Laminar flow in a baffled stirred mixer (COMSOL)

Size: px
Start display at page:

Download "Laminar flow in a baffled stirred mixer (COMSOL)"

Transcription

1 AALTO UNIVERSITY School of Chemical Technology CHEM-E7160 Fluid Flow in Process Units Laminar flow in a baffled stirred mixer (COMSOL) Sanna Hyvönen, Nelli Jämsä,

2 Abstract In this simulation experiment a stirred tank with four baffles was modeled. Then the results were compared to literature. The impeller flow patterns were studied and it was concluded that the impeller worked like an axial flow impeller. The shear rate results were also studied, and it was concluded that the shear rate is highest near the impeller blade tip. This is also in compliance with literature. It was concluded that, even though computationally heavy, the computational fluid dynamic simulations provide good estimations for baffled stirred tanks with laminar flow.

3 Table of contents 1. Introduction Model Results Discussion Conclusion... 8 References... 8

4 1. Introduction Navier-Stokes equations form the basis for calculating the motion of fluids. They could be described as Newton s second law of motion for fluids. The Navier-Stokes equations express the conservation of momentum. For a compressible Newtonian fluid, the equation yields the following [1]: where u is fluid velocity, p is fluid pressure, ρ is fluid density and µ dynamic viscosity of the fluid. Different terms of the equation stand for [1]: 1. Inertial forces 2. Pressure forces 3. Viscous forces 4. External forces applied to fluid These equations must be solved together with the continuity equation which stands for conversation of mass in the system [1]: When simulating fluid dynamics, these equations are crucial. The computer solves these equations with particular set of boundary conditions. These boundary conditions are for example inlets, outlets and walls. As a solution, fluid velocity and pressure in a given geometry is predicted. [1] The flow conditions in this simulation experiment are laminar meaning that the impeller Reynolds number is below ten. [3] The formula for impeller Reynolds number is as follows: 1

5 where D is impeller diameter, N is impeller speed, ρ is fluid density and µ dynamic viscosity. The tank in this experiment has baffles. Wall baffling affects significantly on the flow behavior and therefore the quality of mixing. The baffles transform tangential flows to vertical flows, ensure top-to-bottom mixing and they minimize air entrainment. However they increase drag and power consumption. [3] The impeller used in this experiment is a two-blade axial flow impeller. Axial flow impellers are used for blending, solids suspension, solids incorporation, gas inducement and heat transfer. The most important flow characteristics for an impeller can be divided into: flow patterns, pumping, and shear. [3] This experiment consist of modeling a stirred tank using computational fluid dynamics (CFD). The model itself is represented in the next chapter. CDF modeling requires study of many aspects of the process: Domain of interest, here volume occupied by the fluid inside the tank, which is described by a computation grid, a collection of small sub-domains. In these cells the variables are computed and stored. Motion of the impeller. Construction of the computational grid and the solution method used to numerically obtain the flow field. [4] CDF has many benefits and applications including; augmenting design correlation and experimental data, providing comprehensive data, not easily obtained from experiments, reduces scale-up related problems, evaluating plant problems, complementing physical modeling and what-if analysis. [4] The simulation in this report is carried out using COMSOL, but other newer and faster methods were studied briefly. Cudmore et al (2015) developed a model for rotating impellers that could be used as a diagnostic and operational planning tool for mixing equipment. Its requirements were that it should run faster than real time, that it could 2

6 be applied to different operating conditions economically, and that it provides stability limits and the mean square amplitude of the random impeller orbits directly. The solution was a linear lumped-parameter approach of minimal dimensionality. This works provided that the fluid forces on the orbiting impeller can be accurately modelled using the concept of fluid added mass, damping and stiffness. The model was simulated for turbulent flows, so it won t be compared further here. [5] With increasing ability of computation a lot of effort has been put into producing numerical methods for simulating the flow inside stirred tanks. Most of these focus on turbulent flows, since they are more complex and computationally heavy to simulate. Different methods include Reynolds averaged Navier-Stokes (RANS), large eddy simulation (LES), and a turbulence hybrid model-detached eddy simulation (DES). Chara et al (2016) focused on DES, which transfers LES to a RANS-based simulation in boundary layers. They compared experimental data with a DES mode from the CFD package of ANSYS Fluent and found that the DES is a suitable tool to predict turbulent flow in a tank stirred by a Rushton turbine. Again, as this was a simulation for turbulent flow and with a different impeller, no further comparisons to this report were made. [6] 2. Model The modelling of the mixed tank is carried out according to COMSOL tutorial [2]. This simulating experiment uses the rotating machinery feature of the CFD Module in COMSOL Multiphysics 5.2. The model equations in the following model are divided to two parts: Navier-Stokes equations in a rotating frame in the inner domain, Navier-Stokes equations in fixed coordinates in the outer domain. These separate parts need to be coupled together with an identity pair, where a flux continuity boundary condition is applied [2]. The fluid in the tank is water and impeller rotates at a speed of 10 RPM and counterclockwise. Simulation is carried out for 6 seconds with 0.25 second steps. The modeled tank can be seen in figure 1. [2] 3

7 Figure 1. Stirred tank with four baffles. 3. Results Shear rate, velocity field, velocity magnitude and pressure were plotted. These results can be seen from figures

8 Figure 2. Velocity magnitude. Figure 3. Pressure. 5

9 Figure 4. Shear rate. Figure 5. Velocity field represented with arrow surface. 6

10 4. Discussion As can be seen from figure 5, the flow pattern caused by the impeller seems to be typical for a hydrofoil impellers as the liquid is being pumped down. The seen flow pattern is typical for an axial impeller; the flow pattern is produced throughout the entire tank volume as a single stage. Radial flow impeller would have produced two circulating loops, one below and one above the impeller. [3] In figure 4, the shear rate is represented. Shearing force, or shear tress, is related to flow velocities and carries out the mixing process and is responsible for creating fluid intermixing, dispersing gas bubbles and breakage of liquid drops. Shear stress is a function of shear rate, which is defined by velocity gradients, impeller blade pressure drop, turbulence level and viscosity. [3] Shear rate can be described as a time constant, meaning that if shear rate at highest is 120 1/s, and it means that the events in the flow occur on the order of 8 ms. The highest shear rates occur in the immediate vicinity of the impeller as can be seen from figure 4. This volume however is very small meaning that only small part of the material is exposed to these higher rates. The local shear rate depends from mixing speed and distance from the impeller blade tip. [3] High shear rate can break shear sensitive materials such as crystals and biological materials and it is therefore important to design mixing taking into account the shear forces. [3] One down side of computational fluid dynamics is that is computationally heavy. [4] In this experiment 3D-model was used and as well as fine mesh grid and some animations were created from the acquired data. Simulating the experiment took in total 4 hours of computer computing even though the used computer was high tech. 7

11 5. Conclusion The flow pattern and the shear rates of the carried out simulation were studied. It was concluded that the simulated impeller works similarly as an axial flow impeller, creating one clear pattern around the impeller and pumping water down. The shear rate was concluded to be highest in the close distance of the impeller blade tip. These results are in compliance with the literature. It is clear that good simulation results of stirred tank systems with bafflers can be acquired using computational fluid dynamics, even though the simulations are quite heavy and time consuming on regular PCs. References [1] Anonym, https://www.comsol.com/multiphysics/navier-stokes-equations [2] COMSOL tutorial, Laminar Flow in a Baffled Stirred Mixer [3] E. Paul, V. Atiemo-Obeng, S. Kresta, Handbook of Industrial Mixing: Science and Practice (1), Wiley-Interscience, [4] E. Marshall, A. Bakker, Computational Fluid Mixing, Fluent Inc, USA, 2003, ISBN [5] G. Cudmore, A. Holloway, A. Gerber, A model of impeller whirl for baffled mixing vessels, Journal of Fluids and Structures, Volume 54, April 2015, Pages , ISSN , [6] Z. Chara, B. Kysela, J. Konfrst, I. Fort, Study of fluid flow in baffled vessels stirred by a Rushton standard impeller, Applied Mathematics and Computation, Volume 272, Part 3, 1 January 2016, Pages , ISSN , doi: /j.amc

Mixing in the process industry: Chemicals Food Pharmaceuticals Paper Polymers Minerals Environmental. Chemical Industry:

Mixing in the process industry: Chemicals Food Pharmaceuticals Paper Polymers Minerals Environmental. Chemical Industry: Mixing Notes: Chapter 19 Robert P. Hesketh Mixing in the process industry: Chemicals Food Pharmaceuticals Paper Polymers Minerals Environmental Chemical Industry: Paints and Coatings Synthetic Rubbers

More information

Laminar Flow in a Baffled Stirred Mixer

Laminar Flow in a Baffled Stirred Mixer Laminar Flow in a Baffled Stirred Mixer Introduction This exercise exemplifies the use of the rotating machinery feature in the CFD Module. The Rotating Machinery interface allows you to model moving rotating

More information

FLUID FLOW AND MIXING IN BIOREACTORS (Part 2 of 2)

FLUID FLOW AND MIXING IN BIOREACTORS (Part 2 of 2) FLUID FLOW AND MIXING IN BIOREACTORS (Part 2 of 2) Overview Power requirements for mixing Newtonian and non-newtonian liquids Ungassed and gassed systems Scale-up issues, scale-down approach Adapting bioreactor

More information

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL 14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Introduction to COMSOL. The Navier-Stokes Equations

Introduction to COMSOL. The Navier-Stokes Equations Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Fluent Software Training TRN Boundary Conditions. Fluent Inc. 2/20/01

Fluent Software Training TRN Boundary Conditions. Fluent Inc. 2/20/01 Boundary Conditions C1 Overview Inlet and Outlet Boundaries Velocity Outline Profiles Turbulence Parameters Pressure Boundaries and others... Wall, Symmetry, Periodic and Axis Boundaries Internal Cell

More information

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

Mercury Flow through a Long Curved Pipe

Mercury Flow through a Long Curved Pipe Mercury Flow through a Long Curved Pipe Wenhai Li & Foluso Ladeinde Department of Mechanical Engineering Stony Brook University Summary The flow of mercury in a long, curved pipe is simulated in this task,

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

DEVELOPMENT OF CFD MODELS OF MINERAL FLOTATION CELLS

DEVELOPMENT OF CFD MODELS OF MINERAL FLOTATION CELLS Third International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 10-12 December 2003 DEVELOPMENT OF CFD MODELS OF MINERAL FLOTATION CELLS P.T.L. KOH 1, M.P. SCHWARZ

More information

Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering Computing, Wiley (2006).

Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering Computing, Wiley (2006). Introduction to Chemical Engineering Computing Copyright, Bruce A. Finlayson, 2004 1 Navier-Stokes Equation Solved in Comsol 4.1. Copyright Bruce A. Finlayson, 2010 See also Introduction to Chemical Engineering

More information

Commercial CFD Software Modelling

Commercial CFD Software Modelling Commercial CFD Software Modelling Dr. Nor Azwadi bin Che Sidik Faculty of Mechanical Engineering Universiti Teknologi Malaysia INSPIRING CREATIVE AND INNOVATIVE MINDS 1 CFD Modeling CFD modeling can be

More information

Part IV. Conclusions

Part IV. Conclusions Part IV Conclusions 189 Chapter 9 Conclusions and Future Work CFD studies of premixed laminar and turbulent combustion dynamics have been conducted. These studies were aimed at explaining physical phenomena

More information

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved. Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,

More information

ADVANCED TOOL FOR FLUID DYNAMICS- CFD AND ITS APPLICATIONS IN AUTOMOTIVE, AERODYNAMICS AND MACHINE INDUSTRY

ADVANCED TOOL FOR FLUID DYNAMICS- CFD AND ITS APPLICATIONS IN AUTOMOTIVE, AERODYNAMICS AND MACHINE INDUSTRY International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 177 186, Article ID: IJMET_07_02_019 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2

ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2 ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2 1 M. Tech Scholar, 2 Associate Professor Department of Mechanical Engineering, Bipin

More information

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

More information

AUTODESK SIMULATION MULTIPHYSICS 2013

AUTODESK SIMULATION MULTIPHYSICS 2013 AUTODESK SIMULATION MULTIPHYSICS 2013 Which Analysis to Use? FANKOM MÜHENDİSLİK 2/4/2013 AUTODESK SIMULATION MULTIPHYSICS Which Analysis to Use? Use the following guidelines to help choose the correct

More information

Numerical Simulation on Cavitation in a Vane Pump with Moving Mesh

Numerical Simulation on Cavitation in a Vane Pump with Moving Mesh ICCM2014 28-30 th July, Cambridge, England Numerical Simulation on Cavitation in a Vane Pump with Moving Mesh *Qunfeng Zhang¹,2, X.Y. Xu 3 1 School of Civil Engineering, Beiing Jiaotong University, Beiing,

More information

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012 O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

More information

Modeling and Simulation of Complex Multiphase Flows in the Pharmaceutical Industry

Modeling and Simulation of Complex Multiphase Flows in the Pharmaceutical Industry SIMNET Days 2010 Februar 10, 2010 Modeling and Simulation of Complex Multiphase Flows in the Pharmaceutical Industry D. Suzzi a, G. Toschkoff a, S. Radl a,b, Th. Hörmann a, M. Schaffer a, D. Machold a,

More information

Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial

Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial facilities commonly occupy spaces with ceilings ranging between twenty and thirty feet in height.

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty

More information

CFD software overview comparison, limitations and user interfaces

CFD software overview comparison, limitations and user interfaces CFD software overview comparison, limitations and user interfaces Daniel Legendre Introduction to CFD Turku, 05.05.2015 Åbo Akademi University Thermal and Flow Engineering Laboratory 05.05.2015 1 Some

More information

Civil Engineering Hydraulics Mechanics of Fluids. Flow in Pipes

Civil Engineering Hydraulics Mechanics of Fluids. Flow in Pipes Civil Engineering Hydraulics Mechanics of Fluids Flow in Pipes 2 Now we will move from the purely theoretical discussion of nondimensional parameters to a topic with a bit more that you can see and feel

More information

Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems. Abaqus 6.10 Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

More information

A model of heat transfer in metal foaming

A model of heat transfer in metal foaming A model of heat transfer in metal foaming B. Chinè 1,2, V. Mussi 2, M. Monno 3, A Rossi 2 1 Instituto Tecnológico de Costa Rica, Costa Rica; 2 Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione,

More information

CFD Application on Food Industry; Energy Saving on the Bread Oven

CFD Application on Food Industry; Energy Saving on the Bread Oven Middle-East Journal of Scientific Research 13 (8): 1095-1100, 2013 ISSN 1990-9233 IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.13.8.548 CFD Application on Food Industry; Energy Saving on the

More information

Steady Flow: Laminar and Turbulent in an S-Bend

Steady Flow: Laminar and Turbulent in an S-Bend STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and

More information

Gas Handling and Power Consumption of High Solidity Hydrofoils:

Gas Handling and Power Consumption of High Solidity Hydrofoils: Gas Handling and Power Consumption of High Solidity Hydrofoils: Philadelphia Mixing Solution's HS Lightnin's A315 Keith E. Johnson1, Keith T McDermott2, Thomas A. Post3 1Independent Consultant, North Canton,

More information

AGITATION AND MIXING OF FLUIDS

AGITATION AND MIXING OF FLUIDS AGITATION AND MIXING OF FLUIDS Purpose of agitation: intensification of transport processes in agitated batch (heat and mass transfer) preparation of materials of required properties (suspension, emulsion)

More information

A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions

A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions by Laura Noelle Race An Engineering Project Submitted to the Graduate Faculty of Rensselaer

More information

PUTTING THE SPIN IN CFD

PUTTING THE SPIN IN CFD W H I T E PA P E R PUTTING THE SPIN IN CFD Overview Engineers who design equipment with rotating components need to analyze and understand the behavior of those components if they want to improve performance.

More information

Effect of the Submerged Vortex Cavitation Occurred in Pump Suction Intake on Hydraulic Forces of Mixed Flow Pump Impeller

Effect of the Submerged Vortex Cavitation Occurred in Pump Suction Intake on Hydraulic Forces of Mixed Flow Pump Impeller CA2001:sessionB8.006 1 Effect of the Submerged ortex Cavitation Occurred in Pump Suction Intake on Hydraulic Forces of Mixed Flow Pump Impeller Takahide NAGAHARA, Tadashi SATO and Tomoyoshi OKAMURA Tsuchiura

More information

Heattransferina tankintank combi store

Heattransferina tankintank combi store Søren Knudsen Heattransferina tankintank combi store DANMARKS TEKNISKE UNIVERSITET Rapport BYG DTU R-025 2002 ISSN 1601-2917 ISBN 87-7877-083-1 1 Contents Contents...1 Preface...2 Summary...3 1. Introduction...4

More information

Particles in turbulence: the need for a multi-scale approach

Particles in turbulence: the need for a multi-scale approach Particles in turbulence: the need for a multi-scale approach Jos Derksen Multi-Scale Physics Department Delft University of Technology The Netherlands email: jos@klft.tn.tudelft.nl Motivation Outline solid

More information

. Address the following issues in your solution:

. Address the following issues in your solution: CM 3110 COMSOL INSTRUCTIONS Faith Morrison and Maria Tafur Department of Chemical Engineering Michigan Technological University, Houghton, MI USA 22 November 2012 Zhichao Wang edits 21 November 2013 revised

More information

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1 COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT

More information

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe

More information

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

CFD: What is it good for?

CFD: What is it good for? CFD: What is it good for? Tom O Mahoney TNO Fluid Dynamics Introduction to CFD CFD - Computational Fluid Dynamics Computational the using of computers to simulate the physics of fluids Fluid Either gas

More information

This chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections:

This chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections: Chapter 21. Melting Modeling Solidification and This chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections: Section 21.1: Overview

More information

Adaptation of General Purpose CFD Code for Fusion MHD Applications*

Adaptation of General Purpose CFD Code for Fusion MHD Applications* Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA akhodak@pppl.gov Abstract Analysis of many fusion

More information

Numerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS

Numerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS merical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS Abhilash Kumar 1, R. SaravanaSathiyaPrabhahar 2 Mepco Schlenk Engineering College, Sivakasi, Tamilnadu India 1,

More information

A Guide to Calculate Convection Coefficients for Thermal Problems Application Note

A Guide to Calculate Convection Coefficients for Thermal Problems Application Note A Guide to Calculate Convection Coefficients for Thermal Problems Application Note Keywords: Thermal analysis, convection coefficients, computational fluid dynamics, free convection, forced convection.

More information

EFFECT OF MESH SIZE ON CFD ANALYSIS OF EROSION

EFFECT OF MESH SIZE ON CFD ANALYSIS OF EROSION EFFECT OF MESH SIZE ON CFD ANALYSIS OF EROSION IN ELBOW GEOMETRY Preshit Tambey and Michael Lengyel, Jr. Faculty Co-Author and Sponsor: Quamrul H. Mazumder Department of Computer Science, Engineering and

More information

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

CHEG 3128 Heat, Mass, & Kinetics Laboratory Diffusion in Laminar Flow Regimes Modeling and COMSOL Tutorial Tutorial by Andrea Kadilak

CHEG 3128 Heat, Mass, & Kinetics Laboratory Diffusion in Laminar Flow Regimes Modeling and COMSOL Tutorial Tutorial by Andrea Kadilak CHEG 3128 Heat, Mass, & Kinetics Laboratory Diffusion in Laminar Flow Regimes Modeling and COMSOL Tutorial Tutorial by Andrea Kadilak Introduction COMSOL is a computer modeling software package that will

More information

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 91 104, Article ID: IJMET_07_02_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

GT2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS

GT2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS ASME Turbo Expo 2011 June 6 10, 2011 Vancouver, Canada GT 2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS M. Cadorin 1,M. Pinelli

More information

Simulation of Fluid-Structure Interactions in Aeronautical Applications

Simulation of Fluid-Structure Interactions in Aeronautical Applications Simulation of Fluid-Structure Interactions in Aeronautical Applications Martin Kuntz Jorge Carregal Ferreira ANSYS Germany D-83624 Otterfing Martin.Kuntz@ansys.com December 2003 3 rd FENET Annual Industry

More information

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes

More information

du u U 0 U dy y b 0 b

du u U 0 U dy y b 0 b BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 10) Granada (Spain), 23rd

More information

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc.

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. 1 Centrifugal Pump- Definition Centrifugal Pump can be defined as a mechanical device used to transfer liquid of various types. As

More information

OPTIMISE TANK DESIGN USING CFD. Lisa Brown. Parsons Brinckerhoff

OPTIMISE TANK DESIGN USING CFD. Lisa Brown. Parsons Brinckerhoff OPTIMISE TANK DESIGN USING CFD Paper Presented by: Lisa Brown Authors: Lisa Brown, General Manager, Franz Jacobsen, Senior Water Engineer, Parsons Brinckerhoff 72 nd Annual Water Industry Engineers and

More information

Modeling and Numerical Blood Flow Analysis of Tibial Artery using CFD

Modeling and Numerical Blood Flow Analysis of Tibial Artery using CFD Modeling and Numerical Blood Flow Analysis of Tibial Artery using CFD S.Manimaran Department of Biomedical Engineering C.Muralidharan M.E Assistant Professor Department of Biomedical Engineering Surendra

More information

Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

More information

Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes

Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes Taimoor Asim 1, Rakesh Mishra 1, Sree Nirjhor Kaysthagir 1, Ghada Aboufares

More information

Turbulent Flow Through a Shell-and-Tube Heat Exchanger

Turbulent Flow Through a Shell-and-Tube Heat Exchanger Turbulent Flow Through a Shell-and-Tube Heat Exchanger Introduction This model describes a part of a shell-and-tube heat exchanger (see Figure 1), where hot water enters from above. The cooling medium,

More information

Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD

Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD Universal Journal of Mechanical Engineering 1(4): 122-127, 2013 DOI: 10.13189/ujme.2013.010403 http://www.hrpub.org Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD Vibhor Baghel

More information

Using Computational Fluid Dynamics (CFD) Simulation to Model Fluid Motion in Process Vessels on Fixed and Floating Platforms

Using Computational Fluid Dynamics (CFD) Simulation to Model Fluid Motion in Process Vessels on Fixed and Floating Platforms Using Computational Fluid Dynamics (CFD) Simulation to Model Fluid Motion in Process Vessels on Fixed and Floating Platforms Dr. Ted Frankiewicz Dr. Chang-Ming Lee NATCO Group Houston, TX USA IBC 9 th

More information

Heat Transfer by Free Convection

Heat Transfer by Free Convection Heat Transfer by Free Convection Introduction This example describes a fluid flow problem with heat transfer in the fluid. An array of heating tubes is submerged in a vessel with fluid flow entering at

More information

Exergy Analysis of a Water Heat Storage Tank

Exergy Analysis of a Water Heat Storage Tank Exergy Analysis of a Water Heat Storage Tank F. Dammel *1, J. Winterling 1, K.-J. Langeheinecke 3, and P. Stephan 1,2 1 Institute of Technical Thermodynamics, Technische Universität Darmstadt, 2 Center

More information

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx

More information

Rapid Design of an optimized Radial Compressor using CFturbo and ANSYS

Rapid Design of an optimized Radial Compressor using CFturbo and ANSYS Rapid Design of an optimized Radial Compressor using CFturbo and ANSYS Enrique Correa, Marius Korfanty, Sebastian Stübing CFturbo Software & Engineering GmbH, Dresden (Germany) PRESENTATION TOPICS 1. Company

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

OPTIMIZATION OF JET MIXER GEOMETRY AND MIXING STUDIES

OPTIMIZATION OF JET MIXER GEOMETRY AND MIXING STUDIES OPTIMIZATION OF JET MIXER GEOMETRY AND MIXING STUDIES Attila Egedy, Bálint Molnár, Tamás Varga, Tibor Chován University of Pannonia, Department of Process Engineering, H-8200, Veszprém, Hungary 11/18/2014

More information

Introduction to CFD Analysis

Introduction to CFD Analysis Introduction to CFD Analysis Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 2-2 What is CFD? Computational fluid dynamics (CFD) is the science

More information

OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes

OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes ABSTRACT Blaž Mikuž Reactor Engineering Division, Jozef Stefan Institute, Jamova cesta 39 SI-1000 Ljubljana, Slovenia blaz.mikuz@ijs.si

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

Dimensional Analysis

Dimensional Analysis Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

More information

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412

Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 , July 2-4, 2014, London, U.K. Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 Arvind Prabhakar, Ayush Ohri Abstract Winglets are angled extensions or vertical projections

More information

STUDY OF MIXING BEHAVIOR OF CSTR USING CFD

STUDY OF MIXING BEHAVIOR OF CSTR USING CFD Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 31, No. 01, pp. 119-129, January - March, 2014 STUDY OF MIXING BEHAVIOR OF CSTR USING CFD D. Rajavathsavai,

More information

Experimental and numerical investigation of slamming of an Oscillating Wave Surge Converter in two dimensions

Experimental and numerical investigation of slamming of an Oscillating Wave Surge Converter in two dimensions Experimental and numerical investigation of slamming of an Oscillating Wave Surge Converter in two dimensions T. Abadie, Y. Wei, V. Lebrun, F. Dias (UCD) Collaborating work with: A. Henry, J. Nicholson,

More information

EFFECT OF REYNOLDS NUMBER IN CORIOLIS FLOW MEASUREMENT

EFFECT OF REYNOLDS NUMBER IN CORIOLIS FLOW MEASUREMENT EFFECT OF REYNOLDS NUMBER IN CORIOLIS FLOW MEASUREMENT Christof Huber, Michael Nuber and Martin Anklin Endress+Hauser Flowtec AG, Kägenstr. 7, 4153 Reinach, Switzerland Abstract In hydrocarbon measurement

More information

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in

More information

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha

More information

Lecturer, Department of Engineering, ar45@le.ac.uk, Lecturer, Department of Mathematics, sjg50@le.ac.uk

Lecturer, Department of Engineering, ar45@le.ac.uk, Lecturer, Department of Mathematics, sjg50@le.ac.uk 39 th AIAA Fluid Dynamics Conference, San Antonio, Texas. A selective review of CFD transition models D. Di Pasquale, A. Rona *, S. J. Garrett Marie Curie EST Fellow, Engineering, ddp2@le.ac.uk * Lecturer,

More information

SBi 2013:12. Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems

SBi 2013:12. Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems SBi 2013:12 Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems

More information

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Using CFD to improve the design of a circulating water channel

Using CFD to improve the design of a circulating water channel 2-7 December 27 Using CFD to improve the design of a circulating water channel M.G. Pullinger and J.E. Sargison School of Engineering University of Tasmania, Hobart, TAS, 71 AUSTRALIA Abstract Computational

More information

FLUID FLOW ANALYSIS OF CENTRIFUGAL FAN BY USING FEM

FLUID FLOW ANALYSIS OF CENTRIFUGAL FAN BY USING FEM International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 45 51, Article ID: IJMET_07_02_007 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

1. Introduction, fluid properties (1.1, and handouts)

1. Introduction, fluid properties (1.1, and handouts) 1. Introduction, fluid properties (1.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Applications of fluid mechanics

More information

CFD Simulation of Subcooled Flow Boiling using OpenFOAM

CFD Simulation of Subcooled Flow Boiling using OpenFOAM Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet CFD

More information

NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION

NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Engineering Review Vol. 32, Issue 3, 141-146, 2012. 141 NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Z. 1* L. 1 V. 2 M. 1 1 Department of Fluid Mechanics and Computational Engineering,

More information

Distinguished Professor George Washington University. Graw Hill

Distinguished Professor George Washington University. Graw Hill Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

More information

11 Navier-Stokes equations and turbulence

11 Navier-Stokes equations and turbulence 11 Navier-Stokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal

More information

CFD Analysis of Swept and Leaned Transonic Compressor Rotor

CFD Analysis of Swept and Leaned Transonic Compressor Rotor CFD Analysis of Swept and Leaned Transonic Compressor Nivin Francis #1, J. Bruce Ralphin Rose *2 #1 Student, Department of Aeronautical Engineering& Regional Centre of Anna University Tirunelveli India

More information

CHAPTER 4 CFD ANALYSIS OF THE MIXER

CHAPTER 4 CFD ANALYSIS OF THE MIXER 98 CHAPTER 4 CFD ANALYSIS OF THE MIXER This section presents CFD results for the venturi-jet mixer and compares the predicted mixing pattern with the present experimental results and correlation results

More information

Engineering & Expertise Hydraulic modeling. Computational fluid dynamics

Engineering & Expertise Hydraulic modeling. Computational fluid dynamics Engineering & Expertise Hydraulic modeling Computational fluid dynamics Engineering & Expertise Total solution engineering increases operational efficiency Introduction Understanding fluid flow inside

More information

Wall drag modification by large droplets in turbulent channel flow

Wall drag modification by large droplets in turbulent channel flow Wall drag modification by large droplets in turbulent channel flow Luca Scarbolo, Alfredo Soldati Centro Interdipartimentale di Fluidodinamica ed Idraulica Department of Electrical, Industrial and Mechanical

More information

Supporting document to NORSOK Standard C-004, Edition 2, May 2013, Section 5.4 Hot air flow

Supporting document to NORSOK Standard C-004, Edition 2, May 2013, Section 5.4 Hot air flow 1 of 9 Supporting document to NORSOK Standard C-004, Edition 2, May 2013, Section 5.4 Hot air flow A method utilizing Computational Fluid Dynamics (CFD) codes for determination of acceptable risk level

More information