Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor

Size: px
Start display at page:

Download "Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor"

Transcription

1 Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor Florian Kluge, Chenglong Yu, Jörg Mische, Sascha Uhrig, Theo Ungerer University of Augsburg 12th International Workshop on Software and Compilers for Embedded Systems April 23-24, 2009 Acropolis, Nice, France AUTOSAR on SMT Kluge et al. 1 / 28

2 Outline 1 Motivation 2 Problems 3 Solution 4 Conclusion AUTOSAR on SMT Kluge et al. 2 / 28

3 Outline 1 Motivation 2 Problems 3 Solution 4 Conclusion AUTOSAR on SMT Kluge et al. 3 / 28

4 Motivation (I) Automotive Software Standards AUTOSAR: AUTOmotive Open System ARchitecture Provides common platform for automotive applications Increases interoperability and interchangeability AUTOSAR on SMT Kluge et al. 4 / 28

5 Motivation (I) Automotive Software Standards AUTOSAR: AUTOmotive Open System ARchitecture Provides common platform for automotive applications Increases interoperability and interchangeability Upcoming Processor Architectures Simultaneous MultiThreading (SMT) Cores Multi-Core Processors real parallelism! AUTOSAR on SMT Kluge et al. 4 / 28

6 Motivation (II) Is AUTOSAR fit for SMT? AUTOSAR on SMT Kluge et al. 5 / 28

7 Motivation (II) Is AUTOSAR fit for SMT? NO! AUTOSAR on SMT Kluge et al. 5 / 28

8 Motivation (II) Is AUTOSAR fit for SMT? NO! What can we do? AUTOSAR on SMT Kluge et al. 5 / 28

9 Motivation (II) Is AUTOSAR fit for SMT? NO! What can we do? How can AUTOSAR benefit from SMT? AUTOSAR on SMT Kluge et al. 5 / 28

10 AUTOSAR Scheduling Basic and Extended tasks Task states: suspended, ready, running, waiting (only extended tasks) AUTOSAR on SMT Kluge et al. 6 / 28

11 AUTOSAR Scheduling Basic and Extended tasks Task states: suspended, ready, running, waiting (only extended tasks) Priority based scheduling: highest priority task is executed Designed for singlethreaded processors AUTOSAR on SMT Kluge et al. 6 / 28

12 AUTOSAR Resource Management Mutual exclusion on resource access Prevent priority inversion and deadlocks Resource access never results in waiting state Priority Ceiling Protocol (PCP) AUTOSAR on SMT Kluge et al. 7 / 28

13 SMT Processor Simultaneous MultiThreading issue instructions of different threads in one cycle Use latencies of one thread to execute another Prioritised slots Real parallelism AUTOSAR on SMT Kluge et al. 8 / 28

14 Challenges Goal: Earlier execution of low-priority tasks Challenges Preserve WCET analysability Preserve externally observable behaviour of highest-priority task Lower-priority tasks can be interrupted by higher-priority tasks! As few changes as possible to standard definition AUTOSAR on SMT Kluge et al. 9 / 28

15 Outline 1 Motivation 2 Problems 3 Solution 4 Conclusion AUTOSAR on SMT Kluge et al. 10 / 28

16 Forward Implementation SMT processor with n thread slots Issue n highest priority tasks Keep execution order Map AUTOSAR task priorities to thread priorities AUTOSAR on SMT Kluge et al. 11 / 28

17 Resource Management and Parallel Execution PCP relies on singlethreaded program execution No prevention from priority inversion and deadlocks in multithreaded program execution AUTOSAR on SMT Kluge et al. 12 / 28

18 Related Work: Resource Management Resource Management for Multiprocessor Systems Multiprocessor Priority Ceiling Protocol Multiprocessor Stack Resource Policy LP-Time Inheritance and Returning AUTOSAR on SMT Kluge et al. 13 / 28

19 Related Work: Resource Management Resource Management for Multiprocessor Systems Multiprocessor Priority Ceiling Protocol Multiprocessor Stack Resource Policy LP-Time Inheritance and Returning No transfer of processing time possible on SMT No nested resource accesses possible AUTOSAR on SMT Kluge et al. 13 / 28

20 Data Synchronisation Scheduler Shared data structures (FIFO queues) NO lock variables available! Further synchronisation necessary AUTOSAR on SMT Kluge et al. 14 / 28

21 Data Synchronisation Scheduler Shared data structures (FIFO queues) NO lock variables available! Further synchronisation necessary Related Work Lamport (Bakery Algorithm), Peterson s Algorithm: Spinning or sleeping/suspending Spinning wastes processing time Suspending can violate task state model AUTOSAR on SMT Kluge et al. 14 / 28

22 Data Synchronisation Scheduler Shared data structures (FIFO queues) NO lock variables available! Further synchronisation necessary Related Work Lamport (Bakery Algorithm), Peterson s Algorithm: Spinning or sleeping/suspending Spinning wastes processing time Suspending can violate task state model Lock-free algorithms Special instructions necessary Compare&Swap or Load Link/Store Conditional AUTOSAR on SMT Kluge et al. 14 / 28

23 Outline 1 Motivation 2 Problems 3 Solution 4 Conclusion AUTOSAR on SMT Kluge et al. 15 / 28

24 Task Filtering Execute only tasks that do not use the same resources Deferred tasks are buffered in task filter Internal task state resource ready Task has highest priority of all tasks accessing the same resources AUTOSAR on SMT Kluge et al. 16 / 28

25 Task Filtering: Example T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 R 1 X R 2 X X R 3 X R 4 X R 5 X X R 6 X X R 7 X X X R 8 X SC o o o o o o AUTOSAR on SMT Kluge et al. 17 / 28

26 Discussion Tasks T 1, T 2, T 3 Priorities P 1 > P 2 > P 3 2 thread slots T 1, T 3 running T 1 and T 2 have resource conflict AUTOSAR on SMT Kluge et al. 18 / 28

27 Discussion (I) No resource conflict between T 2 and T 3 AUTOSAR on SMT Kluge et al. 19 / 28

28 Discussion (II) Resource conflict between T 2 and T 3 on R T 3 non-preemptable AUTOSAR on SMT Kluge et al. 20 / 28

29 Discussion (III) Resource conflict between T 2 and T 3 on R T 3 preemptable T 3 not holding R or other with CP > P 2 AUTOSAR on SMT Kluge et al. 21 / 28

30 Discussion (IV) Resource conflict between T 2 and T 3 on R T 3 preemptable T 3 holding R AUTOSAR on SMT Kluge et al. 22 / 28

31 Consequences Start of high priority tasks may be delayed, but time-predictable Once running, behaviour is same as in single-threaded processor for highest priority task Lower prioritiy tasks: may start earlier, but with lower performance Time for scheduling increases about 100 cycles - total time about cycles (on prototype) Hardware requirement: slot-to-slot interrupt AUTOSAR on SMT Kluge et al. 23 / 28

32 Synchronisation of Scheduler Data Scheduler s FIFO-Queues accessed from every slot Must ensure consistency Use lock-free linked lists HW Requirement: Compare&Swap or Load Link/Store Conditional instructions Work in progress AUTOSAR on SMT Kluge et al. 24 / 28

33 Outline 1 Motivation 2 Problems 3 Solution 4 Conclusion AUTOSAR on SMT Kluge et al. 25 / 28

34 Summary & Conclusion Extensions to AUTOSAR Task Filtering method prevents resource conflicts New state resource-ready introduced Necessary hardware extensions CAS Slot-to-slot interrupts Timing behaviour of highest-priority task is preserved AUTOSAR on SMT Kluge et al. 26 / 28

35 Summary & Conclusion Extensions to AUTOSAR Task Filtering method prevents resource conflicts New state resource-ready introduced Necessary hardware extensions CAS Slot-to-slot interrupts Timing behaviour of highest-priority task is preserved Conclusions Current AUTOSAR not ready for multiprocessing More changes on specification necessary This work is just one step on the road... AUTOSAR on SMT Kluge et al. 26 / 28

36 Future Work Lock-free Algorithms Implementation and evaluation Benchmarking Current benchmarks just look at performance Design benchmark to test resource accesses Integration with Multi-Core Research MERASA project (Multi-Core Execution of Hard Real-Time Applications Supporting Analysability) AUTOSAR on SMT Kluge et al. 27 / 28

37 Thank you! Any Questions? AUTOSAR on SMT Kluge et al. 28 / 28

Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor

Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor Florian Kluge, Chenglong Yu, Jörg Mische, Sascha Uhrig, Theo Ungerer Department of Compute Science University of Augsburg

More information

Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run

Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run SFWR ENG 3BB4 Software Design 3 Concurrent System Design 2 SFWR ENG 3BB4 Software Design 3 Concurrent System Design 11.8 10 CPU Scheduling Chapter 11 CPU Scheduling Policies Deciding which process to run

More information

Processor Scheduling. Queues Recall OS maintains various queues

Processor Scheduling. Queues Recall OS maintains various queues Processor Scheduling Chapters 9 and 10 of [OS4e], Chapter 6 of [OSC]: Queues Scheduling Criteria Cooperative versus Preemptive Scheduling Scheduling Algorithms Multi-level Queues Multiprocessor and Real-Time

More information

System Software and TinyAUTOSAR

System Software and TinyAUTOSAR System Software and TinyAUTOSAR Florian Kluge University of Augsburg, Germany parmerasa Dissemination Event, Barcelona, 2014-09-23 Overview parmerasa System Architecture Library RTE Implementations TinyIMA

More information

Chapter 5 Process Scheduling

Chapter 5 Process Scheduling Chapter 5 Process Scheduling CPU Scheduling Objective: Basic Scheduling Concepts CPU Scheduling Algorithms Why Multiprogramming? Maximize CPU/Resources Utilization (Based on Some Criteria) CPU Scheduling

More information

Operatin g Systems: Internals and Design Principle s. Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings

Operatin g Systems: Internals and Design Principle s. Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings Operatin g Systems: Internals and Design Principle s Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles Bear in mind,

More information

UNIT 1 OPERATING SYSTEM FOR PARALLEL COMPUTER

UNIT 1 OPERATING SYSTEM FOR PARALLEL COMPUTER UNIT 1 OPERATING SYSTEM FOR PARALLEL COMPUTER Structure Page Nos. 1.0 Introduction 5 1.1 Objectives 5 1.2 Parallel Programming Environment Characteristics 6 1.3 Synchronisation Principles 1.3.1 Wait Protocol

More information

Operating Systems for Embedded Computers

Operating Systems for Embedded Computers University of Zagreb Faculty of Electrical Engineering and Computing Department of Electronics, Microelectronics, Computer and Intelligent Systems Operating Systems for Embedded Computers Summary of textbook:

More information

Comparison of Service Call Implementations in an AUTOSAR Multi-core OS

Comparison of Service Call Implementations in an AUTOSAR Multi-core OS Comparison of Service Call Implementations in an AUTOSAR Multi-core OS Christian Bradatsch, Florian Kluge, Theo Ungerer Systems and Networking Department of Computer Science University of Augsburg Augsburg,

More information

2. is the number of processes that are completed per time unit. A) CPU utilization B) Response time C) Turnaround time D) Throughput

2. is the number of processes that are completed per time unit. A) CPU utilization B) Response time C) Turnaround time D) Throughput Import Settings: Base Settings: Brownstone Default Highest Answer Letter: D Multiple Keywords in Same Paragraph: No Chapter: Chapter 5 Multiple Choice 1. Which of the following is true of cooperative scheduling?

More information

CPU Scheduling. Core Definitions

CPU Scheduling. Core Definitions CPU Scheduling General rule keep the CPU busy; an idle CPU is a wasted CPU Major source of CPU idleness: I/O (or waiting for it) Many programs have a characteristic CPU I/O burst cycle alternating phases

More information

Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 26 Real - Time POSIX. (Contd.) Ok Good morning, so let us get

More information

PROCESS SCHEDULING. CS124 Operating Systems Winter 2013-2014, Lecture 12

PROCESS SCHEDULING. CS124 Operating Systems Winter 2013-2014, Lecture 12 PROCESS SCHEDULING CS124 Operating Systems Winter 2013-2014, Lecture 12 2 Process Scheduling OSes must manage the allocation and sharing of hardware resources to applications that use them Most important

More information

2.1 What are distributed systems? What are systems? Different kind of systems How to distribute systems? 2.2 Communication concepts

2.1 What are distributed systems? What are systems? Different kind of systems How to distribute systems? 2.2 Communication concepts Chapter 2 Introduction to Distributed systems 1 Chapter 2 2.1 What are distributed systems? What are systems? Different kind of systems How to distribute systems? 2.2 Communication concepts Client-Server

More information

Chapter 5: Process Scheduling

Chapter 5: Process Scheduling Chapter 5: Process Scheduling Chapter 5: Process Scheduling 5.1 Basic Concepts 5.2 Scheduling Criteria 5.3 Scheduling Algorithms 5.3.1 First-Come, First-Served Scheduling 5.3.2 Shortest-Job-First Scheduling

More information

Priority Inversion Problem and Deadlock Situations

Priority Inversion Problem and Deadlock Situations INTER-PROCESS COMMUNICATION AND SYNCHRONISATION: Lesson-11: Priority Inversion Problem and Deadlock Situations 1 1. Priority Inversion 2 Assume Priorities of tasks be in an order such that task I highest

More information

Facing the Challenges for Real-Time Software Development on Multi-Cores

Facing the Challenges for Real-Time Software Development on Multi-Cores Facing the Challenges for Real-Time Software Development on Multi-Cores Dr. Fridtjof Siebert aicas GmbH Haid-und-Neu-Str. 18 76131 Karlsruhe, Germany siebert@aicas.com Abstract Multicore systems introduce

More information

Multi-core Programming System Overview

Multi-core Programming System Overview Multi-core Programming System Overview Based on slides from Intel Software College and Multi-Core Programming increasing performance through software multi-threading by Shameem Akhter and Jason Roberts,

More information

OSEK/VDX. Operating System. Version 2.2.3. February 17 th, 2005

OSEK/VDX. Operating System. Version 2.2.3. February 17 th, 2005 OSEK/VDX Version 2.2.3 February 17 th, 2005 This document is an official release and replaces all previously distributed documents. The OSEK group retains the right to make changes to this document without

More information

CPU Scheduling. CPU Scheduling

CPU Scheduling. CPU Scheduling CPU Scheduling Electrical and Computer Engineering Stephen Kim (dskim@iupui.edu) ECE/IUPUI RTOS & APPS 1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling

More information

Predictable response times in event-driven real-time systems

Predictable response times in event-driven real-time systems Predictable response times in event-driven real-time systems Automotive 2006 - Security and Reliability in Automotive Systems Stuttgart, October 2006. Presented by: Michael González Harbour mgh@unican.es

More information

Chapter 5: CPU Scheduling. Operating System Concepts 7 th Edition, Jan 14, 2005

Chapter 5: CPU Scheduling. Operating System Concepts 7 th Edition, Jan 14, 2005 Chapter 5: CPU Scheduling Operating System Concepts 7 th Edition, Jan 14, 2005 Silberschatz, Galvin and Gagne 2005 Outline Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling

More information

Using a Real-Time, QoS-based ORB to Intelligently Manage Communications Bandwidth in a Multi-Protocol Environment

Using a Real-Time, QoS-based ORB to Intelligently Manage Communications Bandwidth in a Multi-Protocol Environment Using a Real-Time, QoS-based ORB to Intelligently Manage Communications Bandwidth in a Multi-Protocol Environment Bill Beckwith Objective Interface Systems, Inc. OMG Embedded Workshop The Nature of CORBA

More information

Operating System Aspects. Real-Time Systems. Resource Management Tasks

Operating System Aspects. Real-Time Systems. Resource Management Tasks Operating System Aspects Chapter 2: Basics Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Multimedia Transfer and Control Protocols Quality of

More information

I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed

I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 5: PROCESS SCHEDULING Chapter 5: Process Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor

More information

Chapter 6 Concurrent Programming

Chapter 6 Concurrent Programming Chapter 6 Concurrent Programming Outline 6.1 Introduction 6.2 Monitors 6.2.1 Condition Variables 6.2.2 Simple Resource Allocation with Monitors 6.2.3 Monitor Example: Circular Buffer 6.2.4 Monitor Example:

More information

Chapter 5: CPU Scheduling

Chapter 5: CPU Scheduling COP 4610: Introduction to Operating Systems (Spring 2016) Chapter 5: CPU Scheduling Zhi Wang Florida State University Contents Basic concepts Scheduling criteria Scheduling algorithms Thread scheduling

More information

Real- Time Scheduling

Real- Time Scheduling Real- Time Scheduling Chenyang Lu CSE 467S Embedded Compu5ng Systems Readings Ø Single-Processor Scheduling: Hard Real-Time Computing Systems, by G. Buttazzo. q Chapter 4 Periodic Task Scheduling q Chapter

More information

Operating Systems Lecture #6: Process Management

Operating Systems Lecture #6: Process Management Lecture #6: Process Written by based on the lecture series of Dr. Dayou Li and the book Understanding 4th ed. by I.M.Flynn and A.McIver McHoes (2006) Department of Computer Science and Technology,., 2013

More information

Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6

Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6 Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6 Winter Term 2008 / 2009 Jun.-Prof. Dr. André Brinkmann Andre.Brinkmann@uni-paderborn.de Universität Paderborn PC² Agenda Multiprocessor and

More information

Course Development of Programming for General-Purpose Multicore Processors

Course Development of Programming for General-Purpose Multicore Processors Course Development of Programming for General-Purpose Multicore Processors Wei Zhang Department of Electrical and Computer Engineering Virginia Commonwealth University Richmond, VA 23284 wzhang4@vcu.edu

More information

Multicore Systems Challenges for the Real-Time Software Developer

Multicore Systems Challenges for the Real-Time Software Developer Multicore Systems Challenges for the Real-Time Software Developer Dr. Fridtjof Siebert aicas GmbH Haid-und-Neu-Str. 18 76131 Karlsruhe, Germany siebert@aicas.com Abstract Multicore systems have become

More information

Module 8. Industrial Embedded and Communication Systems. Version 2 EE IIT, Kharagpur 1

Module 8. Industrial Embedded and Communication Systems. Version 2 EE IIT, Kharagpur 1 Module 8 Industrial Embedded and Communication Systems Version 2 EE IIT, Kharagpur 1 Lesson 37 Real-Time Operating Systems: Introduction and Process Management Version 2 EE IIT, Kharagpur 2 Instructional

More information

What is best for embedded development? Do most embedded projects still need an RTOS?

What is best for embedded development? Do most embedded projects still need an RTOS? RTOS versus GPOS: What is best for embedded development? Do most embedded projects still need an RTOS? It is a good question, given the speed of today s high-performance processors and the availability

More information

Chapter 6: CPU Scheduling

Chapter 6: CPU Scheduling Chapter 6: CPU Scheduling Edited by Ghada Ahmed, PhD ghada@fcih.net Silberschatz, Galvin and Gagne 2013 Basic Concepts Maximum CPU utilization obtained with multiprogramming CPU I/O Burst Cycle Process

More information

PROCESS SCHEDULING. Operating Systems 2015 Spring by Euiseong Seo

PROCESS SCHEDULING. Operating Systems 2015 Spring by Euiseong Seo PROCESS SCHEDULING Operating Systems 2015 Spring by Euiseong Seo Process Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Operating Systems Examples Basic

More information

CPU Scheduling. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

CPU Scheduling. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University CPU Scheduling Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics Basic Concepts Scheduling Criteria Scheduling Algorithms Multi-processor

More information

Real-Time Operating Systems for MPSoCs

Real-Time Operating Systems for MPSoCs Real-Time Operating Systems for MPSoCs Hiroyuki Tomiyama Graduate School of Information Science Nagoya University http://member.acm.org/~hiroyuki MPSoC 2009 1 Contributors Hiroaki Takada Director and Professor

More information

Chapter 6: CPU Scheduling

Chapter 6: CPU Scheduling Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling 1.1 Maximum CPU utilization obtained with multiprogramming CPU I/O Burst

More information

An Evaluation of OpenMP on Current and Emerging Multithreaded/Multicore Processors

An Evaluation of OpenMP on Current and Emerging Multithreaded/Multicore Processors An Evaluation of OpenMP on Current and Emerging Multithreaded/Multicore Processors Matthew Curtis-Maury, Xiaoning Ding, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos The College of William &

More information

Chapter 6: CPU Scheduling

Chapter 6: CPU Scheduling 1 Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation 6.1 2 Basic Concepts Maximum CPU utilization

More information

LabVIEW Real-Time and Embedded

LabVIEW Real-Time and Embedded FYS3240 PC-based instrumentation and microcontrollers LabVIEW Real-Time and Embedded Spring 2011 Lecture #10 Bekkeng, 11.5.2011 Embedded Computing An embedded system is a computer system designed to perform

More information

CPU SCHEDULING (CONT D) NESTED SCHEDULING FUNCTIONS

CPU SCHEDULING (CONT D) NESTED SCHEDULING FUNCTIONS CPU SCHEDULING CPU SCHEDULING (CONT D) Aims to assign processes to be executed by the CPU in a way that meets system objectives such as response time, throughput, and processor efficiency Broken down into

More information

CHAPTER 5 Exercises 5.1 Answer: 5.2 Answer: 5.3 lottery scheduling

CHAPTER 5 Exercises 5.1 Answer: 5.2 Answer: 5.3 lottery scheduling CHAPTER 5 CPU scheduling is the basis of multiprogrammed operating systems. By switching the CPU among processes, the operating system can make the computer more productive. In this chapter, we introduce

More information

CPU Scheduling Outline

CPU Scheduling Outline CPU Scheduling Outline What is scheduling in the OS? What are common scheduling criteria? How to evaluate scheduling algorithms? What are common scheduling algorithms? How is thread scheduling different

More information

Chapter 6: CPU Scheduling. Basic Concepts

Chapter 6: CPU Scheduling. Basic Concepts 1 Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation 6.1 Basic Concepts Maximum CPU utilization obtained

More information

Programming real-time systems with C/C++ and POSIX

Programming real-time systems with C/C++ and POSIX Programming real-time systems with C/C++ and POSIX Michael González Harbour 1. Introduction The C language [1], developed in 1972 by Dennis Ritchie at the Bell Telephone Laboratories, is the most widely

More information

CPU Scheduling. Overview: CPU Scheduling. [SGG7/8/9] Chapter 5. Basic Concepts. CPU Scheduler. Scheduling Criteria. Optimization Criteria

CPU Scheduling. Overview: CPU Scheduling. [SGG7/8/9] Chapter 5. Basic Concepts. CPU Scheduler. Scheduling Criteria. Optimization Criteria TDDB68 Concurrent programming and operating systems CPU Scheduling Overview: CPU Scheduling CPU bursts and I/O bursts Scheduling Criteria Scheduling Algorithms Priority Inversion Problem Multiprocessor

More information

Real Time Programming: Concepts

Real Time Programming: Concepts Real Time Programming: Concepts Radek Pelánek Plan at first we will study basic concepts related to real time programming then we will have a look at specific programming languages and study how they realize

More information

Tasks Schedule Analysis in RTAI/Linux-GPL

Tasks Schedule Analysis in RTAI/Linux-GPL Tasks Schedule Analysis in RTAI/Linux-GPL Claudio Aciti and Nelson Acosta INTIA - Depto de Computación y Sistemas - Facultad de Ciencias Exactas Universidad Nacional del Centro de la Provincia de Buenos

More information

Chapter 2: OS Overview

Chapter 2: OS Overview Chapter 2: OS Overview CmSc 335 Operating Systems 1. Operating system objectives and functions Operating systems control and support the usage of computer systems. a. usage users of a computer system:

More information

Control 2004, University of Bath, UK, September 2004

Control 2004, University of Bath, UK, September 2004 Control, University of Bath, UK, September ID- IMPACT OF DEPENDENCY AND LOAD BALANCING IN MULTITHREADING REAL-TIME CONTROL ALGORITHMS M A Hossain and M O Tokhi Department of Computing, The University of

More information

Chapter 19: Real-Time Systems. Overview of Real-Time Systems. Objectives. System Characteristics. Features of Real-Time Systems

Chapter 19: Real-Time Systems. Overview of Real-Time Systems. Objectives. System Characteristics. Features of Real-Time Systems Chapter 19: Real-Time Systems System Characteristics Features of Real-Time Systems Chapter 19: Real-Time Systems Implementing Real-Time Operating Systems Real-Time CPU Scheduling VxWorks 5.x 19.2 Silberschatz,

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 MOTIVATION OF RESEARCH Multicore processors have two or more execution cores (processors) implemented on a single chip having their own set of execution and architectural recourses.

More information

Resource Utilization of Middleware Components in Embedded Systems

Resource Utilization of Middleware Components in Embedded Systems Resource Utilization of Middleware Components in Embedded Systems 3 Introduction System memory, CPU, and network resources are critical to the operation and performance of any software system. These system

More information

4. Fixed-Priority Scheduling

4. Fixed-Priority Scheduling Simple workload model 4. Fixed-Priority Scheduling Credits to A. Burns and A. Wellings The application is assumed to consist of a fixed set of tasks All tasks are periodic with known periods This defines

More information

Load-Balancing for a Real-Time System Based on Asymmetric Multi-Processing

Load-Balancing for a Real-Time System Based on Asymmetric Multi-Processing LIFL Report # 2004-06 Load-Balancing for a Real-Time System Based on Asymmetric Multi-Processing Éric PIEL Eric.Piel@lifl.fr Philippe MARQUET Philippe.Marquet@lifl.fr Julien SOULA Julien.Soula@lifl.fr

More information

EECS 750: Advanced Operating Systems. 01/28 /2015 Heechul Yun

EECS 750: Advanced Operating Systems. 01/28 /2015 Heechul Yun EECS 750: Advanced Operating Systems 01/28 /2015 Heechul Yun 1 Recap: Completely Fair Scheduler(CFS) Each task maintains its virtual time V i = E i 1 w i, where E is executed time, w is a weight Pick the

More information

Scheduling. Scheduling. Scheduling levels. Decision to switch the running process can take place under the following circumstances:

Scheduling. Scheduling. Scheduling levels. Decision to switch the running process can take place under the following circumstances: Scheduling Scheduling Scheduling levels Long-term scheduling. Selects which jobs shall be allowed to enter the system. Only used in batch systems. Medium-term scheduling. Performs swapin-swapout operations

More information

Embedded Systems. 6. Real-Time Operating Systems

Embedded Systems. 6. Real-Time Operating Systems Embedded Systems 6. Real-Time Operating Systems Lothar Thiele 6-1 Contents of Course 1. Embedded Systems Introduction 2. Software Introduction 7. System Components 10. Models 3. Real-Time Models 4. Periodic/Aperiodic

More information

spends most its time performing I/O How is thread scheduling different from process scheduling? What are the issues in multiple-processor scheduling?

spends most its time performing I/O How is thread scheduling different from process scheduling? What are the issues in multiple-processor scheduling? CPU Scheduling Outline What is scheduling in the OS? What are common scheduling criteria? How to evaluate scheduling algorithms? What are common scheduling algorithms? How is thread scheduling different

More information

Multi-core Curriculum Development at Georgia Tech: Experience and Future Steps

Multi-core Curriculum Development at Georgia Tech: Experience and Future Steps Multi-core Curriculum Development at Georgia Tech: Experience and Future Steps Ada Gavrilovska, Hsien-Hsin-Lee, Karsten Schwan, Sudha Yalamanchili, Matt Wolf CERCS Georgia Institute of Technology Background

More information

Asymmetric Scheduling and Load Balancing for Real-Time on Linux SMP

Asymmetric Scheduling and Load Balancing for Real-Time on Linux SMP Asymmetric Scheduling and Load Balancing for Real-Time on Linux SMP Éric Piel, Philippe Marquet, Julien Soula, and Jean-Luc Dekeyser {Eric.Piel,Philippe.Marquet,Julien.Soula,Jean-Luc.Dekeyser}@lifl.fr

More information

First-class User Level Threads

First-class User Level Threads First-class User Level Threads based on paper: First-Class User Level Threads by Marsh, Scott, LeBlanc, and Markatos research paper, not merely an implementation report User-level Threads Threads managed

More information

OPERATING SYSTEMS Internais and Design Principles

OPERATING SYSTEMS Internais and Design Principles OPERATING SYSTEMS Internais and Design Principles FOURTH EDITION William Stallings, Ph.D. Prentice Hall Upper Saddle River, New Jersey 07458 CONTENTS Web Site for Operating Systems: Internais and Design

More information

Resource Reservation & Resource Servers. Problems to solve

Resource Reservation & Resource Servers. Problems to solve Resource Reservation & Resource Servers Problems to solve Hard-deadline tasks may be Periodic or Sporadic (with a known minimum arrival time) or Non periodic (how to deal with this?) Soft-deadline tasks

More information

The Design and Implementation of Scalable Parallel Haskell

The Design and Implementation of Scalable Parallel Haskell The Design and Implementation of Scalable Parallel Haskell Malak Aljabri, Phil Trinder,and Hans-Wolfgang Loidl MMnet 13: Language and Runtime Support for Concurrent Systems Heriot Watt University May 8,

More information

CPU Scheduling Yi Shi Fall 2015 Xi an Jiaotong University

CPU Scheduling Yi Shi Fall 2015 Xi an Jiaotong University CPU Scheduling Yi Shi Fall 2015 Xi an Jiaotong University Goals for Today CPU Schedulers Scheduling Algorithms Algorithm Evaluation Metrics Algorithm details Thread Scheduling Multiple-Processor Scheduling

More information

Operating System Tutorial

Operating System Tutorial Operating System Tutorial OPERATING SYSTEM TUTORIAL Simply Easy Learning by tutorialspoint.com tutorialspoint.com i ABOUT THE TUTORIAL Operating System Tutorial An operating system (OS) is a collection

More information

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol Real-Time Systems Journal manuscript No. (will be inserted by the editor) Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol Dario Faggioli ( ) Giuseppe Lipari ( ) Tommaso

More information

Transactional Memory

Transactional Memory Transactional Memory Konrad Lai Microprocessor Technology Labs, Intel Intel Multicore University Research Conference Dec 8, 2005 Motivation Multiple cores face a serious programmability problem Writing

More information

Real-Time Operating Systems & Resource Management

Real-Time Operating Systems & Resource Management Real-Time Operating Systems & Resource Management Tei-Wei Kuo, Ph.D. ktw@csie.ntu.edu.tw Dept. of Computer Science & Information Engineering National Taiwan University Taipei, Taiwan, ROC Remark: This

More information

Chapter 5 CPU Scheduling

Chapter 5 CPU Scheduling Chapter 5 CPU Scheduling CPU Scheduling 1 Outline! Basic Concepts.! Scheduling Criteria.! Scheduling Algorithms.! Multiple-Processor Scheduling.! Thread Scheduling.! Operating Systems Examples.! Algorithm

More information

Multithreading Lin Gao cs9244 report, 2006

Multithreading Lin Gao cs9244 report, 2006 Multithreading Lin Gao cs9244 report, 2006 2 Contents 1 Introduction 5 2 Multithreading Technology 7 2.1 Fine-grained multithreading (FGMT)............. 8 2.2 Coarse-grained multithreading (CGMT)............

More information

SYSTEM ecos Embedded Configurable Operating System

SYSTEM ecos Embedded Configurable Operating System BELONGS TO THE CYGNUS SOLUTIONS founded about 1989 initiative connected with an idea of free software ( commercial support for the free software ). Recently merged with RedHat. CYGNUS was also the original

More information

E) Modeling Insights: Patterns and Anti-patterns

E) Modeling Insights: Patterns and Anti-patterns Murray Woodside, July 2002 Techniques for Deriving Performance Models from Software Designs Murray Woodside Second Part Outline ) Conceptual framework and scenarios ) Layered systems and models C) uilding

More information

Code Sharing using C++ between Desktop Applications and Real-time Embedded Platforms

Code Sharing using C++ between Desktop Applications and Real-time Embedded Platforms Code Sharing using C++ between Desktop Applications and Real-time Embedded Platforms Overview The general product was a data collection and messaging system that could display real-time business data on

More information

Fine-Grained Multiprocessor Real-Time Locking with Improved Blocking

Fine-Grained Multiprocessor Real-Time Locking with Improved Blocking Fine-Grained Multiprocessor Real-Time Locking with Improved Blocking Bryan C. Ward James H. Anderson Dept. of Computer Science UNC-Chapel Hill Motivation Locks can be used to control access to: Shared

More information

key points from previous lecture Overview of Presentation Disables and Spin-locks revisited Interrupts when to disable them

key points from previous lecture Overview of Presentation Disables and Spin-locks revisited Interrupts when to disable them Overview of Presentation key points from previous lecture Spin-locks, Interrupts and Exclusion reasonable use of interrupt routines and disabling spin locks revisited, and sleep/wakeup exclusion Semaphores

More information

5.1 Basic Concepts. Chapter 5: Process Scheduling. Alternating Sequence of CPU And I/O Bursts. 5.1 Basic Concepts

5.1 Basic Concepts. Chapter 5: Process Scheduling. Alternating Sequence of CPU And I/O Bursts. 5.1 Basic Concepts 5.1 Basic Concepts Maximum CPU utilization obtained with multiprogramming CPU I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait CPU burst distribution Chapter 5: Process

More information

W4118 Operating Systems. Instructor: Junfeng Yang

W4118 Operating Systems. Instructor: Junfeng Yang W4118 Operating Systems Instructor: Junfeng Yang Outline Introduction to scheduling Scheduling algorithms 1 Direction within course Until now: interrupts, processes, threads, synchronization Mostly mechanisms

More information

Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association

Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association Making Multicore Work and Measuring its Benefits Markus Levy, president EEMBC and Multicore Association Agenda Why Multicore? Standards and issues in the multicore community What is Multicore Association?

More information

An Implementation Of Multiprocessor Linux

An Implementation Of Multiprocessor Linux An Implementation Of Multiprocessor Linux This document describes the implementation of a simple SMP Linux kernel extension and how to use this to develop SMP Linux kernels for architectures other than

More information

Chapter 5: CPU Scheduling. Operating System Concepts 8 th Edition

Chapter 5: CPU Scheduling. Operating System Concepts 8 th Edition Chapter 5: CPU Scheduling Silberschatz, Galvin and Gagne 2009 Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating

More information

Thread level parallelism

Thread level parallelism Thread level parallelism ILP is used in straight line code or loops Cache miss (off-chip cache and main memory) is unlikely to be hidden using ILP. Thread level parallelism is used instead. Thread: process

More information

Chapter 11 I/O Management and Disk Scheduling

Chapter 11 I/O Management and Disk Scheduling Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 11 I/O Management and Disk Scheduling Dave Bremer Otago Polytechnic, NZ 2008, Prentice Hall I/O Devices Roadmap Organization

More information

Linux Scheduler. Linux Scheduler

Linux Scheduler. Linux Scheduler or or Affinity Basic Interactive es 1 / 40 Reality... or or Affinity Basic Interactive es The Linux scheduler tries to be very efficient To do that, it uses some complex data structures Some of what it

More information

This tutorial will take you through step by step approach while learning Operating System concepts.

This tutorial will take you through step by step approach while learning Operating System concepts. About the Tutorial An operating system (OS) is a collection of software that manages computer hardware resources and provides common services for computer programs. The operating system is a vital component

More information

Lecture 3 Theoretical Foundations of RTOS

Lecture 3 Theoretical Foundations of RTOS CENG 383 Real-Time Systems Lecture 3 Theoretical Foundations of RTOS Asst. Prof. Tolga Ayav, Ph.D. Department of Computer Engineering Task States Executing Ready Suspended (or blocked) Dormant (or sleeping)

More information

Lecture 6- CPU Scheduling Continued

Lecture 6- CPU Scheduling Continued Lecture 6- CPU Scheduling Continued Instructor : Bibhas Ghoshal (bibhas.ghoshal@iiita.ac.in) Autumn Semester, 2015 Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 1 / 24 Shortest Remaining

More information

Chapter 6: CPU Scheduling. Previous Lectures. Basic Concepts. Alternating Sequence of CPU And I/O Bursts

Chapter 6: CPU Scheduling. Previous Lectures. Basic Concepts. Alternating Sequence of CPU And I/O Bursts Previous Lectures Multithreading Memory Layout Kernel vs User threads Representation in OS Difference between thread and process Thread scheduling Mapping between user and kernel threads Multithreading

More information

III. Process Scheduling

III. Process Scheduling Intended Schedule III. Process Scheduling Date Lecture Hand out Submission 0 20.04. Introduction to Operating Systems Course registration 1 27.04. Systems Programming using C (File Subsystem) 1. Assignment

More information

III. Process Scheduling

III. Process Scheduling III. Process Scheduling 1 Intended Schedule Date Lecture Hand out Submission 0 20.04. Introduction to Operating Systems Course registration 1 27.04. Systems Programming using C (File Subsystem) 1. Assignment

More information

Survey of software architectures: function-queue-scheduling architecture and real time OS

Survey of software architectures: function-queue-scheduling architecture and real time OS Survey of software architectures: function-queue-scheduling architecture and real time OS Reference: Simon chapter 5 Last class: round robin with interrupts and without interrupts Function-Queue-Scheduling

More information

Improving Scalability of OpenMP Applications on Multi-core Systems Using Large Page Support

Improving Scalability of OpenMP Applications on Multi-core Systems Using Large Page Support Improving Scalability of OpenMP Applications on Multi-core Systems Using Large Page Support Ranjit Noronha and Dhabaleswar K. Panda Network Based Computing Laboratory (NBCL) The Ohio State University Outline

More information

Chapter 5: Process Scheduling

Chapter 5: Process Scheduling Chapter 5: Process Scheduling Chapter 5: Process Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Real-Time CPU Scheduling Operating Systems

More information

Comp 204: Computer Systems and Their Implementation. Lecture 12: Scheduling Algorithms cont d

Comp 204: Computer Systems and Their Implementation. Lecture 12: Scheduling Algorithms cont d Comp 204: Computer Systems and Their Implementation Lecture 12: Scheduling Algorithms cont d 1 Today Scheduling continued Multilevel queues Examples Thread scheduling 2 Question A starvation-free job-scheduling

More information

Parallel Firewalls on General-Purpose Graphics Processing Units

Parallel Firewalls on General-Purpose Graphics Processing Units Parallel Firewalls on General-Purpose Graphics Processing Units Manoj Singh Gaur and Vijay Laxmi Kamal Chandra Reddy, Ankit Tharwani, Ch.Vamshi Krishna, Lakshminarayanan.V Department of Computer Engineering

More information

A Comparison Of Shared Memory Parallel Programming Models. Jace A Mogill David Haglin

A Comparison Of Shared Memory Parallel Programming Models. Jace A Mogill David Haglin A Comparison Of Shared Memory Parallel Programming Models Jace A Mogill David Haglin 1 Parallel Programming Gap Not many innovations... Memory semantics unchanged for over 50 years 2010 Multi-Core x86

More information

Chapter 6: CPU Scheduling. Operating System Concepts 9 th Edition

Chapter 6: CPU Scheduling. Operating System Concepts 9 th Edition Chapter 6: CPU Scheduling Silberschatz, Galvin and Gagne 2013 Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Real-Time

More information