Processing Unit. Backing Store

Size: px
Start display at page:

Download "Processing Unit. Backing Store"

Transcription

1 SYSTEM UNIT Basic Computer Structure Input Unit Central Processing Unit Main Memory Output Unit Backing Store The Central Processing Unit (CPU) is the unit in the computer which operates the whole computer following instructions and performs all logical computations and numerical calculations The main memory (primary memory) stores data temporarily It may accept data from input device and send data to output device Backing store (secondary memory) is also connected with the main memory It stores data permanently Types of Computer Systems Mainframe computer A mainframe (or mainframe computer) is a large and expensive computer system It has a high speed CPU, a large main memory and a host of input/output and backup storage devices Up to 100 or more users can use the computer at the same time through different terminals Minicomputer Minicomputer is smaller than mainframe in size and in processing capacity, for about 10 users to use The hardware organization of minicomputer is similar to that of mainframe Microcomputer A microcomputer is much smaller The whole CPU is built in a small chip called microprocessor Also, microcomputer contains only one terminal So only one user can use it at a time Central Processing Unit (CPU) The CPU is a device to accept and execute sequentially the instructions stored in the computer s main memory The CPU is composed of control unit ( CU ) and arithmetic and logic unit ( ALU ) The CU sends control signals to all parts of the computer The ALU calculates the data from input device or main memory The registers are locations inside CPU where data are held temporarily during calculations or other operations SYSTEM UNIT page 1

2 Inside the CPU, there are special memory cells called registers They are used by the CPU for temporarily storing data or instructions during the execution of an instruction The data bus, address bus and control bus are the main communication links within the CPU Control unit A group of electronic circuits that has the all-important function of controlling all the operations within the CPU It is also the function of the control unit to ensure that all the correct electronic path are set up within computer Arithmetic and Logic Unit (ALU) It carries out all arithmetic and logic operations i Arithmetic operations include, a basic operation : +, -, *, / b comparison : >, <, =, >=, <=, <> ii Logic operations include: NOT, AND, OR, NAND, NOR System clock An accurate electronic timer used for synchronization of all the chips inside the computer It is an electronic system which produces a train of binary pulses which are represented by the pattern etc and represents the square wave as follows One pulse is usually needed to fetch an instruction from memory - it is then decoded automatically by the electronic inside the microprocessor chip - then the next clock pulse might cause the instruction to be executed The speed of the clock is measured in Hz(cycle per second) or GHz A CPU with a higher clock speed should be faster than another one with lower speed if they are of similar architecture Registers i Accumulator (ACC) It is used to accumulate results Thus it is a place where the answers from many operations are stored temporarily before being put out to the computer s memory, for example ii Program counter / sequence control register (PC) a Its job is to keep a count of the place from where the next instruction is to be fetched b Actually, it stores the address of the memory location where the next instruction is located iii Current instruction register (CIR) or instruction register (IR) It stores the most-recently-fetched from memory instruction iv Memory address register (MAR) A register contains the address of the data that is being accessed in main memory (inaccessible to programmers) v Memory data register (MDR) A register holds the data of the last selected word read from, or written to, the main memory (inaccessible to programmers) vi Stack pointer (SP) A register stores the address of the current top element of the stack SYSTEM UNIT page 2

3 vii Process status register A register which is used by control unit as a means of detecting condition which have occurred such as the ALU detecting the arithmetic error of division by zero (The word held in it is known as Processor Status Word, PSW ) B A Instruction decoder Internal CPU bus Instruction decoder Internal CPU bus IR IR PC PC Memory bus Address Data MAR MDR R 0 Memory bus Address Data MAR MDR R 0 M M R (n-1) R (n-1) Y Y ALU control Add Sub M A ALU B A ALU B Z X New 32-bit names 16-bit names Old 8-bit names EAX * AH A X AL Accumulator EBX * BH B X BL Base index ECX * CH C X CL Count EDX * DH D X DL Data 8-bits ESP * SP Stack Pointer EBP * BP Base Pointer EDI * DI Destination Index ESI * SI Source Index 32 bits EIP * IP Instruction Pointer EFLAGS * FLAGS Flags 16 bits CS Code Segment DS Data Segment ES Extra Segment SS Stack Segment FS * GS * No special name Fig 2 The registers in 80x86 SYSTEM UNIT page 3

4 viii General-purpose register sets These registers are used for general-purpose temporary storage They are usually accessible to programmers The general-purpose registers are labelled as R 0 TO R (N-1) where the number, N, and functions vary considerably from one machine to another They may be provided for general-purpose use by the programmer; or dedicated as special-purpose registers, such as index registers or stack pointers ** A stack can be stored in the main memory of a computer with successive elements in the stack occupying successive lower-address memory location SP points to the lowest address of the stack (Index register and many other registers will be discussed later) Memory Organization Each 0 or 1 of data is called a bit Each bit of data is stored in a memory cell 8 bits is called 1 byte 1 KB (kilobyte) means 1024 bytes of data (2 10 ) If a disk is said to 360 KB of disk space, it will be able to store about bytes of data A 8-bit machines means that a word in the computer contains 8 bits or 1 byte of data, stored in 8 memory cell The number of bits in a word is called word length (n-1) Memory address The longer the word length, the more information can be stored in each word On the other hand, the complexity of the electronic circuitry will also increase proportionately The whole memory can be considered as a long array of memory Each element may contain a word of data Each word is accessed by specifying the memory address Address start from 0 to the total number of words in memory minus one eg for 64 KB memory, the address starts from to FFFF 16 RAM and ROM are under the same addressing system word Figure 1 SYSTEM UNIT page 4

5 Machine Codes Machine language is a language in that the instruction are in a form that allows the computer to perform them immediately Machine code The patterns of binary digits that are used by the computer to perform its specific tasks Instruction set The set of instructions that the CPU can perform such as ADD, LOAD and STORE Instruction format The size and arrangement of a machine instruction's components The two major components are the function code ( opcode ) which specifies the function or operation performed, and the operand address, which specifies the locations of the operands used ** Example : An imaginary computer Here is the instruction of the computer : MACHINE CODE (BIN / OCT) FUNCTION (OPERATION) MNEM- ONIC 0000 / 00 LoaD Accumulator from a specified address LDA 0001 / 01 Store contents of Accumulator into a specified address STA 0010 / 02 LoaD specified Number into the accumulator LDN 0011 / 03 ADD contents of a specified address from accumulator contents ADD 0100 / 04 SUBtract contents of specified address from accumulator contents SUB 0101 / 05 ADd specified Number to contents of accumulator ADN 0110 / 06 SUbtract specified Number from contents of accumulator SUN 0111 / 07 perform a boolean AND on specified address and accumulator contents AND 1000 / 10 perform a boolean OR on specified address and accumulator contents OR 1001 / 11 Jump to specified address if Accumulator contents Zero JAZ 1010 / 12 JumP Unconditionally to specified address JPU 1011 / 13 Jump to specified address if Accumulator contents Greater than zero JAG 1100 / 14 Jump to specified address if Accumulator contents Less than zero JAL 1101 / 15 Jump to specified address to the content of Accumulator?? JAN 1110 / 16 perform specified Input / Output operation IO 1111 / 17 STOP the program ie HALT the processor STOP A 16 bit machine The opcode requires 4 bits so 12 bits remaining for operand addresses 1 accumulator In instruction where there is no memory reference, eg I/O operations, the operand address bits may be used to extend the function options * Most real computers have more than 1 instruction format ** A large instruction set implies that the function field of each instruction must have a larger number of bits Thus, i It may not be possible to store one instruction in a single word ii Most microcomputer and minicomputer instruction may each occupy more than one word SYSTEM UNIT page 5

6 FETCH-EXECUTE CYCLE All the sequence takes place under the guidance of the control unit and is timed (or synchronize) by the system clock First assume that each instruction occupies 1 memory word * Notation: [A] means the content stored in A B [A] means to copy the content of A into B Fetch cycle: MAR [PC] MDR [[MAR]] IR [MDR] PC [PC] +1 Decode [IR] (ie the current instruction) Execute cycle: i Load data from memory location 1000 into accumulator MAR 1000 MDR [[MAR]] Ri [MDR] ii Add the number in the accumulator and store the result in the accumulator MAR 1001 MDR [[MAR]] Rj [MDR] Ri [Ri] + [Rj] iii Store the contents of the accumulator in memory location 1002 MAR [Ri] [MAR] [MDR] iv Branch to the instruction at memory location nnnn PC nnnn Decoding Sometimes, the decoding step may be separated, then it becomes fetch-decode-execute cycle Micro-code i Instructions in micro-codes (micro-program) stored inside the instruction decoder ii A single machine code instruction is executed by several micro-code instruction Multi-layered Computer Architecture 7 Application Layer 6 SOFTWARE LEVEL Higher Order Software Layer 5 Operating System Layer 4 Machine Layer 3 HARDWARE LEVEL Microprogrammed Layer 2 Digital Logic Layer 1 Physical Device Layer Fig 4 Multilayer Computer Architecture SYSTEM UNIT page 6

7 Main memory There are two types of main memory, Read-Only Memory (ROM) and Random Access Memory (RAM) RAM ( Random Access Memory ) The part of memory used to store the program and data input to the computer Data in it are addressed directly (randomly) Data can be read from or written to RAM by sending signal to specify the location in memory ( address ) Also known as Read / Write Memory Data in RAM is volatile, ie will disappear if the power supply is turned off Types of RAM: i Dynamic RAM (DRAM) It needs be refreshed every few milliseconds ii Static RAM (SRAM) It needs not be refreshed and works faster It is more expensive and often used as cache memory iii Synchronous DRAM (SDRAM) It improves performance because it is synchronised with the CPU clock iv Double Data Rate Synchronous DRAM (DDR SDRAM) It doubles the speed of SDRAM ROM ( Read-Only Memory ) Data CANNOT be written into a ROM but CAN be read from it (READ-ONLY / non-volatile ) It usually stores firmware (permanently written) such as BIOS (Basic Input / Output System) including the bootstrap loader for system start-up The part of memory used only by the computer itself Information is masked on the ROM permanently while it is manufactured in the factory It is also accessed randomly CMOS ( Complementary Metal-oxide Semiconductor ) It uses very little power to retain information (a small battery for long time) It stores system configuration data such as the type of hard disk, the system date and time and other BIOS setting Data in it is volatile Cache memory It is a small fast memory, too expensive to be used for the whole of RAM, that acts as an intermediate store between the CPU and memory, is used to improve the overall speed of the computer by pre-fetching instructions and data from slower main memory Level 1cache inside CPU / Level 2 cache on the motherboard SYSTEM UNIT page 7

8 Bus Bus is a group of wires interconnecting the various parts of computer system There are 3 kinds of buses: i data bus ii address bus iii control bus Data bus used for the transfer of data between units The routing of information occurs a whole word at a time in a data bus Eg An 8-bit machine sending 8 bits of data at time in a data bus Data bus is often bi-directional Address bus used for carrying the address of the memory location specified by the control unit The number of wires in the address bus depends on the size of the main memory For 2 16 = 64 K memory locations, 16 are necessary Control bus used for carrying the control signals to and from control unit in CPU The number of wires varies between processors but not normally be less than 10 ** Other than classifying buses by function, it is also customary to classify them by the way they are connected to the CPU, such as I/O bus or memory bus Example A 32-bit microcomputer system has a 128 MB memory How many will be most possibly present in the data bus and address bus? No of in the data bus = word length = 32 No of words in memory = No of bytes in memory / No of bytes in a word = 128 MB / 4 bytes = 2 27 / 2 2 = 2 25 No of in the address bus = 25 ** Note that : A memory of 2 n locations needs an address n bits A memory of N locations needs an address of m bits where m is an integer log 2 N Questions : Find the most probable number of in data bus and address bus in the following cases, i A 32-bit byte-addressing microcomputer has 4 M memory ii A 8-bit word-addressing microcomputer has 128 M memory SYSTEM UNIT page 8

CHAPTER 7: The CPU and Memory

CHAPTER 7: The CPU and Memory CHAPTER 7: The CPU and Memory The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides

More information

Hardware: Input, Processing, and Output Devices

Hardware: Input, Processing, and Output Devices Hardware: Input, Processing, and Output Devices Computer Systems Hardware Components Execution of an Instruction Processing Characteristics and Functions Physical Characteristics of CPU Memory Characteristics

More information

MICROPROCESSOR AND MICROCOMPUTER BASICS

MICROPROCESSOR AND MICROCOMPUTER BASICS Introduction MICROPROCESSOR AND MICROCOMPUTER BASICS At present there are many types and sizes of computers available. These computers are designed and constructed based on digital and Integrated Circuit

More information

Feature of 8086 Microprocessor

Feature of 8086 Microprocessor 8086 Microprocessor Introduction 8086 is the first 16 bit microprocessor which has 40 pin IC and operate on 5volt power supply. which has twenty address limes and works on two modes minimum mode and maximum.

More information

MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS

MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS 1) Which is the microprocessor comprises: a. Register section b. One or more ALU c. Control unit 2) What is the store by register? a. data b. operands

More information

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit. Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how

More information

Architecture and Programming of x86 Processors

Architecture and Programming of x86 Processors Brno University of Technology Architecture and Programming of x86 Processors Microprocessor Techniques and Embedded Systems Lecture 12 Dr. Tomas Fryza December 2012 Contents A little bit of one-core Intel

More information

CPU Organisation and Operation

CPU Organisation and Operation CPU Organisation and Operation The Fetch-Execute Cycle The operation of the CPU 1 is usually described in terms of the Fetch-Execute cycle. 2 Fetch-Execute Cycle Fetch the Instruction Increment the Program

More information

The Central Processing Unit:

The Central Processing Unit: The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Objectives Identify the components of the central processing unit and how they work together and interact with memory Describe how

More information

Intel microprocessor history. Intel x86 Architecture. Early Intel microprocessors. The IBM-AT

Intel microprocessor history. Intel x86 Architecture. Early Intel microprocessors. The IBM-AT Intel x86 Architecture Intel microprocessor history Computer Organization and Assembly Languages g Yung-Yu Chuang with slides by Kip Irvine Early Intel microprocessors Intel 8080 (1972) 64K addressable

More information

CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX

CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX Multiple Choice: 1. Processing information involves: A. accepting information from the outside world. B. communication with another computer. C. performing arithmetic

More information

150127-Microprocessor & Assembly Language

150127-Microprocessor & Assembly Language Chapter 3 Z80 Microprocessor Architecture The Z 80 is one of the most talented 8 bit microprocessors, and many microprocessor-based systems are designed around the Z80. The Z80 microprocessor needs an

More information

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1 MICROPROCESSOR A microprocessor incorporates the functions of a computer s central processing unit (CPU) on a single Integrated (IC), or at most a few integrated circuit. It is a multipurpose, programmable

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory 1 1. Memory Organisation 2 Random access model A memory-, a data byte, or a word, or a double

More information

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2 Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of

More information

Chapter 6. Inside the System Unit. What You Will Learn... Computers Are Your Future. What You Will Learn... Describing Hardware Performance

Chapter 6. Inside the System Unit. What You Will Learn... Computers Are Your Future. What You Will Learn... Describing Hardware Performance What You Will Learn... Computers Are Your Future Chapter 6 Understand how computers represent data Understand the measurements used to describe data transfer rates and data storage capacity List the components

More information

CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions

CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions All computers, from the first room-sized mainframes, to today's powerful desktop, laptop and even hand-held PCs, perform

More information

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.

More information

Central Processing Unit (CPU)

Central Processing Unit (CPU) Central Processing Unit (CPU) CPU is the heart and brain It interprets and executes machine level instructions Controls data transfer from/to Main Memory (MM) and CPU Detects any errors In the following

More information

Intel 8086 architecture

Intel 8086 architecture Intel 8086 architecture Today we ll take a look at Intel s 8086, which is one of the oldest and yet most prevalent processor architectures around. We ll make many comparisons between the MIPS and 8086

More information

CHAPTER 4 MARIE: An Introduction to a Simple Computer

CHAPTER 4 MARIE: An Introduction to a Simple Computer CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 195 4.2 CPU Basics and Organization 195 4.2.1 The Registers 196 4.2.2 The ALU 197 4.2.3 The Control Unit 197 4.3 The Bus 197 4.4 Clocks

More information

Chapter 2 Digital Components. Section 2.1 Integrated Circuits

Chapter 2 Digital Components. Section 2.1 Integrated Circuits Chapter 2 Digital Components Section 2.1 Integrated Circuits An integrated circuit (IC) is a small silicon semiconductor crystal, called a chip, containing the electronic components for the digital gates

More information

Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 Basic Structure of Computers Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Functional Units Basic Operational Concepts Bus Structures Software

More information

Transparent D Flip-Flop

Transparent D Flip-Flop Transparent Flip-Flop The RS flip-flop forms the basis of a number of 1-bit storage devices in digital electronics. ne such device is shown in the figure, where extra combinational logic converts the input

More information

UNIT III CONTROL UNIT DESIGN

UNIT III CONTROL UNIT DESIGN UNIT III CONTROL UNIT DESIGN INTRODUCTION CONTROL TRANSFER FETCH CYCLE INSTRUCTION INTERPRETATION AND EXECUTION HARDWIRED CONTROL MICROPROGRAMMED CONTROL Slides Courtesy of Carl Hamacher, Computer Organization,

More information

Central Processing Unit

Central Processing Unit Chapter 4 Central Processing Unit 1. CPU organization and operation flowchart 1.1. General concepts The primary function of the Central Processing Unit is to execute sequences of instructions representing

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

PART B QUESTIONS AND ANSWERS UNIT I

PART B QUESTIONS AND ANSWERS UNIT I PART B QUESTIONS AND ANSWERS UNIT I 1. Explain the architecture of 8085 microprocessor? Logic pin out of 8085 microprocessor Address bus: unidirectional bus, used as high order bus Data bus: bi-directional

More information

Computer Systems Structure Main Memory Organization

Computer Systems Structure Main Memory Organization Computer Systems Structure Main Memory Organization Peripherals Computer Central Processing Unit Main Memory Computer Systems Interconnection Communication lines Input Output Ward 1 Ward 2 Storage/Memory

More information

MACHINE ARCHITECTURE & LANGUAGE

MACHINE ARCHITECTURE & LANGUAGE in the name of God the compassionate, the merciful notes on MACHINE ARCHITECTURE & LANGUAGE compiled by Jumong Chap. 9 Microprocessor Fundamentals A system designer should consider a microprocessor-based

More information

Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com CSCI-UA.0201-003 Computer Systems Organization Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Some slides adapted (and slightly modified)

More information

İSTANBUL AYDIN UNIVERSITY

İSTANBUL AYDIN UNIVERSITY İSTANBUL AYDIN UNIVERSITY FACULTY OF ENGİNEERİNG SOFTWARE ENGINEERING THE PROJECT OF THE INSTRUCTION SET COMPUTER ORGANIZATION GÖZDE ARAS B1205.090015 Instructor: Prof. Dr. HASAN HÜSEYİN BALIK DECEMBER

More information

DIMM Technologies DIMM (dual inline memory module) Has independent pins on opposite sides of module

DIMM Technologies DIMM (dual inline memory module) Has independent pins on opposite sides of module 1 2 3 4 5 6 7 8 9 A+ Guide to Hardware, 4e Chapter 6 Upgrading Memory Objectives Learn about the different kinds of physical memory and how they work Learn how to upgrade memory Learn how to troubleshoot

More information

A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 1 Introducing Hardware

A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 1 Introducing Hardware A+ Guide to Managing and Maintaining Your PC, 7e Chapter 1 Introducing Hardware Objectives Learn that a computer requires both hardware and software to work Learn about the many different hardware components

More information

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1 Module 2 Embedded Processors and Memory Version 2 EE IIT, Kharagpur 1 Lesson 5 Memory-I Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would Pre-Requisite

More information

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,

More information

Microprocessor and Microcontroller Architecture

Microprocessor and Microcontroller Architecture Microprocessor and Microcontroller Architecture 1 Von Neumann Architecture Stored-Program Digital Computer Digital computation in ALU Programmable via set of standard instructions input memory output Internal

More information

(Refer Slide Time: 00:01:16 min)

(Refer Slide Time: 00:01:16 min) Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control

More information

Chapter 1 Computer System Overview

Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides

More information

CSCA0102 IT & Business Applications. Foundation in Business Information Technology School of Engineering & Computing Sciences FTMS College Global

CSCA0102 IT & Business Applications. Foundation in Business Information Technology School of Engineering & Computing Sciences FTMS College Global CSCA0102 IT & Business Applications Foundation in Business Information Technology School of Engineering & Computing Sciences FTMS College Global Chapter 2 Data Storage Concepts System Unit The system unit

More information

CPU Organization and Assembly Language

CPU Organization and Assembly Language COS 140 Foundations of Computer Science School of Computing and Information Science University of Maine October 2, 2015 Outline 1 2 3 4 5 6 7 8 Homework and announcements Reading: Chapter 12 Homework:

More information

Dept. of Computers Science and Engineering, MMU

Dept. of Computers Science and Engineering, MMU Dept. of Computers Science and Engineering, MMU Microprocessor & its Applications Prepared by- Nancy Bindal Dept. of CSE, mmu,mullana Module Contents The curriculum consists of 5 modules with 8085 as the

More information

The Von Neumann Model. University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

The Von Neumann Model. University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell The Von Neumann Model University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell The Stored Program Computer 1943: ENIAC Presper Eckert and John Mauchly -- first general electronic

More information

Chapter 1. The largest computers, used mainly for research, are called a. microcomputers. b. maxicomputers. c. supercomputers. d. mainframe computers.

Chapter 1. The largest computers, used mainly for research, are called a. microcomputers. b. maxicomputers. c. supercomputers. d. mainframe computers. Chapter 1 CD-ROM stands for: a. Compact Disk Random Only Memory b. Compact Disk Read Only Memory c. Computer Device Read Only Memory d. Computer Disk Random Online Memory Control Unit (CU) is the a. Main

More information

Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System?

Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System? Management Challenge Managing Hardware Assets What computer processing and storage capability does our organization need to handle its information and business transactions? What arrangement of computers

More information

Computer Organization. and Instruction Execution. August 22

Computer Organization. and Instruction Execution. August 22 Computer Organization and Instruction Execution August 22 CSC201 Section 002 Fall, 2000 The Main Parts of a Computer CSC201 Section Copyright 2000, Douglas Reeves 2 I/O and Storage Devices (lots of devices,

More information

Addressing The problem. When & Where do we encounter Data? The concept of addressing data' in computations. The implications for our machine design(s)

Addressing The problem. When & Where do we encounter Data? The concept of addressing data' in computations. The implications for our machine design(s) Addressing The problem Objectives:- When & Where do we encounter Data? The concept of addressing data' in computations The implications for our machine design(s) Introducing the stack-machine concept Slide

More information

CHAPTER 6 TASK MANAGEMENT

CHAPTER 6 TASK MANAGEMENT CHAPTER 6 TASK MANAGEMENT This chapter describes the IA-32 architecture s task management facilities. These facilities are only available when the processor is running in protected mode. 6.1. TASK MANAGEMENT

More information

8051 hardware summary

8051 hardware summary 8051 hardware summary 8051 block diagram 8051 pinouts + 5V ports port 0 port 1 port 2 port 3 : dual-purpose (general-purpose, external memory address and data) : dedicated (interfacing to external devices)

More information

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the

More information

Basic Computer Organization

Basic Computer Organization Chapter 2 Basic Computer Organization Objectives To provide a high-level view of computer organization To describe processor organization details To discuss memory organization and structure To introduce

More information

LSN 2 Computer Processors

LSN 2 Computer Processors LSN 2 Computer Processors Department of Engineering Technology LSN 2 Computer Processors Microprocessors Design Instruction set Processor organization Processor performance Bandwidth Clock speed LSN 2

More information

COMPUTER ORGANIZATION AND ARCHITECTURE. Slides Courtesy of Carl Hamacher, Computer Organization, Fifth edition,mcgrawhill

COMPUTER ORGANIZATION AND ARCHITECTURE. Slides Courtesy of Carl Hamacher, Computer Organization, Fifth edition,mcgrawhill COMPUTER ORGANIZATION AND ARCHITECTURE Slides Courtesy of Carl Hamacher, Computer Organization, Fifth edition,mcgrawhill COMPUTER ORGANISATION AND ARCHITECTURE The components from which computers are built,

More information

Chapter 4 System Unit Components. Discovering Computers 2012. Your Interactive Guide to the Digital World

Chapter 4 System Unit Components. Discovering Computers 2012. Your Interactive Guide to the Digital World Chapter 4 System Unit Components Discovering Computers 2012 Your Interactive Guide to the Digital World Objectives Overview Differentiate among various styles of system units on desktop computers, notebook

More information

RAM & ROM Based Digital Design. ECE 152A Winter 2012

RAM & ROM Based Digital Design. ECE 152A Winter 2012 RAM & ROM Based Digital Design ECE 152A Winter 212 Reading Assignment Brown and Vranesic 1 Digital System Design 1.1 Building Block Circuits 1.1.3 Static Random Access Memory (SRAM) 1.1.4 SRAM Blocks in

More information

a storage location directly on the CPU, used for temporary storage of small amounts of data during processing.

a storage location directly on the CPU, used for temporary storage of small amounts of data during processing. CS143 Handout 18 Summer 2008 30 July, 2008 Processor Architectures Handout written by Maggie Johnson and revised by Julie Zelenski. Architecture Vocabulary Let s review a few relevant hardware definitions:

More information

Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level

Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level System: User s View System Components: High Level View Input Output 1 System: Motherboard Level 2 Components: Interconnection I/O MEMORY 3 4 Organization Registers ALU CU 5 6 1 Input/Output I/O MEMORY

More information

MICROCONTROLLER BASED TEMPERATURE INDICATOR SUBMITTED BY:

MICROCONTROLLER BASED TEMPERATURE INDICATOR SUBMITTED BY: MICROCONTROLLER BASED TEMPERATURE INDICATOR SUBMITTED BY: 1 INTRODUCTION The aim of this project is to design an ambient temperature measurement circuit. The motivation for doing this project is the fact

More information

MULTIPLE CHOICE FREE RESPONSE QUESTIONS

MULTIPLE CHOICE FREE RESPONSE QUESTIONS MULTIPLE CHOICE FREE RESPONSE QUESTIONS World ORT Union I n p u t d e v i c e s Where would you find the letters QUERTY? A. Mouse B. Keyboard C.Numeric Keypad How did the computer mouse get its name? A.

More information

Homework # 2. Solutions. 4.1 What are the differences among sequential access, direct access, and random access?

Homework # 2. Solutions. 4.1 What are the differences among sequential access, direct access, and random access? ECE337 / CS341, Fall 2005 Introduction to Computer Architecture and Organization Instructor: Victor Manuel Murray Herrera Date assigned: 09/19/05, 05:00 PM Due back: 09/30/05, 8:00 AM Homework # 2 Solutions

More information

Discovering Computers 2011. Living in a Digital World

Discovering Computers 2011. Living in a Digital World Discovering Computers 2011 Living in a Digital World Objectives Overview Differentiate among various styles of system units on desktop computers, notebook computers, and mobile devices Identify chips,

More information

SDRAM and DRAM Memory Systems Overview

SDRAM and DRAM Memory Systems Overview CHAPTER SDRAM and DRAM Memory Systems Overview Product Numbers: MEM-NPE-32MB=, MEM-NPE-64MB=, MEM-NPE-128MB=, MEM-SD-NPE-32MB=, MEM-SD-NPE-64MB=, MEM-SD-NPE-128MB=, MEM-SD-NSE-256MB=, MEM-NPE-400-128MB=,

More information

Computer Organization and Architecture

Computer Organization and Architecture Computer Organization and Architecture Chapter 11 Instruction Sets: Addressing Modes and Formats Instruction Set Design One goal of instruction set design is to minimize instruction length Another goal

More information

1 Classical Universal Computer 3

1 Classical Universal Computer 3 Chapter 6: Machine Language and Assembler Christian Jacob 1 Classical Universal Computer 3 1.1 Von Neumann Architecture 3 1.2 CPU and RAM 5 1.3 Arithmetic Logical Unit (ALU) 6 1.4 Arithmetic Logical Unit

More information

Influence of Technology and Software on Instruction Sets: Up to the dawn of IBM 360

Influence of Technology and Software on Instruction Sets: Up to the dawn of IBM 360 1 Influence of Technology and Software on Instruction Sets: Up to the dawn of IBM 360 Computer Science and Artificial Intelligence Laboratory M.I.T. Based on the material prepared by and Krste Asanovic

More information

Memory. The memory types currently in common usage are:

Memory. The memory types currently in common usage are: ory ory is the third key component of a microprocessor-based system (besides the CPU and I/O devices). More specifically, the primary storage directly addressed by the CPU is referred to as main memory

More information

Hardware: Input, Processing, and Output Devices. A PC in Every Home. Assembling a Computer System

Hardware: Input, Processing, and Output Devices. A PC in Every Home. Assembling a Computer System C H A P T E R 3 Hardware: Input, Processing, and Output Devices A PC in Every Home February 3, 2000 Ford will make available to all 330,000 employees hourly and salaried an HP Pavilion PC, an HP DeskJet

More information

Instruction Set Design

Instruction Set Design Instruction Set Design Instruction Set Architecture: to what purpose? ISA provides the level of abstraction between the software and the hardware One of the most important abstraction in CS It s narrow,

More information

Computer Systems Design and Architecture by V. Heuring and H. Jordan

Computer Systems Design and Architecture by V. Heuring and H. Jordan 1-1 Chapter 1 - The General Purpose Machine Computer Systems Design and Architecture Vincent P. Heuring and Harry F. Jordan Department of Electrical and Computer Engineering University of Colorado - Boulder

More information

Context switch in Linux. Gabriel Kliot, Technion 1 Context switch in Linux OS course

Context switch in Linux. Gabriel Kliot, Technion 1 Context switch in Linux OS course Context switch in Linux Gabriel Kliot, Technion 1 Context switch in Linux OS course Memory layout general picture Stack Stack Stack Process X user memory Process Y user memory Process Z user memory Stack

More information

Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to:

Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to: 55 Topic 3 Computer Performance Contents 3.1 Introduction...................................... 56 3.2 Measuring performance............................... 56 3.2.1 Clock Speed.................................

More information

Chapter 02: Computer Organization. Lesson 03: Functional units and components in a computer organization Part 2 Memory

Chapter 02: Computer Organization. Lesson 03: Functional units and components in a computer organization Part 2 Memory Chapter 02: Computer Organization Lesson 03: Functional units and components in a computer organization Part 2 Memory Objective Understand Memory System Understand Aligned or unaligned storage in memory

More information

Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory.

Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory. 1 Topics Machine Architecture and Number Systems Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting from Decimal to Binary Major Computer Components

More information

CS101 Lecture 26: Low Level Programming. John Magee 30 July 2013 Some material copyright Jones and Bartlett. Overview/Questions

CS101 Lecture 26: Low Level Programming. John Magee 30 July 2013 Some material copyright Jones and Bartlett. Overview/Questions CS101 Lecture 26: Low Level Programming John Magee 30 July 2013 Some material copyright Jones and Bartlett 1 Overview/Questions What did we do last time? How can we control the computer s circuits? How

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit

More information

Memory Basics. SRAM/DRAM Basics

Memory Basics. SRAM/DRAM Basics Memory Basics RAM: Random Access Memory historically defined as memory array with individual bit access refers to memory with both Read and Write capabilities ROM: Read Only Memory no capabilities for

More information

Implementation of DDR SDRAM Controller using Verilog HDL

Implementation of DDR SDRAM Controller using Verilog HDL IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 2, Ver. III (Mar - Apr.2015), PP 69-74 www.iosrjournals.org Implementation of

More information

Unit A451: Computer systems and programming. Section 2: Computing Hardware 1/5: Central Processing Unit

Unit A451: Computer systems and programming. Section 2: Computing Hardware 1/5: Central Processing Unit Unit A451: Computer systems and programming Section 2: Computing Hardware 1/5: Central Processing Unit Section Objectives Candidates should be able to: (a) State the purpose of the CPU (b) Understand the

More information

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV UNIT I THE 8086 MICROPROCESSOR 1. What is the purpose of segment registers

More information

Basic Concepts of Information Technology (IT)

Basic Concepts of Information Technology (IT) Basic Concepts of Information Technology (IT) Objectives Define Computer and Identify the Four Basic Computing Functions Identify the Different Types of Computers Describe Hardware Devices and Their Uses

More information

Computer organization

Computer organization Computer organization Computer design an application of digital logic design procedures Computer = processing unit + memory system Processing unit = control + datapath Control = finite state machine inputs

More information

An Overview of Stack Architecture and the PSC 1000 Microprocessor

An Overview of Stack Architecture and the PSC 1000 Microprocessor An Overview of Stack Architecture and the PSC 1000 Microprocessor Introduction A stack is an important data handling structure used in computing. Specifically, a stack is a dynamic set of elements in which

More information

Computer Organization and Components

Computer Organization and Components Computer Organization and Components IS5, fall 25 Lecture : Pipelined Processors ssociate Professor, KTH Royal Institute of Technology ssistant Research ngineer, University of California, Berkeley Slides

More information

Model Answers HW2 - Chapter #3

Model Answers HW2 - Chapter #3 Model Answers HW2 - Chapter #3 1. The hypothetical machine of figure 3.4 also has two I/O instructions: 0011= Load AC fro I/O 0111= Store AC to I/O In these cases the 12-bit address identifies a particular

More information

Main Memory & Backing Store. Main memory backing storage devices

Main Memory & Backing Store. Main memory backing storage devices Main Memory & Backing Store Main memory backing storage devices 1 Introduction computers store programs & data in two different ways: nmain memory ntemporarily stores programs & data that are being processed

More information

#5. Show and the AND function can be constructed from two NAND gates.

#5. Show and the AND function can be constructed from two NAND gates. Study Questions for Digital Logic, Processors and Caches G22.0201 Fall 2009 ANSWERS Digital Logic Read: Sections 3.1 3.3 in the textbook. Handwritten digital lecture notes on the course web page. Study

More information

Basic Concepts of Microprocessors

Basic Concepts of Microprocessors MICROPROCESSOR 8085 Reference Book: Ramesh S. Goankar, Microprocessor Architecture, Programming and Applications with 8085, 5 th Edition, Prentice Hall Week 1 Basic Concept and Ideas about Microprocessor.

More information

LMMS: An 8-bit Microcode Simulation of the Little Man Computer

LMMS: An 8-bit Microcode Simulation of the Little Man Computer LMMS: An 8-bit Microcode Simulation of the Little Man Computer Thad Crews Western Kentucky University 1 Big Red Way (270) 745-4643 thad.crewsii@wku.edu Abstract The Little Man Computer (LMC) is a simplified

More information

Chapter 4 Integer JAVA Virtual Machine

Chapter 4 Integer JAVA Virtual Machine Processor Block Diagram Chapter 4 Integer JAVA Virtual Machine 1 of 14 ECE 357 Register Definitions PC MBR MAR MDR SP LV CPP TOS OPC H Program Counter: Access Data in Method Area Memory Branch Register:

More information

Computer Architecture

Computer Architecture Computer Architecture Slide Sets WS 2013/2014 Prof. Dr. Uwe Brinkschulte M.Sc. Benjamin Betting Part 11 Memory Management Computer Architecture Part 11 page 1 of 44 Prof. Dr. Uwe Brinkschulte, M.Sc. Benjamin

More information

Faculty of Engineering Student Number:

Faculty of Engineering Student Number: Philadelphia University Student Name: Faculty of Engineering Student Number: Dept. of Computer Engineering Final Exam, First Semester: 2012/2013 Course Title: Microprocessors Date: 17/01//2013 Course No:

More information

OVERVIEW OF MICROPROCESSORS

OVERVIEW OF MICROPROCESSORS C HAPTER 1 OVERVIEW OF MICROPROCESSORS 1.1 GENERAL A microprocessor is one of the most exciting technological innovations in electronics since the appearance of the transistor in 1948. This wonder device

More information

A3 Computer Architecture

A3 Computer Architecture A3 Computer Architecture Engineering Science 3rd year A3 Lectures Prof David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/3co Michaelmas 2000 1 / 1 6. Stacks, Subroutines, and Memory

More information

Administrative Issues

Administrative Issues CSC 3210 Computer Organization and Programming Introduction and Overview Dr. Anu Bourgeois (modified by Yuan Long) Administrative Issues Required Prerequisites CSc 2010 Intro to CSc CSc 2310 Java Programming

More information

ELECTRONICS COMPONENTS TESTER

ELECTRONICS COMPONENTS TESTER ELECTRONICS COMPONENTS TESTER 1 A BRIEF INTRODUCTION TO 8051 MICROCONTROLLER: When we have to learn about a new computer we have to familiarize about the machine capability we are using, and we can do

More information

8085 INSTRUCTION SET

8085 INSTRUCTION SET DATA TRANSFER INSTRUCTIONS Opcode Operand Description 8085 INSTRUCTION SET INSTRUCTION DETAILS Copy from source to destination OV Rd, Rs This instruction copies the contents of the source, Rs register

More information

Chapter 3: Computer Hardware Components: CPU, Memory, and I/O

Chapter 3: Computer Hardware Components: CPU, Memory, and I/O Chapter 3: Computer Hardware Components: CPU, Memory, and I/O What is the typical configuration of a computer sold today? The Computer Continuum 1-1 Computer Hardware Components In this chapter: How did

More information

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit Modeling Sequential Elements with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw 4-1 Sequential Circuit Outputs are functions of inputs and present states of storage elements

More information

Chapter 8 Memory Units

Chapter 8 Memory Units Chapter 8 Memory Units Contents: I. Introduction Basic units of Measurement II. RAM,ROM,PROM,EPROM Storage versus Memory III. Auxiliary Storage Devices-Magnetic Tape, Hard Disk, Floppy Disk IV.Optical

More information

The PC Boot Process - Windows XP.

The PC Boot Process - Windows XP. The PC Boot Process - Windows XP. Power supply switched on. The power supply performs a selftest. When all voltages and current levels are acceptable, the supply indicates that the power is stable and

More information