT Pamela Doolittle, University of Wisconsin Madison, pssemrad@wisc.edu 2014 SPIKE RECOVERY AND DETERMINING A METHOD DETECTION LIMIT Pamela Doolittle, University of Wisconsin Madison, pssemrad@wisc.edu 2014 This experiment explores quality assurance practices which are commonly

More information

Colorimetric Determination of Iron in Vitamin Tablets

Colorimetric Determination of Iron in Vitamin Tablets Cautions: 6 M hydrochloric acid is corrosive. Purpose: To colorimetrically determine the mass of iron present in commercial vitamin tablets using a prepared calibration curve. Introduction: Iron is considered

More information

Copyright 1999 2010 by Mark Brandt, Ph.D. 12

Copyright 1999 2010 by Mark Brandt, Ph.D. 12 Introduction to Absorbance Spectroscopy A single beam spectrophotometer is comprised of a light source, a monochromator, a sample holder, and a detector. An ideal instrument has a light source that emits

More information

OLIVÉR BÁNHIDI 1. Introduction

OLIVÉR BÁNHIDI 1. Introduction Materials Science and Engineering, Volume 39, No. 1 (2014), pp. 5 13. DETERMINATION OF THE ANTIMONY- AND STRONTIUM- CONTENT OF ALUMINIUM ALLOYS BY INDUCTIVELY COUPLED PLASMA ATOM EMISSION SPECTROMETRY

More information

INFRARED SPECTROSCOPY (IR)

INFRARED SPECTROSCOPY (IR) INFRARED SPECTROSCOPY (IR) Theory and Interpretation of IR spectra ASSIGNED READINGS Introduction to technique 25 (p. 833-834 in lab textbook) Uses of the Infrared Spectrum (p. 847-853) Look over pages

More information

Colorimetry Extinction coefficient (ε) Lambda max (λ max ) Qualitative vs. quantitative analysis

Colorimetry Extinction coefficient (ε) Lambda max (λ max ) Qualitative vs. quantitative analysis Lab Week 2 - Spectrophotometry Purpose: Introduce students to the use of spectrophotometry for qualitative (what is it) and quantitative (how much is there of it) analysis of biological samples and molecules.

More information

Chapter 8 Design of Concrete Mixes

Chapter 8 Design of Concrete Mixes Chapter 8 Design of Concrete Mixes 1 The basic procedure for mix design is applicable to concrete for most purposes including pavements. Concrete mixes should meet; Workability (slump/vebe) Compressive

More information

2.02 DETERMINATION OF THE FORMULA OF A COMPLEX BY SPECTROPHOTOMETRY

2.02 DETERMINATION OF THE FORMULA OF A COMPLEX BY SPECTROPHOTOMETRY 2nd/3rd Year Physical Chemistry Practical Course, Oxford University 2.02 DETERMINATION OF THE FORMULA OF A COMPLEX BY SPECTROPHOTOMETRY (4 points) Outline Spectrometry is widely used to monitor the progress

More information

Application of Automated Data Collection to Surface-Enhanced Raman Scattering (SERS)

Application of Automated Data Collection to Surface-Enhanced Raman Scattering (SERS) Application Note: 52020 Application of Automated Data Collection to Surface-Enhanced Raman Scattering (SERS) Timothy O. Deschaines, Ph.D., Thermo Fisher Scientific, Madison, WI, USA Key Words Array Automation

More information

Computer Vision: Machine Vision Filters. Computer Vision. Optical Filters. 25 August 2014

Computer Vision: Machine Vision Filters. Computer Vision. Optical Filters. 25 August 2014 Computer Vision Optical Filters 25 August 2014 Copyright 2001 2014 by NHL Hogeschool, Van de Loosdrecht Machine Vision BV and Klaas Dijkstra All rights reserved j.van.de.loosdrecht@nhl.nl, jaap@vdlmv.nl,

More information

Principle of Thermal Imaging

Principle of Thermal Imaging Section 8 All materials, which are above 0 degrees Kelvin (-273 degrees C), emit infrared energy. The infrared energy emitted from the measured object is converted into an electrical signal by the imaging

More information

Passive Remote Sensing of Clouds from Airborne Platforms

Passive Remote Sensing of Clouds from Airborne Platforms Passive Remote Sensing of Clouds from Airborne Platforms Why airborne measurements? My instrument: the Solar Spectral Flux Radiometer (SSFR) Some spectrometry/radiometry basics How can we infer cloud properties

More information

Organic Spectroscopy

Organic Spectroscopy 1 Organic Spectroscopy Second Year, Michaelmas term, 8 lectures: Dr TDW Claridge & Prof BG Davis Lectures 1 4 highlight the importance of spectroscopic methods in the structural elucidation of organic

More information

NIRCal Software data sheet

NIRCal Software data sheet NIRCal Software data sheet NIRCal is an optional software package for NIRFlex N-500 and NIRMaster, that allows the development of qualitative and quantitative calibrations. It offers numerous chemometric

More information

ARM SWS to study cloud drop size within the clear-cloud transition zone

ARM SWS to study cloud drop size within the clear-cloud transition zone ARM SWS to study cloud drop size within the clear-cloud transition zone (GSFC) Yuri Knyazikhin Boston University Christine Chiu University of Reading Warren Wiscombe GSFC Thanks to Peter Pilewskie (UC)

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

The University of Toledo Soil Mechanics Laboratory

The University of Toledo Soil Mechanics Laboratory 1 Grain Size Distribution Sieve Analysis The University of Toledo Soil Mechanics Laboratory Introduction The grain size distribution is a representation of the approximate distribution of soil grain sizes

More information

Agilent Cary 4000/5000/6000i Series UV-Vis-NIR

Agilent Cary 4000/5000/6000i Series UV-Vis-NIR Agilent Cary 4000/5000/6000i Series UV-Vis-NIR Guaranteed specifications Design overview Double beam, ratio recording, double out-of-plane Littrow monochromator UV-Vis-NIR spectrophotometer (Agilent Cary

More information

Spectral Measurement Solutions for Industry and Research

Spectral Measurement Solutions for Industry and Research Spectral Measurement Solutions for Industry and Research Hamamatsu Photonics offers a comprehensive range of products for spectroscopic applications, covering the, Visible and Infrared regions for Industrial,

More information

Solubility Product Constants

Solubility Product Constants Solubility Product Constants PURPOSE To measure the solubility product constant (K sp ) of copper (II) iodate, Cu(IO 3 ) 2. GOALS 1 To measure the molar solubility of a sparingly soluble salt in water.

More information

Enhanced Organic Precursor Removals Using Aged Filter Media Page 1. Enhanced Organic Precursor Removals Using Aged Filter Media

Enhanced Organic Precursor Removals Using Aged Filter Media Page 1. Enhanced Organic Precursor Removals Using Aged Filter Media Enhanced Organic Precursor Removals Using Aged Media Page 1 Enhanced Organic Precursor Removals Using Aged Media O b j e c t i v e s The main goals of this project was to evaluate the dissolved organic

More information

How to Biotinylate with Reproducible Results

How to Biotinylate with Reproducible Results How to Biotinylate with Reproducible Results Introduction The Biotin Streptavidin system continues to be used in many protein based biological research applications including; ELISAs, immunoprecipitation,

More information