Minimizing Latency in Fault-Tolerant Distributed Stream Processing Systems

Size: px
Start display at page:

Download "Minimizing Latency in Fault-Tolerant Distributed Stream Processing Systems"

Transcription

1 Department of Computer Science Institute for Systems Architecture, Systems Engineering Group Minimizing Latency in Fault-Tolerant Distributed Stream Processing Systems Andrey Brito1, Christof Fetzer1, Pascal Felber2 1 2 Technische Universität Dresden, Germany Université de Neuchâtel, Switzerland ICDCS'09, June 23rd, 2009

2 Goal Minimize the cost of logging/checkpointing in event stream processing systems Contribution: Usage of an speculation framework based on transactional memory to overlap logging and processing Slide 2 of 55

3 Motivation (1) Event stream applications Directed acyclic graph of operators Some operators don't keep state Trivially parallelizable Some do keep state Not trivially parallelizable Sometimes they are order sensitive Need to process events sequentially, maybe even waiting for the order to be restored Slide 3 of 55

4 Application example Publisher A A6 A5 B7 B6 B5 Publisher B Processor1 A4 B3 B2 B1 Processor2 A2 B0 A1 A0 Output Adapter B8 Slide 4 of 55

5 Application example Events based on non-deterministic decision Publisher A A6 A5 B7 B6 B5 Publisher B Events are out! Processor1 A4 B3 B2 B1 Processor2 A2 B0 A1 A0 Output Adapter B8 Slide 5 of 55

6 Application example Publisher A A6 A5 B7 B6 B5 Publisher B Processor1 A4 B3 B2 B1 Processor2 A2 B0 A1 A0 Output Adapter B8 Slide 6 of 55

7 Application example Restore checkpoint. Publisher A Publisher B A6 Processor1 Processor2 Output Adapter B8 Slide 7 of 55

8 Application example Ask upstream node to replay missing ones. Publisher A Publisher B A6 Processor1 Processor2 Output Adapter B8 Slide 8 of 55

9 Application example Processing some events again. Publisher A A6 A5 B7 B6 B5 Publisher B Processor1 B3 B2 A4 B1 Processor2 Output Adapter B8 Slide 9 of 55

10 Application example What are you talking about? Events reflect different decisions. Publisher A A6 A5 B7 B6 B5 Publisher B Processor1 B3 B2 A4 B1 Processor2 Output Adapter B8 Incomplete log of non-deterministic decisions no repeatability Slide 10 of 55

11 Motivation (2) Fault-tolerant event stream applications Precise recovery Even if order does not matter, repeatability does Non-determinism Input order from different streams Non-determinism in processing (multi-threading, time, random numbers) Log or checkpoint before each output Slide 11 of 55

12 Logging is expensive Slide 12 of 55

13 My solution Speculate... to parallelize stateful components to not have to wait for events to not have to wait for logging Slide 13 of 55

14 Outline How the speculation works Logging algorithm Experiments Final remarks Slide 14 of 55

15 How the speculation works Base: TinySTM Some extra features added But same basic rule: it appears to be atomic Goal: track accesses to shared memory Instrumentation Reads and writes are intercepted Hold back writes, validate reads until all dependencies satisfied Slide 15 of 55

16 Speculative execution: parallelization NEXT = 9 Processor Processor 2 Slide 16 of 55

17 Speculative execution: parallelization NEXT = 9 Processor Processor 2 9 Slide 17 of 55

18 Speculative execution: parallelization NEXT = 9 Processor Processor 2 9 Slide 18 of 55

19 Speculative execution: parallelization NEXT = 9 Processor Processor 2 9 Slide 19 of 55

20 Speculative execution: parallelization NEXT = 10 Processor Processor 2 Slide 20 of 55

21 Speculative execution: parallelization NEXT = 10 Processor Processor 2 11 Slide 21 of 55

22 Logging algorithm Operator enqueues all events & decisions N+1 threads for N disks One groups requests in a buffers The others write their buffers to disk Slide 22 of 55

23 Logging algorithm E Operator Slide 23 of 55

24 Logging algorithm Operator E Slide 24 of 55

25 Logging algorithm Operator Slide 25 of 55

26 Logging algorithm Operator NDDs Slide 26 of 55

27 Logging algorithm Operator E Slide 27 of 55

28 Logging algorithm E is here waiting. Operator Slide 28 of 55

29 Logging algorithm Operator Slide 29 of 55

30 Logging algorithm Operator Slide 30 of 55

31 Logging algorithm Operator update(e) Slide 31 of 55

32 Logging algorithm Operator E Slide 32 of 55

33 Logging algorithm Publisher A A6 A5 B7 B6 B5 Publisher B Processor1 A4 B3 B2 B1 Processor2 A2 B0 A1 A0 Output Adapter B8 Slide 33 of 55

34 Logging algorithm Events based on non-deterministic decision Publisher A A6 A5 B7 B6 B5 Publisher B Events are out! Processor1 A4 B3 B2 B1 Processor2 A2 B0 A1 A0 Output Adapter B8 Slide 34 of 55

35 Logging algorithm Filter 1 A6 A5 B7 B6 B5 Processor1 B8 Checkpoint /Logging Slide 35 of 55

36 Logging algorithm Filter 1 Processor1 Checkpoint/Logging Slide 36 of 55

37 Logging algorithm Filter 1 1 Processor1 Checkpoint/Logging Slide 37 of 55

38 Logging algorithm Filter 1 1 Processor1 2 Checkpoint/Logging Slide 38 of 55

39 Logging algorithm Filter 1 Processor Checkpoint/Logging Slide 39 of 55

40 Logging algorithm Filter 1 Processor Checkpoint/Logging Slide 40 of 55

41 Logging algorithm Filter 1 Processor Checkpoint/Logging Slide 41 of 55

42 Logging algorithm Filter 1 Processor Checkpoint/Logging Slide 42 of 55

43 Logging algorithm Filter Processor Checkpoint/Logging Slide 43 of 55

44 Speculative processing + Logging From the original node's viewpoint Emit outputs as speculative When logging requests are acknowledged, emit final The next downstream node If speculative event modifies some state, keep track Outputs that consider that part of the state are speculative Speculative status is contagious Slide 44 of 55

45 Speculation + Logging Filter Processor1 3' Checkpoint/Logging Slide 45 of 55

46 Experiments Parallelization: benefits & STM's overheads Optimism control Overlapping processing and logging Slide 46 of 55

47 Speculation costs & speed-ups Hardware: Sun T1000 Speculation creationcommit-disposal overheads. Few shared-memory accesses. Amdahl's law influence. Slide 47 of 55

48 Controlling optimism NEXT = 9 Processor 1 Processor 2 Slide 48 of 55

49 Controlling optimism NEXT = 9 NEXT = 9 Processor 1 Processor 5 Processor 1 Processor 5 Processor 2 Processor 6 Processor 2 Processor 6 Processor 3 Processor 7 Processor 3 Processor 7 Processor 4 Processor 8 Processor 4 Processor 8 Slide 49 of 55

50 Controlling optimism Hardware: SUN T1000 State size varies between 1 and 20. Size=1: concurrent executions will conflict. Size=20: considerable parallelism. Slide 50 of 55

51 Motivation for distributed speculation: logging costs 2 components do logging. Non-speculative: only stable events are sent. Speculative: send events before logging is finished. Slide 51 of 55

52 Accumulated gains X axis: number of components logging. Even in a SAN/WAN, the shapes would look similar. For deterministic components: add fixed latency.

53 Final remarks - Parallelization Parallelization through speculation Easier, less bugs Programmer does not need to fight with locks Keeps sequential semantics Waste of resources reduced with optimism control Overhead can be much lower with hardware support for TM (e.g., ASF) Slide 53 of 55

54 Final remarks - Logging Overlap logging with processing Independent of available parallelism Distributed speculation possible due to less aborts But do not let speculative results get out of the system In combination with speculative parallelization may even reduce logging Slide 54 of 55

55 Thank you! Slide 55 of 55

Chapter 18: Database System Architectures. Centralized Systems

Chapter 18: Database System Architectures. Centralized Systems Chapter 18: Database System Architectures! Centralized Systems! Client--Server Systems! Parallel Systems! Distributed Systems! Network Types 18.1 Centralized Systems! Run on a single computer system and

More information

Overview Motivating Examples Interleaving Model Semantics of Correctness Testing, Debugging, and Verification

Overview Motivating Examples Interleaving Model Semantics of Correctness Testing, Debugging, and Verification Introduction Overview Motivating Examples Interleaving Model Semantics of Correctness Testing, Debugging, and Verification Advanced Topics in Software Engineering 1 Concurrent Programs Characterized by

More information

Centralized Systems. A Centralized Computer System. Chapter 18: Database System Architectures

Centralized Systems. A Centralized Computer System. Chapter 18: Database System Architectures Chapter 18: Database System Architectures Centralized Systems! Centralized Systems! Client--Server Systems! Parallel Systems! Distributed Systems! Network Types! Run on a single computer system and do

More information

Replication on Virtual Machines

Replication on Virtual Machines Replication on Virtual Machines Siggi Cherem CS 717 November 23rd, 2004 Outline 1 Introduction The Java Virtual Machine 2 Napper, Alvisi, Vin - DSN 2003 Introduction JVM as state machine Addressing non-determinism

More information

SEER PROBABILISTIC SCHEDULING FOR COMMODITY HARDWARE TRANSACTIONAL MEMORY. 27 th Symposium on Parallel Architectures and Algorithms

SEER PROBABILISTIC SCHEDULING FOR COMMODITY HARDWARE TRANSACTIONAL MEMORY. 27 th Symposium on Parallel Architectures and Algorithms 27 th Symposium on Parallel Architectures and Algorithms SEER PROBABILISTIC SCHEDULING FOR COMMODITY HARDWARE TRANSACTIONAL MEMORY Nuno Diegues, Paolo Romano and Stoyan Garbatov Seer: Scheduling for Commodity

More information

On some Potential Research Contributions to the Multi-Core Enterprise

On some Potential Research Contributions to the Multi-Core Enterprise On some Potential Research Contributions to the Multi-Core Enterprise Oded Maler CNRS - VERIMAG Grenoble, France February 2009 Background This presentation is based on observations made in the Athole project

More information

Speculation in Parallel and Distributed Event Processing Systems

Speculation in Parallel and Distributed Event Processing Systems Speculation in Parallel and Distributed Event Processing Systems Dissertation zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) vorgelegt an der Technischen Universität Dresden Fakultät

More information

Chapter 14: Recovery System

Chapter 14: Recovery System Chapter 14: Recovery System Chapter 14: Recovery System Failure Classification Storage Structure Recovery and Atomicity Log-Based Recovery Remote Backup Systems Failure Classification Transaction failure

More information

COLO: COarse-grain LOck-stepping Virtual Machine for Non-stop Service. Eddie Dong, Tao Hong, Xiaowei Yang

COLO: COarse-grain LOck-stepping Virtual Machine for Non-stop Service. Eddie Dong, Tao Hong, Xiaowei Yang COLO: COarse-grain LOck-stepping Virtual Machine for Non-stop Service Eddie Dong, Tao Hong, Xiaowei Yang 1 Legal Disclaimer INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO

More information

Avoid a single point of failure by replicating the server Increase scalability by sharing the load among replicas

Avoid a single point of failure by replicating the server Increase scalability by sharing the load among replicas 3. Replication Replication Goal: Avoid a single point of failure by replicating the server Increase scalability by sharing the load among replicas Problems: Partial failures of replicas and messages No

More information

Lesson 12: Recovery System DBMS Architectures

Lesson 12: Recovery System DBMS Architectures Lesson 12: Recovery System DBMS Architectures Contents Recovery after transactions failure Data access and physical disk operations Log-Based Recovery Checkpoints Recovery With Concurrent Transactions

More information

How To Write A Transaction System

How To Write A Transaction System Chapter 20: Advanced Transaction Processing Remote Backup Systems Transaction-Processing Monitors High-Performance Transaction Systems Long-Duration Transactions Real-Time Transaction Systems Weak Levels

More information

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters COSC 6374 Parallel I/O (I) I/O basics Fall 2012 Concept of a clusters Processor 1 local disks Compute node message passing network administrative network Memory Processor 2 Network card 1 Network card

More information

Recovery and the ACID properties CMPUT 391: Implementing Durability Recovery Manager Atomicity Durability

Recovery and the ACID properties CMPUT 391: Implementing Durability Recovery Manager Atomicity Durability Database Management Systems Winter 2004 CMPUT 391: Implementing Durability Dr. Osmar R. Zaïane University of Alberta Lecture 9 Chapter 25 of Textbook Based on slides by Lewis, Bernstein and Kifer. University

More information

Tyler Crain. On Improving the Ease of Use of the Software Transactional Memory Abstraction

Tyler Crain. On Improving the Ease of Use of the Software Transactional Memory Abstraction ANNÉE 2013 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l Université Européenne de Bretagne pour le grade de DOCTEUR DE L UNIVERSITÉ DE RENNES 1 Mention : Informátique Ecole doctorale Matisse présentée

More information

Java Coding Practices for Improved Application Performance

Java Coding Practices for Improved Application Performance 1 Java Coding Practices for Improved Application Performance Lloyd Hagemo Senior Director Application Infrastructure Management Group Candle Corporation In the beginning, Java became the language of the

More information

Historically, Huge Performance Gains came from Huge Clock Frequency Increases Unfortunately.

Historically, Huge Performance Gains came from Huge Clock Frequency Increases Unfortunately. Historically, Huge Performance Gains came from Huge Clock Frequency Increases Unfortunately. Hardware Solution Evolution of Computer Architectures Micro-Scopic View Clock Rate Limits Have Been Reached

More information

Hadoop Architecture. Part 1

Hadoop Architecture. Part 1 Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,

More information

Chapter 10: Distributed DBMS Reliability

Chapter 10: Distributed DBMS Reliability Chapter 10: Distributed DBMS Reliability Definitions and Basic Concepts Local Recovery Management In-place update, out-of-place update Distributed Reliability Protocols Two phase commit protocol Three

More information

Rackspace Cloud Databases and Container-based Virtualization

Rackspace Cloud Databases and Container-based Virtualization Rackspace Cloud Databases and Container-based Virtualization August 2012 J.R. Arredondo @jrarredondo Page 1 of 6 INTRODUCTION When Rackspace set out to build the Cloud Databases product, we asked many

More information

Transactional Memory

Transactional Memory Transactional Memory Konrad Lai Microprocessor Technology Labs, Intel Intel Multicore University Research Conference Dec 8, 2005 Motivation Multiple cores face a serious programmability problem Writing

More information

MapReduce Jeffrey Dean and Sanjay Ghemawat. Background context

MapReduce Jeffrey Dean and Sanjay Ghemawat. Background context MapReduce Jeffrey Dean and Sanjay Ghemawat Background context BIG DATA!! o Large-scale services generate huge volumes of data: logs, crawls, user databases, web site content, etc. o Very useful to be able

More information

Parallel & Distributed Optimization. Based on Mark Schmidt s slides

Parallel & Distributed Optimization. Based on Mark Schmidt s slides Parallel & Distributed Optimization Based on Mark Schmidt s slides Motivation behind using parallel & Distributed optimization Performance Computational throughput have increased exponentially in linear

More information

Challenges for synchronization and scalability on manycore: a Software Transactional Memory approach

Challenges for synchronization and scalability on manycore: a Software Transactional Memory approach Challenges for synchronization and scalability on manycore: a Software Transactional Memory approach Maurício Lima Pilla André Rauber Du Bois Adenauer Correa Yamin Ana Marilza Pernas Fleischmann Gerson

More information

Four Keys to Successful Multicore Optimization for Machine Vision. White Paper

Four Keys to Successful Multicore Optimization for Machine Vision. White Paper Four Keys to Successful Multicore Optimization for Machine Vision White Paper Optimizing a machine vision application for multicore PCs can be a complex process with unpredictable results. Developers need

More information

Configuring Apache Derby for Performance and Durability Olav Sandstå

Configuring Apache Derby for Performance and Durability Olav Sandstå Configuring Apache Derby for Performance and Durability Olav Sandstå Database Technology Group Sun Microsystems Trondheim, Norway Overview Background > Transactions, Failure Classes, Derby Architecture

More information

Why Threads Are A Bad Idea (for most purposes)

Why Threads Are A Bad Idea (for most purposes) Why Threads Are A Bad Idea (for most purposes) John Ousterhout Sun Microsystems Laboratories john.ousterhout@eng.sun.com http://www.sunlabs.com/~ouster Introduction Threads: Grew up in OS world (processes).

More information

Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect

Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect Matteo Migliavacca (mm53@kent) School of Computing Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect Simple past - Traditional

More information

Chapter 15: Recovery System

Chapter 15: Recovery System Chapter 15: Recovery System Failure Classification Storage Structure Recovery and Atomicity Log-Based Recovery Shadow Paging Recovery With Concurrent Transactions Buffer Management Failure with Loss of

More information

Putting Checkpoints to Work in Thread Level Speculative Execution

Putting Checkpoints to Work in Thread Level Speculative Execution Putting Checkpoints to Work in Thread Level Speculative Execution Salman Khan E H U N I V E R S I T Y T O H F G R E D I N B U Doctor of Philosophy Institute of Computing Systems Architecture School of

More information

MPI and Hybrid Programming Models. William Gropp www.cs.illinois.edu/~wgropp

MPI and Hybrid Programming Models. William Gropp www.cs.illinois.edu/~wgropp MPI and Hybrid Programming Models William Gropp www.cs.illinois.edu/~wgropp 2 What is a Hybrid Model? Combination of several parallel programming models in the same program May be mixed in the same source

More information

Managing large clusters resources

Managing large clusters resources Managing large clusters resources ID2210 Gautier Berthou (SICS) Big Processing with No Locality Job( /crawler/bot/jd.io/1 ) submi t Workflow Manager Compute Grid Node Job This doesn t scale. Bandwidth

More information

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters COSC 6374 Parallel Computation Parallel I/O (I) I/O basics Spring 2008 Concept of a clusters Processor 1 local disks Compute node message passing network administrative network Memory Processor 2 Network

More information

Promise of Low-Latency Stable Storage for Enterprise Solutions

Promise of Low-Latency Stable Storage for Enterprise Solutions Promise of Low-Latency Stable Storage for Enterprise Solutions Janet Wu Principal Software Engineer Oracle janet.wu@oracle.com Santa Clara, CA 1 Latency Sensitive Applications Sample Real-Time Use Cases

More information

INTRODUCTION TO DATABASE SYSTEMS

INTRODUCTION TO DATABASE SYSTEMS 1 INTRODUCTION TO DATABASE SYSTEMS Exercise 1.1 Why would you choose a database system instead of simply storing data in operating system files? When would it make sense not to use a database system? Answer

More information

A Study on Workload Imbalance Issues in Data Intensive Distributed Computing

A Study on Workload Imbalance Issues in Data Intensive Distributed Computing A Study on Workload Imbalance Issues in Data Intensive Distributed Computing Sven Groot 1, Kazuo Goda 1, and Masaru Kitsuregawa 1 University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan Abstract.

More information

! Volatile storage: ! Nonvolatile storage:

! Volatile storage: ! Nonvolatile storage: Chapter 17: Recovery System Failure Classification! Failure Classification! Storage Structure! Recovery and Atomicity! Log-Based Recovery! Shadow Paging! Recovery With Concurrent Transactions! Buffer Management!

More information

Transaction Processing Monitors

Transaction Processing Monitors Chapter 24: Advanced Transaction Processing! Transaction-Processing Monitors! Transactional Workflows! High-Performance Transaction Systems! Main memory databases! Real-Time Transaction Systems! Long-Duration

More information

2 nd Semester 2008/2009

2 nd Semester 2008/2009 Chapter 17: System Departamento de Engenharia Informática Instituto Superior Técnico 2 nd Semester 2008/2009 Slides baseados nos slides oficiais do livro Database System c Silberschatz, Korth and Sudarshan.

More information

Database Concurrency Control and Recovery. Simple database model

Database Concurrency Control and Recovery. Simple database model Database Concurrency Control and Recovery Pessimistic concurrency control Two-phase locking (2PL) and Strict 2PL Timestamp ordering (TSO) and Strict TSO Optimistic concurrency control (OCC) definition

More information

Scalable Dynamic Information Flow Tracking and its Applications

Scalable Dynamic Information Flow Tracking and its Applications Scalable Dynamic Information Flow Tracking and its Applications Rajiv Gupta, Neelam Gupta, Xiangyu Zhang Dennis Jeffrey, Vijay Nagarajan, Sriraman Tallam, Chen Tian UC Riverside & Univ. of Arizona & Purdue

More information

Agenda. Enterprise Application Performance Factors. Current form of Enterprise Applications. Factors to Application Performance.

Agenda. Enterprise Application Performance Factors. Current form of Enterprise Applications. Factors to Application Performance. Agenda Enterprise Performance Factors Overall Enterprise Performance Factors Best Practice for generic Enterprise Best Practice for 3-tiers Enterprise Hardware Load Balancer Basic Unix Tuning Performance

More information

Throughput constraint for Synchronous Data Flow Graphs

Throughput constraint for Synchronous Data Flow Graphs Throughput constraint for Synchronous Data Flow Graphs *Alessio Bonfietti Michele Lombardi Michela Milano Luca Benini!"#$%&'()*+,-)./&0&20304(5 60,7&-8990,.+:&;/&."!?@A>&"'&=,0B+C. !"#$%&'()* Resource

More information

Data Management in the Cloud

Data Management in the Cloud Data Management in the Cloud Ryan Stern stern@cs.colostate.edu : Advanced Topics in Distributed Systems Department of Computer Science Colorado State University Outline Today Microsoft Cloud SQL Server

More information

Garbage Collection in the Java HotSpot Virtual Machine

Garbage Collection in the Java HotSpot Virtual Machine http://www.devx.com Printed from http://www.devx.com/java/article/21977/1954 Garbage Collection in the Java HotSpot Virtual Machine Gain a better understanding of how garbage collection in the Java HotSpot

More information

Course Development of Programming for General-Purpose Multicore Processors

Course Development of Programming for General-Purpose Multicore Processors Course Development of Programming for General-Purpose Multicore Processors Wei Zhang Department of Electrical and Computer Engineering Virginia Commonwealth University Richmond, VA 23284 wzhang4@vcu.edu

More information

RAMCloud and the Low- Latency Datacenter. John Ousterhout Stanford University

RAMCloud and the Low- Latency Datacenter. John Ousterhout Stanford University RAMCloud and the Low- Latency Datacenter John Ousterhout Stanford University Most important driver for innovation in computer systems: Rise of the datacenter Phase 1: large scale Phase 2: low latency Introduction

More information

Technical Challenges for Big Health Care Data. Donald Kossmann Systems Group Department of Computer Science ETH Zurich

Technical Challenges for Big Health Care Data. Donald Kossmann Systems Group Department of Computer Science ETH Zurich Technical Challenges for Big Health Care Data Donald Kossmann Systems Group Department of Computer Science ETH Zurich What is Big Data? technologies to automate experience Purpose answer difficult questions

More information

Big Data Systems CS 5965/6965 FALL 2015

Big Data Systems CS 5965/6965 FALL 2015 Big Data Systems CS 5965/6965 FALL 2015 Today General course overview Expectations from this course Q&A Introduction to Big Data Assignment #1 General Course Information Course Web Page http://www.cs.utah.edu/~hari/teaching/fall2015.html

More information

SWARM: A Parallel Programming Framework for Multicore Processors. David A. Bader, Varun N. Kanade and Kamesh Madduri

SWARM: A Parallel Programming Framework for Multicore Processors. David A. Bader, Varun N. Kanade and Kamesh Madduri SWARM: A Parallel Programming Framework for Multicore Processors David A. Bader, Varun N. Kanade and Kamesh Madduri Our Contributions SWARM: SoftWare and Algorithms for Running on Multicore, a portable

More information

Parallel Computing: Strategies and Implications. Dori Exterman CTO IncrediBuild.

Parallel Computing: Strategies and Implications. Dori Exterman CTO IncrediBuild. Parallel Computing: Strategies and Implications Dori Exterman CTO IncrediBuild. In this session we will discuss Multi-threaded vs. Multi-Process Choosing between Multi-Core or Multi- Threaded development

More information

FPGA-based Multithreading for In-Memory Hash Joins

FPGA-based Multithreading for In-Memory Hash Joins FPGA-based Multithreading for In-Memory Hash Joins Robert J. Halstead, Ildar Absalyamov, Walid A. Najjar, Vassilis J. Tsotras University of California, Riverside Outline Background What are FPGAs Multithreaded

More information

SOFT 437. Software Performance Analysis. Ch 5:Web Applications and Other Distributed Systems

SOFT 437. Software Performance Analysis. Ch 5:Web Applications and Other Distributed Systems SOFT 437 Software Performance Analysis Ch 5:Web Applications and Other Distributed Systems Outline Overview of Web applications, distributed object technologies, and the important considerations for SPE

More information

Remus: : High Availability via Asynchronous Virtual Machine Replication

Remus: : High Availability via Asynchronous Virtual Machine Replication Remus: : High Availability via Asynchronous Virtual Machine Replication Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley,, Norm Hutchinson, and Andrew Warfield Department of Computer Science

More information

Topics. Producing Production Quality Software. Concurrent Environments. Why Use Concurrency? Models of concurrency Concurrency in Java

Topics. Producing Production Quality Software. Concurrent Environments. Why Use Concurrency? Models of concurrency Concurrency in Java Topics Producing Production Quality Software Models of concurrency Concurrency in Java Lecture 12: Concurrent and Distributed Programming Prof. Arthur P. Goldberg Fall, 2005 2 Why Use Concurrency? Concurrent

More information

Failure Recovery Himanshu Gupta CSE 532-Recovery-1

Failure Recovery Himanshu Gupta CSE 532-Recovery-1 Failure Recovery CSE 532-Recovery-1 Data Integrity Protect data from system failures Key Idea: Logs recording change history. Today. Chapter 17. Maintain data integrity, when several queries/modifications

More information

Scalability and Classifications

Scalability and Classifications Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static

More information

Distributed Database Management Systems

Distributed Database Management Systems Distributed Database Management Systems (Distributed, Multi-database, Parallel, Networked and Replicated DBMSs) Terms of reference: Distributed Database: A logically interrelated collection of shared data

More information

Outline. Failure Types

Outline. Failure Types Outline Database Management and Tuning Johann Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE Unit 11 1 2 Conclusion Acknowledgements: The slides are provided by Nikolaus Augsten

More information

Thesis Proposal: Improving the Performance of Synchronization in Concurrent Haskell

Thesis Proposal: Improving the Performance of Synchronization in Concurrent Haskell Thesis Proposal: Improving the Performance of Synchronization in Concurrent Haskell Ryan Yates 5-5-2014 1/21 Introduction Outline Thesis Why Haskell? Preliminary work Hybrid TM for GHC Obstacles to Performance

More information

Recovery. P.J. M c.brien. Imperial College London. P.J. M c.brien (Imperial College London) Recovery 1 / 1

Recovery. P.J. M c.brien. Imperial College London. P.J. M c.brien (Imperial College London) Recovery 1 / 1 Recovery P.J. M c.brien Imperial College London P.J. M c.brien (Imperial College London) Recovery 1 / 1 DBMS Architecture REDO and UNDO transaction manager result reject delay scheduler execute begin read

More information

Enterprise Applications

Enterprise Applications Enterprise Applications Chi Ho Yue Sorav Bansal Shivnath Babu Amin Firoozshahian EE392C Emerging Applications Study Spring 2003 Functionality Online Transaction Processing (OLTP) Users/apps interacting

More information

Performance metrics for parallelism

Performance metrics for parallelism Performance metrics for parallelism 8th of November, 2013 Sources Rob H. Bisseling; Parallel Scientific Computing, Oxford Press. Grama, Gupta, Karypis, Kumar; Parallel Computing, Addison Wesley. Definition

More information

How To Improve Performance On A Single Chip Computer

How To Improve Performance On A Single Chip Computer : Redundant Arrays of Inexpensive Disks this discussion is based on the paper:» A Case for Redundant Arrays of Inexpensive Disks (),» David A Patterson, Garth Gibson, and Randy H Katz,» In Proceedings

More information

Proactive, Resource-Aware, Tunable Real-time Fault-tolerant Middleware

Proactive, Resource-Aware, Tunable Real-time Fault-tolerant Middleware Proactive, Resource-Aware, Tunable Real-time Fault-tolerant Middleware Priya Narasimhan T. Dumitraş, A. Paulos, S. Pertet, C. Reverte, J. Slember, D. Srivastava Carnegie Mellon University Problem Description

More information

Chapter 16: Recovery System

Chapter 16: Recovery System Chapter 16: Recovery System Failure Classification Failure Classification Transaction failure : Logical errors: transaction cannot complete due to some internal error condition System errors: the database

More information

StreamStorage: High-throughput and Scalable Storage Technology for Streaming Data

StreamStorage: High-throughput and Scalable Storage Technology for Streaming Data : High-throughput and Scalable Storage Technology for Streaming Data Munenori Maeda Toshihiro Ozawa Real-time analytical processing (RTAP) of vast amounts of time-series data from sensors, server logs,

More information

Introduction to Parallel Computing. George Karypis Parallel Programming Platforms

Introduction to Parallel Computing. George Karypis Parallel Programming Platforms Introduction to Parallel Computing George Karypis Parallel Programming Platforms Elements of a Parallel Computer Hardware Multiple Processors Multiple Memories Interconnection Network System Software Parallel

More information

Parallel Ray Tracing using MPI: A Dynamic Load-balancing Approach

Parallel Ray Tracing using MPI: A Dynamic Load-balancing Approach Parallel Ray Tracing using MPI: A Dynamic Load-balancing Approach S. M. Ashraful Kadir 1 and Tazrian Khan 2 1 Scientific Computing, Royal Institute of Technology (KTH), Stockholm, Sweden smakadir@csc.kth.se,

More information

CS423 Spring 2015 MP4: Dynamic Load Balancer Due April 27 th at 9:00 am 2015

CS423 Spring 2015 MP4: Dynamic Load Balancer Due April 27 th at 9:00 am 2015 CS423 Spring 2015 MP4: Dynamic Load Balancer Due April 27 th at 9:00 am 2015 1. Goals and Overview 1. In this MP you will design a Dynamic Load Balancer architecture for a Distributed System 2. You will

More information

COLO: COarse-grain LOck-stepping Virtual Machine for Non-stop Service

COLO: COarse-grain LOck-stepping Virtual Machine for Non-stop Service COLO: COarse-grain LOck-stepping Virtual Machine for Non-stop Service Eddie Dong, Yunhong Jiang 1 Legal Disclaimer INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,

More information

Cost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation:

Cost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation: CSE341T 08/31/2015 Lecture 3 Cost Model: Work, Span and Parallelism In this lecture, we will look at how one analyze a parallel program written using Cilk Plus. When we analyze the cost of an algorithm

More information

The Oracle Universal Server Buffer Manager

The Oracle Universal Server Buffer Manager The Oracle Universal Server Buffer Manager W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza, N. Macnaughton Oracle Corporation, 500 Oracle Parkway, Box 4OP13, Redwood Shores, CA 94065 { wbridge, ajoshi,

More information

Google File System. Web and scalability

Google File System. Web and scalability Google File System Web and scalability The web: - How big is the Web right now? No one knows. - Number of pages that are crawled: o 100,000 pages in 1994 o 8 million pages in 2005 - Crawlable pages might

More information

Microkernels & Database OSs. Recovery Management in QuickSilver. DB folks: Stonebraker81. Very different philosophies

Microkernels & Database OSs. Recovery Management in QuickSilver. DB folks: Stonebraker81. Very different philosophies Microkernels & Database OSs Recovery Management in QuickSilver. Haskin88: Roger Haskin, Yoni Malachi, Wayne Sawdon, Gregory Chan, ACM Trans. On Computer Systems, vol 6, no 1, Feb 1988. Stonebraker81 OS/FS

More information

System Copy GT Manual 1.8 Last update: 2015/07/13 Basis Technologies

System Copy GT Manual 1.8 Last update: 2015/07/13 Basis Technologies System Copy GT Manual 1.8 Last update: 2015/07/13 Basis Technologies Table of Contents Introduction... 1 Prerequisites... 2 Executing System Copy GT... 3 Program Parameters / Selection Screen... 4 Technical

More information

Database Replication Techniques: a Three Parameter Classification

Database Replication Techniques: a Three Parameter Classification Database Replication Techniques: a Three Parameter Classification Matthias Wiesmann Fernando Pedone André Schiper Bettina Kemme Gustavo Alonso Département de Systèmes de Communication Swiss Federal Institute

More information

STUDY AND SIMULATION OF A DISTRIBUTED REAL-TIME FAULT-TOLERANCE WEB MONITORING SYSTEM

STUDY AND SIMULATION OF A DISTRIBUTED REAL-TIME FAULT-TOLERANCE WEB MONITORING SYSTEM STUDY AND SIMULATION OF A DISTRIBUTED REAL-TIME FAULT-TOLERANCE WEB MONITORING SYSTEM Albert M. K. Cheng, Shaohong Fang Department of Computer Science University of Houston Houston, TX, 77204, USA http://www.cs.uh.edu

More information

Efficient Design and Implementation of Software Based Automated Compaction Model

Efficient Design and Implementation of Software Based Automated Compaction Model Enhancing the Performance of Assisted Execution Runtime Systems through Hardware/Software Techniques Gokcen Kestor Barcelona Supercomputing Center C/ Jordi Girona 34 08034 Barcelona, Spain gokcen.kestor@bsc.es

More information

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical

Write a technical report Present your results Write a workshop/conference paper (optional) Could be a real system, simulation and/or theoretical Identify a problem Review approaches to the problem Propose a novel approach to the problem Define, design, prototype an implementation to evaluate your approach Could be a real system, simulation and/or

More information

Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel

Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:

More information

Parallel Algorithm Engineering

Parallel Algorithm Engineering Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis

More information

Introduction to Database Management Systems

Introduction to Database Management Systems Database Administration Transaction Processing Why Concurrency Control? Locking Database Recovery Query Optimization DB Administration 1 Transactions Transaction -- A sequence of operations that is regarded

More information

The Complete Performance Solution for Microsoft SQL Server

The Complete Performance Solution for Microsoft SQL Server The Complete Performance Solution for Microsoft SQL Server Powerful SSAS Performance Dashboard Innovative Workload and Bottleneck Profiling Capture of all Heavy MDX, XMLA and DMX Aggregation, Partition,

More information

Symmetric Multiprocessing

Symmetric Multiprocessing Multicore Computing A multi-core processor is a processing system composed of two or more independent cores. One can describe it as an integrated circuit to which two or more individual processors (called

More information

The SpiceC Parallel Programming System of Computer Systems

The SpiceC Parallel Programming System of Computer Systems UNIVERSITY OF CALIFORNIA RIVERSIDE The SpiceC Parallel Programming System A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science

More information

Client/Server Computing Distributed Processing, Client/Server, and Clusters

Client/Server Computing Distributed Processing, Client/Server, and Clusters Client/Server Computing Distributed Processing, Client/Server, and Clusters Chapter 13 Client machines are generally single-user PCs or workstations that provide a highly userfriendly interface to the

More information

A Comparison of Task Pools for Dynamic Load Balancing of Irregular Algorithms

A Comparison of Task Pools for Dynamic Load Balancing of Irregular Algorithms A Comparison of Task Pools for Dynamic Load Balancing of Irregular Algorithms Matthias Korch Thomas Rauber Universität Bayreuth Fakultät für Mathematik, Physik und Informatik Fachgruppe Informatik {matthias.korch,

More information

Outline. Database Management and Tuning. Overview. Hardware Tuning. Johann Gamper. Unit 12

Outline. Database Management and Tuning. Overview. Hardware Tuning. Johann Gamper. Unit 12 Outline Database Management and Tuning Hardware Tuning Johann Gamper 1 Free University of Bozen-Bolzano Faculty of Computer Science IDSE Unit 12 2 3 Conclusion Acknowledgements: The slides are provided

More information

How To Recover From Failure In A Relational Database System

How To Recover From Failure In A Relational Database System Chapter 17: Recovery System Database System Concepts See www.db-book.com for conditions on re-use Chapter 17: Recovery System Failure Classification Storage Structure Recovery and Atomicity Log-Based Recovery

More information

MapReduce and Hadoop Distributed File System V I J A Y R A O

MapReduce and Hadoop Distributed File System V I J A Y R A O MapReduce and Hadoop Distributed File System 1 V I J A Y R A O The Context: Big-data Man on the moon with 32KB (1969); my laptop had 2GB RAM (2009) Google collects 270PB data in a month (2007), 20000PB

More information

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Fall 2007 Lecture 5 - DBMS Architecture

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Fall 2007 Lecture 5 - DBMS Architecture CSE 544 Principles of Database Management Systems Magdalena Balazinska Fall 2007 Lecture 5 - DBMS Architecture References Anatomy of a database system. J. Hellerstein and M. Stonebraker. In Red Book (4th

More information

NAMD2- Greater Scalability for Parallel Molecular Dynamics. Presented by Abel Licon

NAMD2- Greater Scalability for Parallel Molecular Dynamics. Presented by Abel Licon NAMD2- Greater Scalability for Parallel Molecular Dynamics Laxmikant Kale, Robert Steel, Milind Bhandarkar,, Robert Bunner, Attila Gursoy,, Neal Krawetz,, James Phillips, Aritomo Shinozaki, Krishnan Varadarajan,,

More information

An Introduction to Parallel Computing/ Programming

An Introduction to Parallel Computing/ Programming An Introduction to Parallel Computing/ Programming Vicky Papadopoulou Lesta Astrophysics and High Performance Computing Research Group (http://ahpc.euc.ac.cy) Dep. of Computer Science and Engineering European

More information

Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components

Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components of Hadoop. We will see what types of nodes can exist in a Hadoop

More information

Chapter 12: Multiprocessor Architectures. Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup

Chapter 12: Multiprocessor Architectures. Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup Chapter 12: Multiprocessor Architectures Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup Objective Be familiar with basic multiprocessor architectures and be able to

More information

Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor

Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor Florian Kluge, Chenglong Yu, Jörg Mische, Sascha Uhrig, Theo Ungerer University of Augsburg 12th International Workshop

More information

Performance metrics for parallel systems

Performance metrics for parallel systems Performance metrics for parallel systems S.S. Kadam C-DAC, Pune sskadam@cdac.in C-DAC/SECG/2006 1 Purpose To determine best parallel algorithm Evaluate hardware platforms Examine the benefits from parallelism

More information

State-Machine Replication

State-Machine Replication State-Machine Replication The Problem Clients Server The Problem Clients Server The Problem Clients Server The Problem Clients Server The Problem Clients Server The Problem Clients Server Solution: replicate

More information

Virtuoso and Database Scalability

Virtuoso and Database Scalability Virtuoso and Database Scalability By Orri Erling Table of Contents Abstract Metrics Results Transaction Throughput Initializing 40 warehouses Serial Read Test Conditions Analysis Working Set Effect of

More information