Part I Preliminaries

Size: px
Start display at page:

Download "Part I Preliminaries"

Transcription

1 Part I Preliminaries

2 Chapter An Elementary Introduction to the Discrete Fourier ransform his chapter is intended to provide a brief introduction to the discrete Fourier transform (DF) It is not intended to be comprehensive; instead, through a simple example, it provides an illustration of how the computation that is the subject of this bookarises, and how its results can be used he DF arises in a multitude of other contexts as well, and a dozen more DF-related applications, together with information on a number of excellent references, are presented in Chapter 6 in Part II of this book Readers familiar with the DF may safely skip this chapter A major application of Fourier transforms is the analysis of a series of observations: x l,l=0,,n ypically, N will be quite large: 0000 would not be unusual he sources of such observations are many: ocean tidal records over many years, communication signals over many microseconds, stockprices over a few months, sonar signals over a few minutes, and so on he assumption is that there are repeating patterns in the data that form part of the x l However, usually there will be other phenomena which may not repeat, or repeat in a way that is not discernably cyclic his is called noise he DF helps to identify and quantify the cyclic phenomena If a pattern repeats itself m times in the N observations, it is said to have Fourier frequency m o make this more specific, suppose one measures a signal from time t =0to t = 680 in steps of 5 seconds, giving 73 observations he measurements might appear as shown in Figure How does one make any sense out of it? As shown later, the DF can help Complex Numbers Effective computation of the DF relies heavily on the use of complex numbers, so it is useful to review their basic properties his material is elementary and probably wellknown to most readers of this book, but it is included for completeness Historically, complex numbers were introduced to deal with polynomial equations, such as x +=

3 Figure Example of a noisy signal , which have no real solutions Informally, they can be defined as the set C of all numbers of the form a + jb where a and b are real numbers and j = Addition, subtraction, and multiplication are performed among complex numbers by treating them as binomials in the unknown j and using j = to simplify the result hus (a + jb)+(c + jd)=(a + c)+j(b + d) and (a + jb) (c + jd)=(ac bd)+j(ad + bc) For the complex number z = a+jb, a is the real part of z and b is the imaginary part of z he zero element of C is 0+0i, and the additive inverse of z = a + jb is a + i( b) he multiplicative inverse z is z = a jb a + b he complex conjugate of z = a + jb is denoted by z and is equal to a jb he modulus of z, denoted by z, is z z = a + b Some additional facts that will be used later are e z = e (a+jb) = e a e jb and e jb = cos b + j sin b hus, Re(e z )=e a cos b and Im(z) =e a sin b

4 Just as a real number can be pictured as a point lying on a line, a complex number can be pictured as a point lying in a plane With each complex number a + jb one can associate a vector beginning at the origin and terminating at the point (a, b) hese notions are depicted in Figure Figure Visualizing complex numbers Instead of the pair (a, b), one can use the length (modulus) together with the angle the number makes with the real axis hus, a+jb can be represented as r cos θ + jr sin θ = re jθ, where r = z = a + b and θ = arctan(b/a) his representation of a complex number is depicted in Figure 3 Figure 3 Polar representation of a complex number Multiplication of complex numbers in polar form is straightforward: if z = a+jb = r e jθ and z = c + jd = r e jθ, then z z = r r e j(θ+θ) he moduli are multiplied together, and the angles are added Note that if z = e jθ, then z = for all values of θ rigonometric Interpolation Suppose a function f(θ) is defined on the interval (0, π), with f assumed to be periodic on the interval; thus, f(θ) =f(θ ± π)

5 Now consider constructing a trigonometric polynomial p(θ) to interpolate f(θ) of the form () p(θ) =a 0 + a k cos kθ + b k sin kθ k= his function has n + coefficients, so it should be possible to interpolate f at n + points In the applications considered in this book, the points at which to interpolate are always equally spaced on the interval: () θ l = lπ n +, l =0,,,n Let x l = f(θ l ), and consider an example with n = hen the interpolation conditions are x l = p(θ l ), or x l = a 0 + a cos θ l + b sin θ l + a cos θ l + b sin θ l, l =0,,,4 his leads to the system of equations cos θ 0 sin θ 0 cos θ 0 sin θ 0 cos θ sin θ cos θ sin θ cos θ sin θ cos θ sin θ cos θ 3 sin θ 3 cos θ 3 sin θ 3 cos θ 4 sin θ 4 cos θ 4 sin θ 4 Recall that e jθ = cos θ + j sin θ, which implies that a 0 a b a b = x 0 x x x 3 x 4 cos θ = ejθ + e jθ and sin θ = ejθ e jθ j Using these in () with n = yields ( a ) ( p(θ) = a 0 + e jθ a ) ( ) + e jθ b + e jθ j ( a ) ( + e jθ a ) ( ) + e jθ b + e jθ j ( ) ( ) a + jb = e jθ a + jb + e jθ ( ) ( a jb +a 0 + e jθ a jb + ) e jθ ( b j ( b j Giving the coefficients names corresponding to the powers of e jθ yields ) e jθ ) e jθ (3) p(θ) =X e jθ + X e jθ + X 0 + X e jθ + X e jθ Note that the coefficients appear in complex conjugate pairs When the x l are real, it is straightforward to show that this is true in general (See the next section) Recall (see ()) that the points at which interpolation occurs are evenly spaced; that is, θ l = lθ Let ω = e jθ = e jπ n+ hen all e jθ l can be expressed in terms of ω: e jθ l = e jlθ = ω l,l=0,,,n

6 Also, note that ω l = ω l±(n+) and ω l = ω l±(n+) For the example with n =, ω = e jπ 5, and the interpolation condition at θ l in (3) is f(θ l )=x l = p(θ l )=X ω l + X ω l + X 0 ω 0 + X ω l + X ω l Using the fact that ω l = ω (n+ l), and renaming the coefficients similarly (X l X n+ l ), the interpolation condition at x l becomes x l = X 0 + X ω l + X ω l + X 3 ω 3l + X 4 ω 4l, which has to be satisfied for l =0,,,4: ω ω ω 3 ω 4 ω ω 4 ω 6 ω 8 (4) ω 3 ω 6 ω 9 ω ω 4 ω 8 ω ω 6 his can be written as a matrix equation MX = x X 0 X X X 3 X 4 = x 0 x x x 3 x 4 It will be useful to have some additional properties of ω First note that +ω + ω + + ω n =0 his can be established by observing that the expression on the left side is a geometric sum equal to ω n+ ω, and this quantity is zero because ω n+ = For integers r and s one can show in a similar way that { 0 if r s (5) ω (kr ks) = n + ifr = s k=0 hese simple results make solving MX = x easy o begin, let ω ω ω 3 ω 4 M = ω ω 4 ω 6 ω 8 ω 3 ω 6 ω 9 ω ω 4 ω 8 ω ω 6 hen using (5) above, together with the fact that ω l = ω l, shows that MM is

7 hus, M = 5M, and X 0 X X = (6) 5 X 3 X 4 ω ω ω 3 ω 4 ω ω 4 ω 6 ω 8 ω 3 ω 6 ω 9 ω ω 4 ω 8 ω ω 6 It is a simple exercise to carry out this development for general n, yielding the following formula for the DF: x 0 x x x 3 x 4 (7) X r = n + l=0 x l ω rl,r =0,,,n Similarly, the inverse DF (IDF) has the form (8) x l = r=0 X r ω rl,l=0,,,n 3 Analyzing the Series What information can the X r provide? As noted earlier for the example with n =, when the given data x are real, the X r appear in complex conjugate pairs o establish this, note that (9) X n+ r = Writing (8) as n + l=0 x l ω (n+ r)l = x l = X 0 + n + l=0 x l ω rl = n + (X r ω rl + X n+ r ω l(n+ r)) r= l=0 x l ω rl = X r and using the fact that ω l(n+ r) = ω rl = ω rl and X n+ r = X r, x l can be expressed as (0) ( x l = X 0 + Xr ω rl + X r ω rl) r= Recall that if a and b are complex numbers, then a +ā =Re(a), ab = a b e j(θa+θ b) and Re(ab) = a b cos(θ a + θ b ) Using these, (0) can be written as x l = X 0 + Re(X r ω rl ) = X 0 + r= r= ( ) rlπ X r cos n + + φ r,

8 where rlπ n+ is the phase angle of ωrl and φ r is the phase angle of X r hus, after computing the coefficients X r,r =0,,,n, the interpolating function can be evaluated at any point in the interval [0, π] using the formula p(θ) =X 0 + X r cos(rθ + φ r ) r= In many applications, it is the amplitudes (the size of X r ) that are of interest hey indicate the strength of each frequency in the signal omake this discussion concrete, consider the signal shown in Figure, where the 73 measurements are plotted Using Matlab, one can compute and plot X, as shown on the left in Figure 4 Note that apart from the left endpoint (corresponding Figure 4 Plot of X for the example in Figure to X 0 ), the plot of the entire X is symmetric, as expected; as shown above, the X r occur in complex conjugate pairs, with X r = X n+ r he plot on the right in Figure 4 contains the first 30 components of X so that more detail can be seen It suggests that the signal has two dominant Fourier frequencies: 0 and 30 4 Fourier Frequency Versus ime Frequency As θ goes from 0 to π, cos(rθ + φ r ) makes r cycles Suppose the x l are collected over an interval of seconds As θ goes from 0 to π, t goes from 0 to hus, cos(rθ+φ r ) oscillates at r/ cycles per second Making a change of variable yields () p(t) =X 0 + r= ( ( r ) ) X r cos π t + φ r he usual practice is to express the phase shift φ r in terms of a negative shift in time t hus, () is often written in the form () p(t) =X 0 + r= ( ( r ) ) X r cos π (t t r ) Matlab is a proprietary commercial product of he MathWorks, Inc, Natick, MA Web URL:

9 where t r = φ r π ( r ) Returning to the signal shown in Figure, recall that the 73 data elements were collected at intervals of 5 seconds over a period of = 680 seconds hus, since the dominant Fourier frequencies in the signal appear to be 0 and 30, the dominant frequencies in cycles per second would be and cycles per second Figure 5 contains aplot of the first 40 amplitudes ( X r ) against cycles per second Figure 5 Plot of amplitudes against cycles per second for the example in Figure Filtering a Signal Suppose X d is much larger than the other coefficients If one assumes the other frequencies are the result of noise, one can clean up the signal by setting all but X d to zero hus, () might be replaced by the filtered signal ( p clean (t) =X 0 + X d cos π ( ) ) d t + φ d Of course there may be several apparently dominant frequencies, in which case more than one of the elements of X would be retained As an illustration, again consider the example of Figure he dominant signals appear to be Fourier frequency 0 and 30 Discarding all elements of X for which X r < 06 yields a cleaned up signal Evaluating () from t =0tot = 50 yields the signal shown on the right in Figure 6 he plot on the left is the corresponding part of the original signal shown in Figure here is vast literature on digital filtering, and the strategy described here is intended only to illustrate the basic idea For a comprehensive introduction to the topic, see errell [03]

10 Figure 6 Plot of part of the original and clean signals for the example in Figure 6 How Often Does One Sample? In performing the analysis of a time series, one has the values of a certain (unknown) function f(t) at equally spaced intervals of time Let δ be the time interval between successive observations in seconds hen /δ is called the sampling rate his is the number of observations taken each second If the sampling rate is /δ, what frequencies can the Fourier transform reliably detect? An intuitive argument is as follows Consider a pure cosine signal with frequency, sampled over =3seconds as shown in Figure 7 In the representation Figure 7 A pure cosine signal p(t) =X 0 + r= ( ( r ) ) X r cos π t + φ r, it is evident that in order to be able to represent this signal, the cos(π ( 3 ) t + φ3 ) term must be present his implies that one needs n 3orn + 7 hat is, more than samples per second, or at least 7 sample points Another way to lookat it is as follows One needs to sample often enough to detect all the oscillations if the true signal is to be detected In order to detect oscillations up to s cycles per second, one must sample at a rate at least s times per second In most practical situations, there is a range of frequencies of interest, and the sampling rate is chosen accordingly

11 7 Notes and References he trigonometric polynomial p(θ) =a 0 + a k cos kθ + b k sin kθ k= was used in Section to interpolate a periodic function f(θ) his polynomial has n + coefficients, and by interpolating f(θ) at the n + primitive roots of unity, a DF of length N =n + results DFs of length N = s are the most convenient and most efficient to compute Such a DF can be obtained by using a a trigonometric polynomial having a slightly different form than the one above, namely (3) p(θ) = a 0 + a n+ cos (n +)θ + a k cos kθ + b k sin kθ k= his polynomial has n + coefficients; thus, n can be chosen so that N =n + is a power of two he derivation of the DF using (3) is similar to the derivation done for the case where N is odd, and is left as an exercise

SIGNAL PROCESSING & SIMULATION NEWSLETTER

SIGNAL PROCESSING & SIMULATION NEWSLETTER 1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

More information

MAC 1114. Learning Objectives. Module 10. Polar Form of Complex Numbers. There are two major topics in this module:

MAC 1114. Learning Objectives. Module 10. Polar Form of Complex Numbers. There are two major topics in this module: MAC 1114 Module 10 Polar Form of Complex Numbers Learning Objectives Upon completing this module, you should be able to: 1. Identify and simplify imaginary and complex numbers. 2. Add and subtract complex

More information

Introduction to Complex Numbers in Physics/Engineering

Introduction to Complex Numbers in Physics/Engineering Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The

More information

Week 13 Trigonometric Form of Complex Numbers

Week 13 Trigonometric Form of Complex Numbers Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

THE COMPLEX EXPONENTIAL FUNCTION

THE COMPLEX EXPONENTIAL FUNCTION Math 307 THE COMPLEX EXPONENTIAL FUNCTION (These notes assume you are already familiar with the basic properties of complex numbers.) We make the following definition e iθ = cos θ + i sin θ. (1) This formula

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

A few words about imaginary numbers (and electronics) Mark Cohen mscohen@g.ucla.edu

A few words about imaginary numbers (and electronics) Mark Cohen mscohen@g.ucla.edu A few words about imaginary numbers (and electronics) Mark Cohen mscohen@guclaedu While most of us have seen imaginary numbers in high school algebra, the topic is ordinarily taught in abstraction without

More information

G. GRAPHING FUNCTIONS

G. GRAPHING FUNCTIONS G. GRAPHING FUNCTIONS To get a quick insight int o how the graph of a function looks, it is very helpful to know how certain simple operations on the graph are related to the way the function epression

More information

C. Complex Numbers. 1. Complex arithmetic.

C. Complex Numbers. 1. Complex arithmetic. C. Complex Numbers. Complex arithmetic. Most people think that complex numbers arose from attempts to solve quadratic equations, but actually it was in connection with cubic equations they first appeared.

More information

DRAFT. Further mathematics. GCE AS and A level subject content

DRAFT. Further mathematics. GCE AS and A level subject content Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed

More information

Trigonometric Functions and Equations

Trigonometric Functions and Equations Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu)

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu) 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

Frequency Response of FIR Filters

Frequency Response of FIR Filters Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input

More information

2.2 Magic with complex exponentials

2.2 Magic with complex exponentials 2.2. MAGIC WITH COMPLEX EXPONENTIALS 97 2.2 Magic with complex exponentials We don t really know what aspects of complex variables you learned about in high school, so the goal here is to start more or

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved. 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

Introduction to Complex Fourier Series

Introduction to Complex Fourier Series Introduction to Complex Fourier Series Nathan Pflueger 1 December 2014 Fourier series come in two flavors. What we have studied so far are called real Fourier series: these decompose a given periodic function

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

2 Session Two - Complex Numbers and Vectors

2 Session Two - Complex Numbers and Vectors PH2011 Physics 2A Maths Revision - Session 2: Complex Numbers and Vectors 1 2 Session Two - Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar

More information

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1 Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

More information

Chapter 7 - Roots, Radicals, and Complex Numbers

Chapter 7 - Roots, Radicals, and Complex Numbers Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

More information

sin(x) < x sin(x) x < tan(x) sin(x) x cos(x) 1 < sin(x) sin(x) 1 < 1 cos(x) 1 cos(x) = 1 cos2 (x) 1 + cos(x) = sin2 (x) 1 < x 2

sin(x) < x sin(x) x < tan(x) sin(x) x cos(x) 1 < sin(x) sin(x) 1 < 1 cos(x) 1 cos(x) = 1 cos2 (x) 1 + cos(x) = sin2 (x) 1 < x 2 . Problem Show that using an ɛ δ proof. sin() lim = 0 Solution: One can see that the following inequalities are true for values close to zero, both positive and negative. This in turn implies that On the

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Understanding Poles and Zeros

Understanding Poles and Zeros MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function

More information

Correlation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs

Correlation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs Correlation and Convolution Class otes for CMSC 46, Fall 5 David Jacobs Introduction Correlation and Convolution are basic operations that we will perform to extract information from images. They are in

More information

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i COMPLEX NUMBERS _4+i _-i FIGURE Complex numbers as points in the Arg plane i _i +i -i A complex number can be represented by an expression of the form a bi, where a b are real numbers i is a symbol with

More information

DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x

DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of

More information

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information

Lecture Notes on Polynomials

Lecture Notes on Polynomials Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex

More information

Convolution, Correlation, & Fourier Transforms. James R. Graham 10/25/2005

Convolution, Correlation, & Fourier Transforms. James R. Graham 10/25/2005 Convolution, Correlation, & Fourier Transforms James R. Graham 10/25/2005 Introduction A large class of signal processing techniques fall under the category of Fourier transform methods These methods fall

More information

First, we show how to use known design specifications to determine filter order and 3dB cut-off

First, we show how to use known design specifications to determine filter order and 3dB cut-off Butterworth Low-Pass Filters In this article, we describe the commonly-used, n th -order Butterworth low-pass filter. First, we show how to use known design specifications to determine filter order and

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

SOLVING TRIGONOMETRIC EQUATIONS

SOLVING TRIGONOMETRIC EQUATIONS Mathematics Revision Guides Solving Trigonometric Equations Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 SOLVING TRIGONOMETRIC

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

More information

Pre-Calculus II Factoring and Operations on Polynomials

Pre-Calculus II Factoring and Operations on Polynomials Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Lies My Calculator and Computer Told Me

Lies My Calculator and Computer Told Me Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing

More information

FFT Algorithms. Chapter 6. Contents 6.1

FFT Algorithms. Chapter 6. Contents 6.1 Chapter 6 FFT Algorithms Contents Efficient computation of the DFT............................................ 6.2 Applications of FFT................................................... 6.6 Computing DFT

More information

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers

More information

Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI)

Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI) ( : Focus on free Education) Miscellaneous Exercise on chapter 5 Question 1: Evaluate: Answer 1: 1 ( : Focus on free Education) Question 2: For any two complex numbers z1 and z2, prove that Re (z1z2) =

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

The Point-Slope Form

The Point-Slope Form 7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation

More information

Trigonometry Hard Problems

Trigonometry Hard Problems Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.

More information

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0. Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary) Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

More information

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Method To Solve Linear, Polynomial, or Absolute Value Inequalities: Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

More information

LINEAR EQUATIONS IN TWO VARIABLES

LINEAR EQUATIONS IN TWO VARIABLES 66 MATHEMATICS CHAPTER 4 LINEAR EQUATIONS IN TWO VARIABLES The principal use of the Analytic Art is to bring Mathematical Problems to Equations and to exhibit those Equations in the most simple terms that

More information

One advantage of this algebraic approach is that we can write down

One advantage of this algebraic approach is that we can write down . Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the x-axis points out

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

More information

The continuous and discrete Fourier transforms

The continuous and discrete Fourier transforms FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

n 2 + 4n + 3. The answer in decimal form (for the Blitz): 0, 75. Solution. (n + 1)(n + 3) = n + 3 2 lim m 2 1

n 2 + 4n + 3. The answer in decimal form (for the Blitz): 0, 75. Solution. (n + 1)(n + 3) = n + 3 2 lim m 2 1 . Calculate the sum of the series Answer: 3 4. n 2 + 4n + 3. The answer in decimal form (for the Blitz):, 75. Solution. n 2 + 4n + 3 = (n + )(n + 3) = (n + 3) (n + ) = 2 (n + )(n + 3) ( 2 n + ) = m ( n

More information

Frequency response: Resonance, Bandwidth, Q factor

Frequency response: Resonance, Bandwidth, Q factor Frequency response: esonance, Bandwidth, Q factor esonance. Let s continue the exploration of the frequency response of circuits by investigating the series circuit shown on Figure. C + V - Figure The

More information

99.37, 99.38, 99.38, 99.39, 99.39, 99.39, 99.39, 99.40, 99.41, 99.42 cm

99.37, 99.38, 99.38, 99.39, 99.39, 99.39, 99.39, 99.40, 99.41, 99.42 cm Error Analysis and the Gaussian Distribution In experimental science theory lives or dies based on the results of experimental evidence and thus the analysis of this evidence is a critical part of the

More information

MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

More information

PCHS ALGEBRA PLACEMENT TEST

PCHS ALGEBRA PLACEMENT TEST MATHEMATICS Students must pass all math courses with a C or better to advance to the next math level. Only classes passed with a C or better will count towards meeting college entrance requirements. If

More information

S-Parameters and Related Quantities Sam Wetterlin 10/20/09

S-Parameters and Related Quantities Sam Wetterlin 10/20/09 S-Parameters and Related Quantities Sam Wetterlin 10/20/09 Basic Concept of S-Parameters S-Parameters are a type of network parameter, based on the concept of scattering. The more familiar network parameters

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring

Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring Page 1 9 Trigonometry of Right Triangles Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring 90. The side opposite to the right angle is the longest

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Version 1.0. General Certificate of Education (A-level) January 2012. Mathematics MPC4. (Specification 6360) Pure Core 4. Final.

Version 1.0. General Certificate of Education (A-level) January 2012. Mathematics MPC4. (Specification 6360) Pure Core 4. Final. Version.0 General Certificate of Education (A-level) January 0 Mathematics MPC (Specification 660) Pure Core Final Mark Scheme Mark schemes are prepared by the Principal Eaminer and considered, together

More information

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d.

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d. DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms

More information

4.5 Chebyshev Polynomials

4.5 Chebyshev Polynomials 230 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION 4.5 Chebyshev Polynomials We now turn our attention to polynomial interpolation for f (x) over [ 1, 1] based on the nodes 1 x 0 < x 1 < < x N 1. Both

More information

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form Section 1.3 Matrix Products A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form (scalar #1)(quantity #1) + (scalar #2)(quantity #2) +...

More information

3.1 State Space Models

3.1 State Space Models 31 State Space Models In this section we study state space models of continuous-time linear systems The corresponding results for discrete-time systems, obtained via duality with the continuous-time models,

More information

Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}

Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11} Mathematics Pre-Test Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {-1, 1} III. {-1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a 88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

A.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it

A.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it Appendi A.3 Polynomials and Factoring A23 A.3 Polynomials and Factoring What you should learn Write polynomials in standard form. Add,subtract,and multiply polynomials. Use special products to multiply

More information

Factoring Patterns in the Gaussian Plane

Factoring Patterns in the Gaussian Plane Factoring Patterns in the Gaussian Plane Steve Phelps Introduction This paper describes discoveries made at the Park City Mathematics Institute, 00, as well as some proofs. Before the summer I understood

More information

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

More information

How To Draw A Circle Of Radius 1 On A Computer (For A Computer)

How To Draw A Circle Of Radius 1 On A Computer (For A Computer) 1. Objective University of Cincinnati Department of Electrical & Computer Engineering and Computer Science 20 ENFD 112 Fundamentals of Programming Laboratory 2: Modeling, Scripting, Visualization Spring

More information

Chapter 8 - Power Density Spectrum

Chapter 8 - Power Density Spectrum EE385 Class Notes 8/8/03 John Stensby Chapter 8 - Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

I remember that when I

I remember that when I 8. Airthmetic and Geometric Sequences 45 8. ARITHMETIC AND GEOMETRIC SEQUENCES Whenever you tell me that mathematics is just a human invention like the game of chess I would like to believe you. But I

More information