Exponential Growth and Decay
|
|
|
- Herbert Randolph Haynes
- 9 years ago
- Views:
Transcription
1 Exponential Growth and Decay 28 April 2014 Exponential Growth and Decay 28 April /24
2 This week we ll talk about a few situations which behave mathematically like compound interest. They include population growth, radioactive decay, and google map zooming. To help make the connection with interest rates, we discuss one more idea of compound interest. Exponential Growth and Decay 28 April /24
3 If you have money in a savings account, then the amount of interest you make per period is proportional to the amount of money in the account. The constant ratio of interest to principal is the interest rate paid to you. A consequence of this proportionality is that if you double how much money you have in the account, you ll double the interest you get. Exponential Growth and Decay 28 April /24
4 Continuous Compounding Let s suppose we invest $100 in a savings account paying 5% per year. If the interest is compounded yearly, after one year we d have $100 (1 +.05) = $105. If interest is compounded quarterly, then we get 5%/4 = 1.25% per quarter. There are 4 quarters in a year, so after one year we d have $100 (1 +.05/4) 4 = $ If interest is compounded monthly, after one year we d have $100 (1 +.05/12) 12 = $ Exponential Growth and Decay 28 April /24
5 If we compound daily, after one year we d have $100 (1 +.05/365) 365 = $ If we compound hourly, after one year we d have $100 (1 +.05/8760) 8760 = $ By compounding more and more frequently, we are increasing how much we get, but only by a little. The most extreme notion is called compounding continuously. The name gives a rough idea of what this means. Exponential Growth and Decay 28 April /24
6 There is a number, usually denoted by e, whose value is approximately 2.7, which helps to calculate continuous compounding. If you invest P 0 in an account paying r% per year, compounded continuously.after t years, the amount of money you ll have is P 0 e rt On a calculator, or a spreadsheet, the function e x is often written exp(x). Some calculators will have an exp button, and some will have a button for the number e. Exponential Growth and Decay 28 April /24
7 When a quantity grows at a rate proportional to its size, then the equation P = P 0 e rt governs the size, where P 0 represents the size at some initial time, r is the growth rate, and t is the amount of time past the initial time. The situation of something growing proportionally to its size occurs in a number of situations. When this happens the quantity is said to grow exponentially. Exponential Growth and Decay 28 April /24
8 For example, we can apply this idea to compound interest, where P 0 is our initial deposit, r is our annual interest rate (compounding continuously) and t is the number of years we ve left the money in the bank. For example, if we deposit $100 in the bank paying 5% compounded continuously, after 1 year we ll have $100 e = $100 e 0.05 = $ Compounding 5% continuously is equivalent to 5.13% compounded yearly. Exponential Growth and Decay 28 April /24
9 Clicker Question If you deposit $100 in a savings account which pays an annual rate of 6% interest, compounded continuously, how much money will you have in 3 years? To enter the expression P 0 e rt on a calculator, the following steps most likely will work P 0 e ( r t ) = or P 0 e x y ( r t ) = Exponential Growth and Decay 28 April /24
10 Answer The amount you ll have in 3 years is $100 e = $100 e 0.18 = $ The webpage does both standard compound interest and continuous compounding. Exponential Growth and Decay 28 April /24
11 Population Growth A first assumption about population growth is often that the rate of births and deaths is proportional to the size of the population. That is, if the population doubles, then the number of births and deaths each double. The growth rate is then proportional to the size of the population. This is a reasonable assumption for many populations, including human populations, although it can be simplistic, especially when resources are scarce. Assuming this model, population would be governed by the equation P = P 0 e rt where P 0 is the population at some given time, r is the annual population growth rate, and t is the number of years past the given time. Exponential Growth and Decay 28 April /24
12 An Example In 1990 the world population was estimated to be 5.3 billion and increasing at the rate of 1.7% per year. What would the world population be in 2000? We can view the initial population (in 1990) as 5.3 (measured in billions). If t is the number of years past 1990, then the world population, if it grows at 1.7% per year, would be given by the equation P = 5.3 e.017t In 2000, 10 years would have passed since 1990, so the population would be estimated as 5.3 e = 5.3 e.17 = 6.28 or about 6.3 billion people. The actual population, according to the U.S. Census Bureau, was about 6.1 billion. Exponential Growth and Decay 28 April /24
13 Population Doubling Time Because the equation governing population growth is the same as for compound interest, some of the same consequences happen for populations. We saw that the doubling time for compound interest only depended on the interest rate and not on the amount of money we deposit. The same thing happens for population growth. That is, the time it takes for a population to double doesn t depend on the initial population. Exponential Growth and Decay 28 April /24
14 Clicker Question Approximately how long would it take for a population to double if it is increasing at the rate of 1.7% per year? Recall that we had a doubling rule of thumb, for compound interest, that said 72 doubling time = interest rate If we use the percentage, rather than the decimal, for the interest rate. Exponential Growth and Decay 28 April /24
15 Answer The rule of thumb would give us or a little over 42 years. doubling time = 72 = 42.3 years 1.7 Exponential Growth and Decay 28 April /24
16 There will be some situations we ll look at where we need something more detailed than this rule of thumb. The actual equation we d want to solve to answer how long it takes for a population to double when it is increasing at a rate of 1.7% per year is P 0 e.017t = 2P 0 Dividing by P 0, it amounts to asking for the value of t for which e 0.17t = 2 Exponential Growth and Decay 28 April /24
17 When you want to solve the equation e 0.17t = 2, where the unknown is in the exponent, you use logarithms. Scientific calculators usually have a button named ln. The meaning of it is, if x is a number with e x = 2, then x = ln(2). For another example, if e x = 7.1, then x = ln(7.1). The symbol ln stands for natural logarithm. Using this operation allows us to solve equations where the unknown is in the exponent. Exponential Growth and Decay 28 April /24
18 Getting back to the doubling question, if the population increases 1.7% per year, we obtained the equation e 0.017t = 2 and finding t would give the doubling time. Taking logarithms gives 0.017t = ln(2) so we can solve for t by dividing by 0.017, getting t = ln(2) = 40.8 years Exponential Growth and Decay 28 April /24
19 In general, if r is the population growth rate, then solving to find the doubling time, we d get doubling time = ln(2) r In fact, the doubling rule of thumb we gave last week is an approximation to this more complicated formula. Exponential Growth and Decay 28 April /24
20 Another Example An advertisement for Paul Kennedy s book Preparing for the Twenty-First Century (Random House, 1993) asks: By 2025, Africa s population will be: 50%, 150%, or 300% greater than Europe s? The population of Europe in mid-1993 was 500 million and was expected to stay constant through The population of Africa in mid-1993 was 720 million and was increasing at about 2.9% per year. What answer would we give to Kennedy s question? Essentially, what he is asking is if Africa s population was 720 million in 1993, and if it grows at 2.9% per year, what will it be in 2025? Exponential Growth and Decay 28 April /24
21 Answer We have P 0 = 720 million and r =.029. The year 2025 is 32 years after 1993, so t = 32. The population of Africa in 2025 can then be estimated by 720 e = 720 e = 1821 million or about 1.8 billion people. Compared to Europe s estimated population of 500 million, this is over three times as much, so the answer to Kennedy s question would be 300%. As of 2010, Africa s population is approximately 143% of Europe s population. Exponential Growth and Decay 28 April /24
22 The assumption that population grows exponentially typically is valid only when resources are abundant. For example, if a population of predators begins to decimate its prey, then the population will cease to grow exponentially, and can begin to decrease if the amount of prey is low enough. Human population is fairly poorly estimated by this model, in large part because the growth rate varies over time. If one is interested in small enough time intervals, where the growth rate is fairly constant, then this model is pretty good. The website uses CIA data to show annual growth rates of countries over about a 10 year period. Exponential Growth and Decay 28 April /24
23 Next Time We ll start with radioactive decay on Wednesday. Exponential Growth and Decay 28 April /24
8.7 Exponential Growth and Decay
Section 8.7 Exponential Growth and Decay 847 8.7 Exponential Growth and Decay Exponential Growth Models Recalling the investigations in Section 8.3, we started by developing a formula for discrete compound
$496. 80. Example If you can earn 6% interest, what lump sum must be deposited now so that its value will be $3500 after 9 months?
Simple Interest, Compound Interest, and Effective Yield Simple Interest The formula that gives the amount of simple interest (also known as add-on interest) owed on a Principal P (also known as present
Logarithmic and Exponential Equations
11.5 Logarithmic and Exponential Equations 11.5 OBJECTIVES 1. Solve a logarithmic equation 2. Solve an exponential equation 3. Solve an application involving an exponential equation Much of the importance
MAT12X Intermediate Algebra
MAT12X Intermediate Algebra Workshop I - Exponential Functions LEARNING CENTER Overview Workshop I Exponential Functions of the form y = ab x Properties of the increasing and decreasing exponential functions
Solving Compound Interest Problems
Solving Compound Interest Problems What is Compound Interest? If you walk into a bank and open up a savings account you will earn interest on the money you deposit in the bank. If the interest is calculated
5.1 Simple and Compound Interest
5.1 Simple and Compound Interest Question 1: What is simple interest? Question 2: What is compound interest? Question 3: What is an effective interest rate? Question 4: What is continuous compound interest?
Week 2: Exponential Functions
Week 2: Exponential Functions Goals: Introduce exponential functions Study the compounded interest and introduce the number e Suggested Textbook Readings: Chapter 4: 4.1, and Chapter 5: 5.1. Practice Problems:
Chapter 4: Exponential and Logarithmic Functions
Chapter 4: Eponential and Logarithmic Functions Section 4.1 Eponential Functions... 15 Section 4. Graphs of Eponential Functions... 3 Section 4.3 Logarithmic Functions... 4 Section 4.4 Logarithmic Properties...
Continuous Compounding and Discounting
Continuous Compounding and Discounting Philip A. Viton October 5, 2011 Continuous October 5, 2011 1 / 19 Introduction Most real-world project analysis is carried out as we ve been doing it, with the present
With compound interest you earn an additional $128.89 ($1628.89 - $1500).
Compound Interest Interest is the amount you receive for lending money (making an investment) or the fee you pay for borrowing money. Compound interest is interest that is calculated using both the principle
Solutions to Exercises, Section 4.5
Instructor s Solutions Manual, Section 4.5 Exercise 1 Solutions to Exercises, Section 4.5 1. How much would an initial amount of $2000, compounded continuously at 6% annual interest, become after 25 years?
4 Annuities and Loans
4 Annuities and Loans 4.1 Introduction In previous section, we discussed different methods for crediting interest, and we claimed that compound interest is the correct way to credit interest. This section
Section 4-7 Exponential and Logarithmic Equations. Solving an Exponential Equation. log 2. 3 2 log 5. log 2 1.4406
314 4 INVERSE FUNCTIONS; EXPONENTIAL AND LOGARITHMIC FUNCTIONS Section 4-7 Exponential and Logarithmic Equations Exponential Equations Logarithmic Equations Change of Base Equations involving exponential
Exponential Functions. Exponential Functions and Their Graphs. Example 2. Example 1. Example 3. Graphs of Exponential Functions 9/17/2014
Eponential Functions Eponential Functions and Their Graphs Precalculus.1 Eample 1 Use a calculator to evaluate each function at the indicated value of. a) f ( ) 8 = Eample In the same coordinate place,
Pre-Session Review. Part 2: Mathematics of Finance
Pre-Session Review Part 2: Mathematics of Finance For this section you will need a calculator with logarithmic and exponential function keys (such as log, ln, and x y ) D. Exponential and Logarithmic Functions
Section 1. Logarithms
Worksheet 2.7 Logarithms and Exponentials Section 1 Logarithms The mathematics of logarithms and exponentials occurs naturally in many branches of science. It is very important in solving problems related
Finding Rates and the Geometric Mean
Finding Rates and the Geometric Mean So far, most of the situations we ve covered have assumed a known interest rate. If you save a certain amount of money and it earns a fixed interest rate for a period
3 More on Accumulation and Discount Functions
3 More on Accumulation and Discount Functions 3.1 Introduction In previous section, we used 1.03) # of years as the accumulation factor. This section looks at other accumulation factors, including various
Also, compositions of an exponential function with another function are also referred to as exponential. An example would be f(x) = 4 + 100 3-2x.
Exponential Functions Exponential functions are perhaps the most important class of functions in mathematics. We use this type of function to calculate interest on investments, growth and decline rates
Section 4.5 Exponential and Logarithmic Equations
Section 4.5 Exponential and Logarithmic Equations Exponential Equations An exponential equation is one in which the variable occurs in the exponent. EXAMPLE: Solve the equation x = 7. Solution 1: We have
3. Time value of money. We will review some tools for discounting cash flows.
1 3. Time value of money We will review some tools for discounting cash flows. Simple interest 2 With simple interest, the amount earned each period is always the same: i = rp o where i = interest earned
10.6 Functions - Compound Interest
10.6 Functions - Compound Interest Objective: Calculate final account balances using the formulas for compound and continuous interest. An application of exponential functions is compound interest. When
MATHEMATICS OF FINANCE AND INVESTMENT
MATHEMATICS OF FINANCE AND INVESTMENT G. I. FALIN Department of Probability Theory Faculty of Mechanics & Mathematics Moscow State Lomonosov University Moscow 119992 [email protected] 2 G.I.Falin. Mathematics
Finance 197. Simple One-time Interest
Finance 197 Finance We have to work with money every day. While balancing your checkbook or calculating your monthly expenditures on espresso requires only arithmetic, when we start saving, planning for
UNIT AUTHOR: Elizabeth Hume, Colonial Heights High School, Colonial Heights City Schools
Money & Finance I. UNIT OVERVIEW & PURPOSE: The purpose of this unit is for students to learn how savings accounts, annuities, loans, and credit cards work. All students need a basic understanding of how
How To Calculate A Balance On A Savings Account
319 CHAPTER 4 Personal Finance The following is an article from a Marlboro, Massachusetts newspaper. NEWSPAPER ARTICLE 4.1: LET S TEACH FINANCIAL LITERACY STEPHEN LEDUC WED JAN 16, 2008 Boston - Last week
MBA Jump Start Program
MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right
Vilnius University. Faculty of Mathematics and Informatics. Gintautas Bareikis
Vilnius University Faculty of Mathematics and Informatics Gintautas Bareikis CONTENT Chapter 1. SIMPLE AND COMPOUND INTEREST 1.1 Simple interest......................................................................
Finance CHAPTER OUTLINE. 5.1 Interest 5.2 Compound Interest 5.3 Annuities; Sinking Funds 5.4 Present Value of an Annuity; Amortization
CHAPTER 5 Finance OUTLINE Even though you re in college now, at some time, probably not too far in the future, you will be thinking of buying a house. And, unless you ve won the lottery, you will need
5.4 Solving Percent Problems Using the Percent Equation
5. Solving Percent Problems Using the Percent Equation In this section we will develop and use a more algebraic equation approach to solving percent equations. Recall the percent proportion from the last
Solving Exponential Equations
Solving Exponential Equations Deciding How to Solve Exponential Equations When asked to solve an exponential equation such as x + 6 = or x = 18, the first thing we need to do is to decide which way is
Lesson 1. Key Financial Concepts INTRODUCTION
Key Financial Concepts INTRODUCTION Welcome to Financial Management! One of the most important components of every business operation is financial decision making. Business decisions at all levels have
Future Value of an Annuity Sinking Fund. MATH 1003 Calculus and Linear Algebra (Lecture 3)
MATH 1003 Calculus and Linear Algebra (Lecture 3) Future Value of an Annuity Definition An annuity is a sequence of equal periodic payments. We call it an ordinary annuity if the payments are made at the
Time Value of Money 1
Time Value of Money 1 This topic introduces you to the analysis of trade-offs over time. Financial decisions involve costs and benefits that are spread over time. Financial decision makers in households
Chapter Two. THE TIME VALUE OF MONEY Conventions & Definitions
Chapter Two THE TIME VALUE OF MONEY Conventions & Definitions Introduction Now, we are going to learn one of the most important topics in finance, that is, the time value of money. Note that almost every
EXPONENTIAL FUNCTIONS 8.1.1 8.1.6
EXPONENTIAL FUNCTIONS 8.1.1 8.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the
Formulas STEM 11. Two mathematical formulas that students at this level of mathematics are familiar with are:
Formulas STEM 11 One definition of the word formula is a conventionalized statement expressing some fundamental principle. Adding the word mathematical to formula we can define a mathematical formula as
Credit Card Loans. Student Worksheet
Student Worksheet Credit Card Loans Name: Recall the formula for simple interest where, I is the interest owed P is the principal amount outstanding r is the interest rate t is the time in years. Note:
For additional information, see the Math Notes boxes in Lesson B.1.3 and B.2.3.
EXPONENTIAL FUNCTIONS B.1.1 B.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the
About Compound Interest
About Compound Interest TABLE OF CONTENTS About Compound Interest... 1 What is COMPOUND INTEREST?... 1 Interest... 1 Simple Interest... 1 Compound Interest... 1 Calculations... 3 Calculating How Much to
4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS
Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Functions Modeling Change: A Preparation for Calculus, 4th Edition,
Percent, Sales Tax, & Discounts
Percent, Sales Tax, & Discounts Many applications involving percent are based on the following formula: Note that of implies multiplication. Suppose that the local sales tax rate is 7.5% and you purchase
APPENDIX. Interest Concepts of Future and Present Value. Concept of Interest TIME VALUE OF MONEY BASIC INTEREST CONCEPTS
CHAPTER 8 Current Monetary Balances 395 APPENDIX Interest Concepts of Future and Present Value TIME VALUE OF MONEY In general business terms, interest is defined as the cost of using money over time. Economists
4.6 Exponential and Logarithmic Equations (Part I)
4.6 Eponential and Logarithmic Equations (Part I) In this section you will learn to: solve eponential equations using like ases solve eponential equations using logarithms solve logarithmic equations using
Chapter 4: Nominal and Effective Interest Rates
Chapter 4: Nominal and Effective Interest Rates Session 9-10-11 Dr Abdelaziz Berrado 1 Topics to Be Covered in Today s Lecture Section 4.1: Nominal and Effective Interest Rates statements Section 4.2:
Introduction (I) Present Value Concepts. Introduction (II) Introduction (III)
Introduction (I) Present Value Concepts Philip A. Viton February 19, 2014 Many projects lead to impacts that occur at different times. We will refer to those impacts as constituting an (inter)temporal
The Basics of Interest Theory
Contents Preface 3 The Basics of Interest Theory 9 1 The Meaning of Interest................................... 10 2 Accumulation and Amount Functions............................ 14 3 Effective Interest
Math 120 Final Exam Practice Problems, Form: A
Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,
Chapter 1. Theory of Interest 1. The measurement of interest 1.1 Introduction
Chapter 1. Theory of Interest 1. The measurement of interest 1.1 Introduction Interest may be defined as the compensation that a borrower of capital pays to lender of capital for its use. Thus, interest
9.2 Summation Notation
9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a
Compound Interest. Invest 500 that earns 10% interest each year for 3 years, where each interest payment is reinvested at the same rate:
Compound Interest Invest 500 that earns 10% interest each year for 3 years, where each interest payment is reinvested at the same rate: Table 1 Development of Nominal Payments and the Terminal Value, S.
9 Exponential Models CHAPTER. Chapter Outline. www.ck12.org Chapter 9. Exponential Models
www.ck12.org Chapter 9. Eponential Models CHAPTER 9 Eponential Models Chapter Outline 9.1 EXPONENTIAL GROWTH 9.2 EXPONENTIAL DECAY 9.3 REVISITING RATE OF CHANGE 9.4 A QUICK REVIEW OF LOGARITHMS 9.5 USING
MTH6120 Further Topics in Mathematical Finance Lesson 2
MTH6120 Further Topics in Mathematical Finance Lesson 2 Contents 1.2.3 Non-constant interest rates....................... 15 1.3 Arbitrage and Black-Scholes Theory....................... 16 1.3.1 Informal
Financial Mathematics for Actuaries. Chapter 1 Interest Accumulation and Time Value of Money
Financial Mathematics for Actuaries Chapter 1 Interest Accumulation and Time Value of Money 1 Learning Objectives 1. Basic principles in calculation of interest accumulation 2. Simple and compound interest
Background Information on Exponentials and Logarithms
Background Information on Eponentials and Logarithms Since the treatment of the decay of radioactive nuclei is inetricably linked to the mathematics of eponentials and logarithms, it is important that
CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises
CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =
5. Time value of money
1 Simple interest 2 5. Time value of money With simple interest, the amount earned each period is always the same: i = rp o We will review some tools for discounting cash flows. where i = interest earned
CHAPTER 1. Compound Interest
CHAPTER 1 Compound Interest 1. Compound Interest The simplest example of interest is a loan agreement two children might make: I will lend you a dollar, but every day you keep it, you owe me one more penny.
Sample Solutions for Assignment 2.
AMath 383, Autumn 01 Sample Solutions for Assignment. Reading: Chs. -3. 1. Exercise 4 of Chapter. Please note that there is a typo in the formula in part c: An exponent of 1 is missing. It should say 4
1 Interest rates, and risk-free investments
Interest rates, and risk-free investments Copyright c 2005 by Karl Sigman. Interest and compounded interest Suppose that you place x 0 ($) in an account that offers a fixed (never to change over time)
Solutions to Midterm #1 Practice Problems
MAT Fall 0 Solutions to Midterm # Practice Problems. Below is the graph of a function y = r(). y = r() Sketch graphs of the following functions: (a) y = r( 3) (b) y = r( ) 3 (c) y = r() + (d) y = r( +
What is the difference between simple and compound interest and does it really matter?
Module gtf1 Simple Versus Compound Interest What is the difference between simple and compound interest and does it really matter? There are various methods for computing interest. Do you know what the
Section 4.2 (Future Value of Annuities)
Math 34: Fall 2014 Section 4.2 (Future Value of Annuities) At the end of each year Bethany deposits $2, 000 into an investment account that earns 5% interest compounded annually. How much is in her account
parent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL
parent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL HS America s schools are working to provide higher quality instruction than ever before. The way we taught students in the past simply does
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
first complete "prior knowlegde" -- to refresh knowledge of Simple and Compound Interest.
ORDINARY SIMPLE ANNUITIES first complete "prior knowlegde" -- to refresh knowledge of Simple and Compound Interest. LESSON OBJECTIVES: students will learn how to determine the Accumulated Value of Regular
Chapter 3 Review Math 1030
Section A.1: Three Ways of Using Percentages Using percentages We can use percentages in three different ways: To express a fraction of something. For example, A total of 10, 000 newspaper employees, 2.6%
Precalculus Orientation and FAQ
Precalculus Orientation and FAQ MATH 1011 (Precalculus) is a four hour 3 credit course that prepares a student for Calculus. Topics covered include linear, quadratic, polynomial, rational, exponential,
Financial Mathematics
Financial Mathematics For the next few weeks we will study the mathematics of finance. Apart from basic arithmetic, financial mathematics is probably the most practical math you will learn. practical in
Hats 1 are growth rates, or percentage changes, in any variable. Take for example Y, the GDP in year t compared the year before, t 1.
1 Growth rates Hats 1 are growth rates, or percentage changes, in any variable. Take for example Y, the GDP in year t compared the year before, t 1. We have: Ŷ = Y Y = Y t Y t 1 Y t 1 = Y t Y t 1 1 Example
Basic numerical skills: FRACTIONS, DECIMALS, PROPORTIONS, RATIOS AND PERCENTAGES
Basic numerical skills: FRACTIONS, DECIMALS, PROPORTIONS, RATIOS AND PERCENTAGES. Introduction (simple) This helpsheet is concerned with the ways that we express quantities that are not whole numbers,
LESSON EIII.E EXPONENTS AND LOGARITHMS
LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential
ICASL - Business School Programme
ICASL - Business School Programme Quantitative Techniques for Business (Module 3) Financial Mathematics TUTORIAL 2A This chapter deals with problems related to investing money or capital in a business
Numbers 101: Growth Rates and Interest Rates
The Anderson School at UCLA POL 2000-06 Numbers 101: Growth Rates and Interest Rates Copyright 2000 by Richard P. Rumelt. A growth rate is a numerical measure of the rate of expansion or contraction of
JANUARY 2016 EXAMINATIONS. Life Insurance I
PAPER CODE NO. MATH 273 EXAMINER: Dr. C. Boado-Penas TEL.NO. 44026 DEPARTMENT: Mathematical Sciences JANUARY 2016 EXAMINATIONS Life Insurance I Time allowed: Two and a half hours INSTRUCTIONS TO CANDIDATES:
Chapter 4 Nominal and Effective Interest Rates
Chapter 4 Nominal and Effective Interest Rates Chapter 4 Nominal and Effective Interest Rates INEN 303 Sergiy Butenko Industrial & Systems Engineering Texas A&M University Nominal and Effective Interest
Chapter 7 Outline Math 236 Spring 2001
Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will
HOW TO USE YOUR HP 12 C CALCULATOR
HOW TO USE YOUR HP 12 C CALCULATOR This document is designed to provide you with (1) the basics of how your HP 12C financial calculator operates, and (2) the typical keystrokes that will be required on
Dimensional Analysis and Exponential Models
MAT 42 College Mathematics Module XP Dimensional Analysis and Exponential Models Terri Miller revised December 3, 200. Dimensional Analysis The purpose of this section is to convert between various types
How To Understand Algebraic Equations
Please use the resources below to review mathematical concepts found in chemistry. 1. Many Online videos by MiraCosta Professor Julie Harland: www.yourmathgal.com 2. Text references in red/burgundy and
Absolute Value Equations and Inequalities
Key Concepts: Compound Inequalities Absolute Value Equations and Inequalities Intersections and unions Suppose that A and B are two sets of numbers. The intersection of A and B is the set of all numbers
This lesson plan is from the Council for Economic Education's publication: Mathematics and Economics: Connections for Life 9-12
This lesson plan is from the Council for Economic Education's publication: Mathematics and Economics: Connections for Life 9-12 To purchase Mathematics and Economics: Connections for Life 9-12, visit:
Math 132. Population Growth: the World
Math 132 Population Growth: the World S. R. Lubkin Application If you think growth in Raleigh is a problem, think a little bigger. The population of the world has been growing spectacularly fast in the
Basic financial arithmetic
2 Basic financial arithmetic Simple interest Compound interest Nominal and effective rates Continuous discounting Conversions and comparisons Exercise Summary File: MFME2_02.xls 13 This chapter deals
The time value of money: Part II
The time value of money: Part II A reading prepared by Pamela Peterson Drake O U T L I E 1. Introduction 2. Annuities 3. Determining the unknown interest rate 4. Determining the number of compounding periods
Dimensional Analysis; Exponential and Logarithmic Growth/Decay
MAT 42 College Mathematics Module #5 Dimensional Analysis; Exponential and Logarithmic Growth/Decay Terri Miller Spring 2009 revised November 7, 2009. Dimensional Analysis The purpose of this section is
Comparing Simple and Compound Interest
Comparing Simple and Compound Interest GRADE 11 In this lesson, students compare various savings and investment vehicles by calculating simple and compound interest. Prerequisite knowledge: Students should
Financial Literacy in Grade 11 Mathematics Understanding Annuities
Grade 11 Mathematics Functions (MCR3U) Connections to Financial Literacy Students are building their understanding of financial literacy by solving problems related to annuities. Students set up a hypothetical
12.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following:
Section 1.6 Logarithmic and Exponential Equations 811 1.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solve Quadratic Equations (Section
Chapter 22: Borrowings Models
October 21, 2013 Last Time The Consumer Price Index Real Growth The Consumer Price index The official measure of inflation is the Consumer Price Index (CPI) which is the determined by the Bureau of Labor
MGF 1107 Spring 11 Ref: 606977 Review for Exam 2. Write as a percent. 1) 3.1 1) Write as a decimal. 4) 60% 4) 5) 0.085% 5)
MGF 1107 Spring 11 Ref: 606977 Review for Exam 2 Mr. Guillen Exam 2 will be on 03/02/11 and covers the following sections: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6. Write as a percent. 1) 3.1 1) 2) 1 8 2) 3) 7 4 3)
What You ll Learn. And Why. Key Words. interest simple interest principal amount compound interest compounding period present value future value
What You ll Learn To solve problems involving compound interest and to research and compare various savings and investment options And Why Knowing how to save and invest the money you earn will help you
You and your friends head out to a favorite restaurant
19 Cost-Volume-Profit Analysis Learning Objectives 1 Identify how changes in volume affect costs 2 Use CVP analysis to compute breakeven points 3 Use CVP analysis for profit planning, and graph the CVP
Time Value of Money CAP P2 P3. Appendix. Learning Objectives. Conceptual. Procedural
Appendix B Time Value of Learning Objectives CAP Conceptual C1 Describe the earning of interest and the concepts of present and future values. (p. B-1) Procedural P1 P2 P3 P4 Apply present value concepts
Qn: # Mark Score 1 20 2 20 3 20 4 20 5 20 Total 100
DEPARTMENT OF MATHEMATICS University of Toronto at Mississauga MAT 33Y, Test October 20, 2003 Time 6.0pm.8.00 pm Fill in the following information in INK! Last Name:. Given Name:. Student #:. Tutor s Name
(Common) Shock models in Exam MLC
Making sense of... (Common) Shock models in Exam MLC James W. Daniel Austin Actuarial Seminars www.actuarialseminars.com June 26, 2008 c Copyright 2007 by James W. Daniel; reproduction in whole or in part
This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.
Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course
Chapter 21: Savings Models
October 16, 2013 Last time Arithmetic Growth Simple Interest Geometric Growth Compound Interest A limit to Compounding Problems Question: I put $1,000 dollars in a savings account with 2% nominal interest
"Essential Mathematics & Statistics for Science" by Dr G Currell & Dr A A Dowman (John Wiley & Sons) Answers to In-Text Questions
"Essential Mathematics & Statistics for Science" by Dr G Currell & Dr A A Dowman (John Wiley & Sons) Answers to In-Text Questions 5 Logarithmic & Exponential Functions To navigate, use the Bookmarks in
