Introduction to Molecular Vibrations and Infrared Spectroscopy

Size: px
Start display at page:

Download "Introduction to Molecular Vibrations and Infrared Spectroscopy"

Transcription

1 hemistry 362 Fall 2015 Dr. Jean M. Standard September 16, 2015 Introduction to Molecular Vibrations and Infrared Spectroscopy Vibrational Modes For a molecule with N atoms, the number of vibrational modes is 3N-5 for a linear molecule and 3N-6 for a nonlinear molecule. All diatomic molecules (N=2) have only a single vibrational mode corresponding to the vibration of the bond. A linear triatomic molecule such as 2 possesses four vibrational modes, while a nonlinear triatomic molecule such as 2 posseses only three vibrational modes. Infrared Activity: Dipole Moment The dipole moment of the molecule must change during a vibration in order for a spectroscopic transition to occur. If the dipole moment changes during a vibration, then that mode is said to be infrared active. Recall that the dipole! moment is a measure of the charge separation in a system. For a system of N point charges, the dipole moment d is defined as N!! d = q i r i, i=1 where q i is the charge of the ith particle and! r i is the position vector of the ith particle. In quantum mechanics, because the charge distribution is based on probability, and is therefore smeared out, the dipole moment is not a sum of point charges times the position vector, but rather an integral over the charge distribution times the position vector. Selection Rules for Infrared Spectroscopy armonic oscillators: Δv i = ±1 (only the fundamental transitions are allowed) Anharmonic oscillators: Δv i = ±1, ± 2, ± 3, (the fundamental transitions, as well as overtones and combinations, are allowed) In these selection rules, the quantity v i is the quantum number for the ith vibrational mode of the polyatomic molecule. Each of the vibrational modes of the molecule is treated as a harmonic (or an anharmonic) oscillator. Assuming that the amiltonian operator is approximately separable, the vibrational energy of the molecule is then a sum of energies of each of the modes, where ν 0i is the harmonic frequency of the ith mode. 3N 6(5) E v 1v 2v 3... = hν 0i( v i + 1 2), i=1 The selection rules for polyatomics state that the quantum number v i has to change by one unit during a spectroscopic transition (for the fundamental transition). owever, the other quantum numbers for all the other modes stay the same only one mode has to change. ence, depending on which quantum number v i changes, there will be 3N-6 (3N-5) distinct fundamental transitions for each polyatomic molecule. The rest of this handout describes a few simple examples of the vibrational modes of polyatomic molecules and their infrared activity.

2 EXAMPLE 1: Water Water has three vibrational modes since it is a nonlinear triatomic molecule. These vibrations are summarized in the table below. 2 Mode Frequency (cm 1 ) IR activity symmetric stretch 3660 IR active antisymmetric stretch 3760 IR active -- bend 1590 IR active A sketch of the vibrational motion that occurs for the symmetric stretching mode of water is shown in Figure 1. Figure 1. Symmetric stretching mode of water Bond stretching Bond contraction Water is a nonlinear molecule, so its equilibrium dipole moment is nonzero. For the symmetric stretching mode, the dipole moment increases when bond stretching occurs, and the dipole moment decreases when bond contraction occurs. Thus, the dipole moment changes during the vibration and so the symmetric stretching mode is infrared active. A sketch of the vibrational motion that occurs for the antisymmetric stretching mode of water is shown in Figure 2. Figure 2. Antisymmetric stretching mode of water Antisymmetric bond stretching Antisymmetric bond stretching When one - bond is stretched and the other is contracted, the dipole moment changes direction. It shifts from being positioned in line with the oxygen atom to the right and the to the left as the molecule vibrates. Therefore, the antisymmetric stretching mode is infrared active.

3 A sketch of the vibrational motion that occurs for the bending mode of water is shown in Figure 3. 3 Figure 3. Bending mode of water Angle bending Angle bending The molecule begins its bending motion at equilibrium with a nonzero dipole moment. When the angle bends and becomes larger, the dipole moment is reduced. When the angle bends and becomes smaller, the dipole moment is increased. This mode is infrared active because the dipole moment changes as the molecule bends. All three vibrational modes of water are infrared active; therefore, all three should be observed in the infrared spectrum of water. An example infrared spectrum for liquid water is shown in Figure 4. ne large broad peak in the spectrum at about 3500 cm 1 corresponds to the two stretching modes (their frequencies are very similar); the other smaller peak at around 1600 cm 1 corresponds to the bending mode. Figure 4. Infrared spectrum of liquid water (from webbook.nist.gov). A gas phase infrared spectrum of water is shown in Figure 5. Much more spectroscopic detail is generally observed in gas phase spectra. For example, what appears to be two peaks centered at about 1600 cm 1 in the gas phase water spectrum is actually a single band, divided into branches, corresponding to the bending mode. The extra detail observed in the gas phase spectrum is a result of rotational structure that is washed out in the liquid phase spectrum.

4 4 Figure 5. Infrared spectrum of gas phase water (from webbook.nist.gov). EXAMPLE 2: arbon Dioxide arbon dioxide has four vibrational modes since it is a linear triatomic molecule. These modes are summarized in the table below. Mode Frequency (cm 1 ) IR activity symmetric stretch 1390 not IR active antisymmetric stretch 2350 IR active degenerate bend (2 modes) 670 IR active In order to explain the IR activity of each of the modes, we have to consider the dipole moment. Because 2 is linear and symmetric in structure, its equilibrium dipole moment is zero. A sketch of the vibrational motion corresponding to the symmetric stretching mode of 2 is shown in Figure 6. Figure 6. The symmetric stretching mode of carbon dioxide Symmetric bond stretching Symmetric bond contracting For the symmetric stretch, the dipole moment does not change, since stretching or contracting the - bonds in a symmetric fashion does not break the symmetry of the molecule. Thus, the dipole moment remains zero throughout the vibration and the symmetric stretching mode is not IR active.

5 A sketch of the vibrational motion corresponding to the antisymmetric stretching mode of 2 is shown in Figure 7. 5 Figure 7. The antisymmetric stretching mode of carbon dioxide Antisymmetric bond stretching Antisymmetric bond stretching For the antisymmetric stretching mode, when the - bonds are in their equilibrium positions, the dipole moment is zero. owever, when one - bond is stretched and the other is contracted, the symmetry of the charge distribution is broken, and the molecule gains a dipole moment. Therefore, the antisymmetric stretching mode is IR active. A sketch of the vibrational motion corresponding to one of the degenerate bending modes is shown in Figure 8. The other degenerate bend is identical to the one shown, but it is at right angles to the one shown and out of the plane. Figure 8. ne of the bending modes of carbon dioxide Angle bending Angle bending The molecule begins its bending motion at equilibrium and the dipole moment is zero. When the angle bends, the center of negative charge is shifted down so that it is no longer in line with the center of positive charge; thus, the molecule acquires a dipole moment. This mode is IR active because the dipole moment changes as the molecule bends. For carbon dioxide, three of the four vibrational modes are infrared active: the antisymmetric stretch and the two degenerate bends. Therefore, those three should be observed in the infrared spectrum of 2 ; however, since the degenerate bends occur with the same harmonic vibrational frequency, only two primary peaks will be observed. An example infrared spectrum for carbon dioxide is shown in Figure 9. The peak at about 670 cm 1 corresponds to the degenerate bending modes; the other large peak around 2300 cm 1 corresponds to the antisymmetric stretching mode. The small peaks observed in the range cm 1 correspond to combination bands.

6 6 Figure 9. Infrared spectrum of gas phase carbon dioxide (from webbook.nist.gov). EXAMPLE 3: Acetylene Acetylene has seven vibrational modes since it is a linear tetratomic molecule. These vibrations are summarized in the table below. Mode Frequency (cm 1 ) IR activity symmetric - stretch 3370 not IR active antisymmetric - stretch 3290 IR active - stretch 1970 not IR active symmetric -- bend (2 modes) 610 not IR active antisym -- bend (2 modes) 730 IR active A sketch of the vibrational motion corresponding to the symmetric - stretching mode of acetylene is shown in Figure 10. Figure 10. Symmetric - stretching mode of acetylene Symmetric - bond stretching Symmetric - bond contracting Since acetylene is a linear molecule, its equilibrium dipole moment is zero. The dipole moment does not change during the symmetric - stretching mode, since stretching or contracting the - bonds in a symmetric fashion does not break the symmetry of the molecule. Thus, the dipole moment remains zero throughout the vibration and the symmetric - stretching mode is not IR active.

7 A sketch of the vibrational motion corresponding to the antisymmetric - stretching mode of acetylene is shown in Figure Figure 11. Antisymmetric - stretching mode of acetylene Antisymmetric - bond stretching Antisymmetric - bond contracting In this case, when one - bond is stretched and the other is contracted, the symmetry of the charge distribution is broken, and the molecule gains a dipole moment. Therefore, the antisymmetric - stretching mode is IR active. A sketch of the vibrational motion corresponding to the - stretching mode of acetylene is shown in Figure 12. Figure stretching mode of acetylene Symmetric - bond stretching Symmetric - bond contracting The molecule begins its stretching motion at equilibrium with a dipole moment of zero. When the - bond stretches or contracts, the dipole moment remains zero. Since there is no change in dipole moment during the - stretch, this mode is not IR active.

8 A sketch of the vibrational motion corresponding to one of the degenerate symmetric -- bending modes of acetylene is shown in Figure Figure 13. ne of the symmetric -- bending modes of acetylene Symmetric -- bending Symmetric -- bending The symmetric bending of the -- bond produces no change in the dipole moment. It starts at zero and it remains zero; therefore, the mode is not IR active. A sketch of the vibrational motion corresponding to one of the degenerate antisymmetric -- bending modes of acetylene is shown in Figure 14. Figure 14. ne of the antisymmetric -- bending modes of acetylene Antisymmetric -- bending Antisymmetric -- bending Since both hydrogens move to one side of the molecule during the course of the vibration, the antisymmetric -- bending modes are IR active. For acetylene, only three of the seven vibrational modes are infrared active: the antisymmetric - stretch and the doubly degenerate antisymmetric -- bends. Therefore, those three should be observed in the infrared spectrum of 2 ; however, since the degenerate bends occur with the same harmonic vibrational frequency, only two primary peaks will be observed. An example infrared spectrum for acetylene is shown in Figure 15. The large peak at about 700 cm 1 corresponds to the doubly degenerate antisymmetric -- bending modes. The peak at about 3300 cm 1 corresponds to the antisymmetric - stretching mode (the "doublet"-like appearance is due to unresolved rotational structure). The small peak observed in the range cm 1 is an overtone or combination band.

9 Figure 15. Infrared spectrum of gas phase acetylene (from webbook.nist.gov). 9

Infrared Spectroscopy: Theory

Infrared Spectroscopy: Theory u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

More information

Application Note AN4

Application Note AN4 TAKING INVENTIVE STEPS IN INFRARED. MINIATURE INFRARED GAS SENSORS GOLD SERIES UK Patent App. No. 2372099A USA Patent App. No. 09/783,711 World Patents Pending INFRARED SPECTROSCOPY Application Note AN4

More information

Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy

Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy Objectives After studying this lecture, you will be able to Calculate the bond lengths of diatomics from the value

More information

Symmetric Stretch: allows molecule to move through space

Symmetric Stretch: allows molecule to move through space BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

More information

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

More information

CHAPTER 13 MOLECULAR SPECTROSCOPY

CHAPTER 13 MOLECULAR SPECTROSCOPY CHAPTER 13 MOLECULAR SPECTROSCOPY Our most detailed knowledge of atomic and molecular structure has been obtained from spectroscopy study of the emission, absorption and scattering of electromagnetic radiation

More information

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry VSEPR Model The structure around a given atom is determined principally by minimizing electron pair repulsions. The Valence-Shell Electron Pair Repulsion Model The valence-shell electron pair repulsion

More information

ENERGY & ENVIRONMENT

ENERGY & ENVIRONMENT Greenhouse molecules, their spectra and function in the atmosphere by Jack Barrett Reprinted from ENERGY & ENVIRNMENT VLUME 16 No. 6 2005 MULTI-SCIENCE PUBLISING C. LTD. 5 Wates Way, Brentwood, Essex CM15

More information

Section 6 Raman Scattering (lecture 10)

Section 6 Raman Scattering (lecture 10) Section 6 Scattering (lecture 10) Previously: Quantum theory of atoms / molecules Quantum Mechanics Valence Atomic and Molecular Spectroscopy Scattering The scattering process Elastic (Rayleigh) and inelastic

More information

Molecular Symmetry 1

Molecular Symmetry 1 Molecular Symmetry 1 I. WHAT IS SYMMETRY AND WHY IT IS IMPORTANT? Some object are more symmetrical than others. A sphere is more symmetrical than a cube because it looks the same after rotation through

More information

Group Theory and Chemistry

Group Theory and Chemistry Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation

More information

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

More information

Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

More information

Polyatomic Molecular Vibrations: An Experimental/ Computational Study of Acid Rain Precursors. V( r) = 1 2 k ( r r e) 2, (1)

Polyatomic Molecular Vibrations: An Experimental/ Computational Study of Acid Rain Precursors. V( r) = 1 2 k ( r r e) 2, (1) Chemistry 363 RWQ 11/04 Spring 010 JMS/DLC 3/09 Polyatomic Molecular Vibrations: An Experimental/ Computational Study of Acid Rain Precursors Experimental Objectives: Computational molecular modeling studies

More information

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering.  scattered.  incident February 15, 2006 Advanced Physics Laboratory Raman Spectroscopy 1. Introduction When light is scattered from a molecule or crystal, most photons are elastically scattered. The scattered photons have the

More information

2. Molecular stucture/basic

2. Molecular stucture/basic 2. Molecular stucture/basic spectroscopy The electromagnetic spectrum Spectral region for atomic and molecular spectroscopy E. Hecht (2nd Ed.) Optics, Addison-Wesley Publishing Company,1987 Spectral regions

More information

Symmetry and group theory

Symmetry and group theory Symmetry and group theory or How to Describe the Shape of a Molecule with two or three letters Natural symmetry in plants Symmetry in animals 1 Symmetry in the human body The platonic solids Symmetry in

More information

1 The water molecule and hydrogen bonds in water

1 The water molecule and hydrogen bonds in water The Physics and Chemistry of Water 1 The water molecule and hydrogen bonds in water Stoichiometric composition H 2 O the average lifetime of a molecule is 1 ms due to proton exchange (catalysed by acids

More information

0 10 20 30 40 50 60 70 m/z

0 10 20 30 40 50 60 70 m/z Mass spectrum for the ionization of acetone MS of Acetone + Relative Abundance CH 3 H 3 C O + M 15 (loss of methyl) + O H 3 C CH 3 43 58 0 10 20 30 40 50 60 70 m/z It is difficult to identify the ions

More information

3. Electronic Spectroscopy of Molecules I - Absorption Spectroscopy

3. Electronic Spectroscopy of Molecules I - Absorption Spectroscopy 3. Electronic Spectroscopy of Molecules I - Absorption Spectroscopy 3.1. Vibrational coarse structure of electronic spectra. The Born Oppenheimer Approximation introduced in the last chapter can be extended

More information

Section 5 Molecular Electronic Spectroscopy (lecture 9 ish)

Section 5 Molecular Electronic Spectroscopy (lecture 9 ish) Section 5 Molecular Electronic Spectroscopy (lecture 9 ish) Previously: Quantum theory of atoms / molecules Quantum Mechanics Vl Valence Molecular Electronic Spectroscopy Classification of electronic states

More information

Section 4 Molecular Rotation and Vibration

Section 4 Molecular Rotation and Vibration Section 4 Molecular Rotation and Vibration Chapter 3 Treating the full internal nuclear-motion dynamics of a polyatomic molecule is complicated. It is conventional to examine the rotational movement of

More information

Molecular-Orbital Theory

Molecular-Orbital Theory Molecular-Orbital Theory 1 Introduction Orbitals in molecules are not necessarily localized on atoms or between atoms as suggested in the valence bond theory. Molecular orbitals can also be formed the

More information

where h = 6.62 10-34 J s

where h = 6.62 10-34 J s Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena

More information

Vibrations of Carbon Dioxide and Carbon Disulfide

Vibrations of Carbon Dioxide and Carbon Disulfide Vibrations of Carbon Dioxide and Carbon Disulfide Purpose Vibration frequencies of CO 2 and CS 2 will be measured by Raman and Infrared spectroscopy. The spectra show effects of normal mode symmetries

More information

The Role of Electric Polarization in Nonlinear optics

The Role of Electric Polarization in Nonlinear optics The Role of Electric Polarization in Nonlinear optics Sumith Doluweera Department of Physics University of Cincinnati Cincinnati, Ohio 45221 Abstract Nonlinear optics became a very active field of research

More information

EXPERIMENT 7. VIBRATION-ROTATION SPECTRUM OF HCl AND DCl INTRODUCTION

EXPERIMENT 7. VIBRATION-ROTATION SPECTRUM OF HCl AND DCl INTRODUCTION 1 EXPERIMENT 7 VIBRATION-ROTATION SPECTRUM OF HCl AND DCl INTRODUCTION Spectroscopy probes transitions between different energy levels, or states, using light. Light in the infrared region of the EM spectrum

More information

Chapter 10 Molecular Geometry and Chemical Bonding Theory

Chapter 10 Molecular Geometry and Chemical Bonding Theory Chem 1: Chapter 10 Page 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory I) VSEPR Model Valence-Shell Electron-Pair Repulsion Model A) Model predicts Predicts electron arrangement and molecular

More information

2, 8, 20, 28, 50, 82, 126.

2, 8, 20, 28, 50, 82, 126. Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons

More information

Suggested solutions for Chapter 3

Suggested solutions for Chapter 3 s for Chapter PRBLEM Assuming that the molecular ion is the base peak (00% abundance) what peaks would appear in the mass spectrum of each of these molecules: (a) C5Br (b) C60 (c) C64Br In cases (a) and

More information

Infrared Spectroscopy 紅 外 線 光 譜 儀

Infrared Spectroscopy 紅 外 線 光 譜 儀 Infrared Spectroscopy 紅 外 線 光 譜 儀 Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample (nondestructive method). The amount of light absorbed

More information

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Chapter 9 Molecular Geometry & Bonding Theories I) Molecular Geometry (Shapes) Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Molecular

More information

The excitation in Raman spectroscopy is usually. Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization

The excitation in Raman spectroscopy is usually. Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization Electronically reprinted from March 214 Molecular Spectroscopy Workbench Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization In this second installment of a two-part series

More information

Molecular Spectroscopy:

Molecular Spectroscopy: : How are some molecular parameters determined? Bond lengths Bond energies What are the practical applications of spectroscopic knowledge? Can molecules (or components thereof) be identified based on differences

More information

Partition Function and Thermodynamic Quantities for the H 2 17 O and H 2 18 O Isotopologues of Water

Partition Function and Thermodynamic Quantities for the H 2 17 O and H 2 18 O Isotopologues of Water Partition Function and Thermodynamic Quantities for the H 2 17 O and H 2 18 O Isotopologues of Water By Daniel Underwood PHASM101 Msci Astrophysics Project Supervisor: Prof. Jonathan Tennyson 31 st March

More information

In part I of this two-part series we present salient. Practical Group Theory and Raman Spectroscopy, Part I: Normal Vibrational Modes

In part I of this two-part series we present salient. Practical Group Theory and Raman Spectroscopy, Part I: Normal Vibrational Modes ELECTRONICALLY REPRINTED FROM FEBRUARY 2014 Molecular Spectroscopy Workbench Practical Group Theory and Raman Spectroscopy, Part I: Normal Vibrational Modes Group theory is an important component for understanding

More information

The Unshifted Atom-A Simpler Method of Deriving Vibrational Modes of Molecular Symmetries

The Unshifted Atom-A Simpler Method of Deriving Vibrational Modes of Molecular Symmetries Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (1): Pg. 189-202 The Unshifted

More information

electron does not become part of the compound; one electron goes in but two electrons come out.

electron does not become part of the compound; one electron goes in but two electrons come out. Characterization Techniques for Organic Compounds. When we run a reaction in the laboratory or when we isolate a compound from nature, one of our first tasks is to identify the compound that we have obtained.

More information

Organic Spectroscopy. UV - Ultraviolet-Visible Spectroscopy. !! 200-800 nm. Methods for structure determination of organic compounds:

Organic Spectroscopy. UV - Ultraviolet-Visible Spectroscopy. !! 200-800 nm. Methods for structure determination of organic compounds: Organic Spectroscopy Methods for structure determination of organic compounds: X-ray rystallography rystall structures Mass spectroscopy Molecular formula -----------------------------------------------------------------------------

More information

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu)

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) Introduction Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) The scattering of light may be thought of as the redirection

More information

passing through (Y-axis). The peaks are those shown at frequencies when less than

passing through (Y-axis). The peaks are those shown at frequencies when less than Infrared Spectroscopy used to analyze the presence of functional groups (bond types) in organic molecules The process for this analysis is two-fold: 1. Accurate analysis of infrared spectra to determine

More information

DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY

DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY Hermenegildo García Gómez Departamento de Química Instituto de Tecnología Química Universidad Politécnica de Valencia 46022

More information

Laboratory 11: Molecular Compounds and Lewis Structures

Laboratory 11: Molecular Compounds and Lewis Structures Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular

More information

Group Theory and Molecular Symmetry

Group Theory and Molecular Symmetry Group Theory and Molecular Symmetry Molecular Symmetry Symmetry Elements and perations Identity element E - Apply E to object and nothing happens. bject is unmoed. Rotation axis C n - Rotation of object

More information

Experiment 11. Infrared Spectroscopy

Experiment 11. Infrared Spectroscopy Chem 22 Spring 2010 Experiment 11 Infrared Spectroscopy Pre-lab preparation. (1) In Ch 5 and 12 of the text you will find examples of the most common functional groups in organic molecules. In your notebook,

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Chapter 10 Molecular Geometry and Chemical Bonding Theory Concept Check 10.1 An atom in a molecule is surrounded by four pairs of electrons, one lone pair and three bonding pairs. Describe how the four

More information

Greenhouse Gases CHAPTER 4

Greenhouse Gases CHAPTER 4 Greenhouse Gases CHAPTER 4 Why some gases are greenhouse gases, but most aren t, and some are stronger than others About Gases The layer model is what is called an idealization of the real world. It has

More information

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY MLEULAR REPRESENTATINS AND INFRARED SPETRSPY A STUDENT SULD BE ABLE T: 1. Given a Lewis (dash or dot), condensed, bond-line, or wedge formula of a compound draw the other representations. 2. Give examples

More information

8.1 Relaxation in NMR Spectroscopy

8.1 Relaxation in NMR Spectroscopy 8.1 Relaxation in NMR Spectroscopy Copyright ans J. Reich 2010 All Rights Reserved University of Wisconsin An understanding of relaxation processes is important for the proper measurement and interpretation

More information

Solving Spectroscopy Problems

Solving Spectroscopy Problems Solving Spectroscopy Problems The following is a detailed summary on how to solve spectroscopy problems, key terms are highlighted in bold and the definitions are from the illustrated glossary on Dr. Hardinger

More information

2.1-2 28-30 & 1 & 5 & 1950, 3 & 1971), & II

2.1-2 28-30 & 1 & 5 & 1950, 3 & 1971), & II Lecture 13 Molecular Spectroscopy 1. Long Wavelength Signatures 2. Introduction to Molecular Structure 3. Molecular Levels and Spectra 4. Emission and Absorption References Astro texts: Tielens, Secs 2.1-2

More information

Organic Chemistry Tenth Edition

Organic Chemistry Tenth Edition Organic Chemistry Tenth Edition T. W. Graham Solomons Craig B. Fryhle Welcome to CHM 22 Organic Chemisty II Chapters 2 (IR), 9, 3-20. Chapter 2 and Chapter 9 Spectroscopy (interaction of molecule with

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy 1 Chap 12 Reactions will often give a mixture of products: OH H 2 SO 4 + Major Minor How would the chemist determine which product was formed? Both are cyclopentenes; they are isomers.

More information

C 3 axis (z) y- axis

C 3 axis (z) y- axis Point Group Symmetry E It is assumed that the reader has previously learned, in undergraduate inorganic or physical chemistry classes, how symmetry arises in molecular shapes and structures and what symmetry

More information

12.4 FUNCTIONAL-GROUP INFRARED ABSORPTIONS

12.4 FUNCTIONAL-GROUP INFRARED ABSORPTIONS 552 APTER 12 INTRODUTION TO SPETROSOPY. INFRARED SPETROSOPY AND MASS SPETROMETRY PROBLEM 12.9 Which of the following vibrations should be infrared-active and which should be infrared-inactive (or nearly

More information

For example: (Example is from page 50 of the Thinkbook)

For example: (Example is from page 50 of the Thinkbook) SOLVING COMBINED SPECTROSCOPY PROBLEMS: Lecture Supplement: page 50-53 in Thinkbook CFQ s and PP s: page 216 241 in Thinkbook Introduction: The structure of an unknown molecule can be determined using

More information

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration ! = 1 2"c k (m + M) m M wavenumbers! =!/c = 1/" wavelength frequency! units: cm 1 for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency

More information

Raman spectroscopy Lecture

Raman spectroscopy Lecture Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy

More information

Introduction to the Greenhouse Effect

Introduction to the Greenhouse Effect Introduction to the Greenhouse Effect Planetary Temperature by Arthur Glasfeld and Margret Geselbracht ver the past 10-15 years there has been growing concern over changes in the climate and the possibility

More information

Time out states and transitions

Time out states and transitions Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between

More information

CHEM 51LB EXP 1 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

CHEM 51LB EXP 1 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY CHEM 51LB EXP 1 SPECTRSCPIC METHDS: INFRARED AND NUCLEAR MAGNETIC RESNANCE SPECTRSCPY REACTINS: None TECHNIQUES: IR Spectroscopy, NMR Spectroscopy Infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy

More information

Organic Spectroscopy

Organic Spectroscopy 1 Organic Spectroscopy Second Year, Michaelmas term, 8 lectures: Dr TDW Claridge & Prof BG Davis Lectures 1 4 highlight the importance of spectroscopic methods in the structural elucidation of organic

More information

18 electron rule : How to count electrons

18 electron rule : How to count electrons 18 electron rule : How to count electrons The rule states that thermodynamically stable transition metal organometallic compounds are formed when the sum of the metal d electrons and the electrons conventionally

More information

Features of the formation of hydrogen bonds in solutions of polysaccharides during their use in various industrial processes. V.Mank a, O.

Features of the formation of hydrogen bonds in solutions of polysaccharides during their use in various industrial processes. V.Mank a, O. Features of the formation of hydrogen bonds in solutions of polysaccharides during their use in various industrial processes. V.Mank a, O. Melnyk b a National University of life and environmental sciences

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

How To Write A Periodic Table

How To Write A Periodic Table Spring 2008 hemistry 2000 Midterm #1A / 50 marks INSTRUTINS 1) Please read over the test carefully before beginning. You should have 5 pages of questions and a periodic table. 2) If you need extra space,

More information

The elements of the second row fulfill the octet rule by sharing eight electrons, thus acquiring the electronic configuration of neon, the noble gas o

The elements of the second row fulfill the octet rule by sharing eight electrons, thus acquiring the electronic configuration of neon, the noble gas o 2. VALENT BNDING, TET RULE, PLARITY, AND BASI TYPES F FRMULAS LEARNING BJETIVES To introduce the basic principles of covalent bonding, different types of molecular representations, bond polarity and its

More information

CHEM 101 Exam 4. Page 1

CHEM 101 Exam 4. Page 1 CEM 101 Exam 4 Form 1 (White) November 30, 2001 Page 1 Section This exam consists of 8 pages. When the exam begins make sure you have one of each. Print your name at the top of each page now. Show your

More information

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing. CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

More information

IR Applied to Isomer Analysis

IR Applied to Isomer Analysis DiscovIR-LC TM Application Note 025 April 2008 Deposition and Detection System IR Applied to Isomer Analysis Infrared spectra provide valuable information about local configurations of atoms in molecules.

More information

6. 3. Molecular spectroscopy. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria

6. 3. Molecular spectroscopy. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria 6. 3 Molecular spectroscopy Spectroscopy in its various forms is a technique with wide applications across many disciplines. From qualitative analysis in toxicology through to quantitative measurements

More information

Journal of the University of Chemical Technology and Metallurgy, 42, 2, 2007. 2) are in C 1

Journal of the University of Chemical Technology and Metallurgy, 42, 2, 2007. 2) are in C 1 Journal of the University of Chemical M. Georgiev, Technology D. Stoilova and Metallurgy, 42, 2, 2007, 211-216 METAL-WATER INTERACTINS AND HYDRGEN BND STRENGTH M. Georgiev 1, D. Stoilova 2 1 University

More information

CH101/105, GENERAL CHEMISTRY LABORATORY

CH101/105, GENERAL CHEMISTRY LABORATORY CH101/105, GENERAL CHEMITRY LABORATORY LABORATORY LECTURE 5 EXPERIMENT 5: LEWI TRUCTURE AND MOLECULAR HAPE Lecture topics I. LEWI TRUCTURE a) calculation of the valence electron numbers; b) choosing the

More information

CHE334 Identification of an Unknown Compound By NMR/IR/MS

CHE334 Identification of an Unknown Compound By NMR/IR/MS CHE334 Identification of an Unknown Compound By NMR/IR/MS Purpose The object of this experiment is to determine the structure of an unknown compound using IR, 1 H-NMR, 13 C-NMR and Mass spectroscopy. Infrared

More information

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment. Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions

More information

SHAPES OF MOLECULES (VSEPR MODEL)

SHAPES OF MOLECULES (VSEPR MODEL) 1 SAPES MLEULES (VSEPR MDEL) Valence Shell Electron-Pair Repulsion model - Electron pairs surrounding atom spread out as to minimize repulsion. - Electron pairs can be bonding pairs (including multiple

More information

INFRARED SPECTROSCOPY (IR)

INFRARED SPECTROSCOPY (IR) INFRARED SPECTROSCOPY (IR) Theory and Interpretation of IR spectra ASSIGNED READINGS Introduction to technique 25 (p. 833-834 in lab textbook) Uses of the Infrared Spectrum (p. 847-853) Look over pages

More information

Self Assessment_Ochem I

Self Assessment_Ochem I UTID: 2013 Objective Test Section Identify the choice that best completes the statement or answers the question. There is only one correct answer; please carefully bubble your choice on the scantron sheet.

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone:

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone: HMEWRK PRBLEMS: IR SPECTRSCPY AND 13C NMR 1. You find a bottle on the shelf only labeled C 3 H 6. You take an IR spectrum of the compound and find major peaks at 2950, 1720, and 1400 cm -1. Draw a molecule

More information

Absorption by atmospheric gases in the IR, visible and UV spectral regions.

Absorption by atmospheric gases in the IR, visible and UV spectral regions. Lecture 6. Absorption by atmospheric gases in the IR, visible and UV spectral regions. Objectives: 1. Gaseous absorption in thermal IR. 2. Gaseous absorption in the visible and near infrared. 3. Gaseous

More information

AP CHEMISTRY 2009 SCORING GUIDELINES

AP CHEMISTRY 2009 SCORING GUIDELINES AP CHEMISTRY 2009 SCORING GUIDELINES Question 6 (8 points) Answer the following questions related to sulfur and one of its compounds. (a) Consider the two chemical species S and S 2. (i) Write the electron

More information

Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity

Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity hemistry 121 Problem set V olutions - 1 hem 121 Problem et V Lewis tructures, VEPR and Polarity AWER 1. pecies Elecronegativity difference in bond Bond Polarity Mp 3 E = 3.0-3.0 = 0 for - very weakly polar

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

The Rotational-Vibrational Spectrum of HCl

The Rotational-Vibrational Spectrum of HCl The Rotational-Vibrational Spectrum of HCl Objective To obtain the rotationally resolved vibrational absorption spectrum of HCI; to determine the rotational constant and rotational-vibrational coupling

More information

Applications of Quantum Chemistry HΨ = EΨ

Applications of Quantum Chemistry HΨ = EΨ Applications of Quantum Chemistry HΨ = EΨ Areas of Application Explaining observed phenomena (e.g., spectroscopy) Simulation and modeling: make predictions New techniques/devices use special quantum properties

More information

Preview of Period 2: Forms of Energy

Preview of Period 2: Forms of Energy Preview of Period 2: Forms of Energy 2.1 Forms of Energy How are forms of energy defined? 2.2 Energy Conversions What happens when energy is converted from one form into another form? 2.3 Efficiency of

More information

Chapter 6 Thermodynamics: The First Law

Chapter 6 Thermodynamics: The First Law Key Concepts 6.1 Systems Chapter 6 Thermodynamics: The First Law Systems, States, and Energy (Sections 6.1 6.8) thermodynamics, statistical thermodynamics, system, surroundings, open system, closed system,

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

Math 215 HW #6 Solutions

Math 215 HW #6 Solutions Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

More information

NMR and IR spectra & vibrational analysis

NMR and IR spectra & vibrational analysis Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent

More information

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

More information

1.3 STRUCTURES OF COVALENT COMPOUNDS

1.3 STRUCTURES OF COVALENT COMPOUNDS 1.3 STRUTURES OF OVALENT OMPOUNDS 13 1.9 Draw an appropriate bond dipole for the carbon magnesium bond of dimethylmagnesium. Explain your reasoning. 3 Mg 3 dimethylmagnesium 1.3 STRUTURES OF OVALENT OMPOUNDS

More information

Simple Laser-Induced Fluorescence Setup to Explore Molecular Spectroscopy. Abstract

Simple Laser-Induced Fluorescence Setup to Explore Molecular Spectroscopy. Abstract Simple Laser-Induced Fluorescence Setup to Explore Molecular Spectroscopy S. B. Bayram and M.D. Freamat Miami University, Department of Physics, Oxford, OH 45056 (Dated: July 23, 2012) Abstract We will

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three

More information

Raman Spectroscopy Basics

Raman Spectroscopy Basics Raman Spectroscopy Basics Introduction Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light, usually from a laser source. Inelastic scattering means that

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

2. Spin Chemistry and the Vector Model

2. Spin Chemistry and the Vector Model 2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing

More information

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Chem 306 Section (Circle) M Tu W Th Name Partners Date ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Materials: prepared acetylsalicylic acid (aspirin), stockroom samples

More information

Physical Chemistry. Tutor: Dr. Jia Falong

Physical Chemistry. Tutor: Dr. Jia Falong Physical Chemistry Professor Jeffrey R. Reimers FAA School of Chemistry, The University of Sydney NSW 2006 Australia Room 702 Chemistry School CCNU Tutor: Dr. Jia Falong Text: Atkins 9 th Edition assumed

More information