Penrith Wastewater Treatment Plant

Size: px
Start display at page:

Download "Penrith Wastewater Treatment Plant"

Transcription

1 Penrith Wastewater Treatment Plant Treating wastewater at Penrith Wastewater Treatment Plant Wastewater that comes into a wastewater treatment plant is about 99% water and about one percent solids and other pollutants. Unless these solids and pollutants are effectively removed, the treated wastewater can t be safely discharged to the environment or recycled. The pollutants in wastewater include organic matter, plastic, rags, oil, grease, nutrients and other contaminants in typically very low quantities. Because the physical properties and nature of these contaminants are quite varied, we need a number of different treatment processes to efficiently remove them. Preliminary treatment Preliminary treatment involves removing grit (sand and similar material), plastic and rags. Even though the quantities are relatively small, if these are not removed at this stage, they may damage the pumps and other mechanical equipment, interfering with the rest of the treatment. Penrith Wastewater Treatment Plant has 5 mm fine screens to remove plastic and rags and a 6.1 metre diameter vortex tank to remove grit particles. Primary treatment During primary treatment, heavy wastewater solids (primary sludge) sink to the bottom of the circular sedimentation tanks. Oil and grease float to the surface where they are skimmed off. Mechanically driven scrapers continually drive the sludge on the bottom towards a hopper from where it is removed. Primary treatment: removes a large proportion (around 60%) of organic solids in wastewater with minimal use of energy removes larger wastewater particles that help biological treatment processes to remove organic material and nutrients reduces fouling of filters, membranes and other mechanical equipment. Primary treatment does not remove: contaminants that don t float or sink (neutral buoyancy contaminants) very small dissolved or colloidal pollutants other contaminants such as nutrients and pathogens These contaminants are removed in secondary or more advanced treatment processes. 1

2 Secondary treatment In the secondary or biological treatment stage, billions of microorganisms (including bacteria) are suspended in the wastewater and most of the remaining organic matter and nutrients (nitrogen and phosphorus) are removed through a combination of aerobic (plenty of oxygen), anoxic (low oxygen) and anaerobic (no oxygen) processes (see page 4). Types of biological treatment at Penrith Wastewater Treatment Plant Penrith Wastewater Treatment Plant has two types of secondary treatment processes: 1. Biological reactor The four stage biological reactor consists of a fermenter, and anaerobic, anoxic and aeration zones. The purpose of each zone is to create conditions that allow the nutrient removing bacteria to effectively compete with other bacteria and remove nitrogen and phosphorus. Fermenter Primary sludge is pumped into the fermenter, where it s broken down under anaerobic conditions, and produces volatile fatty acids (VFAs). These VFAs are then introduced to the anaerobic zone of the biological reactor. Anaerobic zone Wastewater from the primary sedimentation tanks and biomass (mainly VFAs) are fed into the anaerobic zone forming mixed liquor. With a lot of VFAs for food and low levels of dissolved oxygen and nitrite, phosphorus accumulating organisms (POAs) release phosphate from their cells so they can take up more food. Anoxic zone In this zone, nitrogen is removed from the wastewater through denitrification (see page 4). Aeration zone During this step, an oxygen rich environment is created by pumping air through the mixed liquor from fine bubble diffusers. Ammonia in the wastewater is converted to nitrates (nitrification) and POAs absorb phosphorus in the wastewater. Flow is recycled back from this tank to the anoxic zone where denitrification occurs. Secondary clarifiers The mixed liquor drains into four secondary clarifiers. These can treat 22 Ml/d of average dry weather flows. The basic purpose is to separate the sludge solids from liquids through gravity sedimentation. As the flow enters the large tank, it slows down. Biological sludge settles to the bottom. It is collected by hydraulic suction and returned to the anaerobic zone for further treatment. The clarified (clear) liquid flows over a weir at the outside edge of the tank and on to tertiary treatment. 2

3 2. Intermittently Decanted Aerated Lagoon The two Intermittently Decanted Aerated Lagoons (IDALs) were built in to increase the plant s capacity. IDAL s have some significant advantages over biological reactors. They can provide effective treatment to a wider range of flows, including significant wet weather flows. They are also much simpler to construct than the various stages of the four stage biological reactor. The IDAL cycle usually takes about three hours. The difference between the IDAL and the biological reactor is that aeration, settling and decanting all take place in the one tank. Anaerobic zone While the IDAL units remove nitrogen effectively and provide treatment over a wide range of flows, they are not as efficient at removing phosphorus biologically. To help remove phosphorus in the IDAL, spent pickle liquor is added to the wastewater in an anaerobic zone after preliminary treatment. Spent pickle liquor is an acidic mixture left over from metal treatment. It contains iron sulphate, which reacts with phosphorus to form iron phosphate. This new compound separates from the wastewater in the settling phase and is disposed of as sludge or returned to the anaerobic zone to provide seed sludge. Aeration During aeration, air is fed into the IDAL through diffusers. These aerating devices are made up of a membrane with fine pores, through which fine bubbles are blown. In this phase organic matter is broken down and ammonia converted to nitrates and water. Settling During settling the aerators are turned off. Sludge settles to the bottom, leaving clear treated water near the surface. Anoxic conditions develop which enable denitrification to occur. Sludge that settles to the bottom is removed. As the sludge contains the microorganisms needed for wastewater treatment, most is returned to the start of the IDAL. However, unless some sludge is wasted from the system (and sent for digestion) the amount of microorganisms and the chemical sludges will increase. It is by wasting excess sludge, that we remove phosphorus and other organic matter from the wastewater. Decanting The final treatment stage in the IDAL is decanting. Once the sludge has fully settled, clear treated wastewater remains near the surface of the tank. A weir is lowered to decant the clear effluent into an equalisation basin. This basin controls the flow of treated water entering tertiary treatment. 3

4 Removing nitrogen and phosphorous Nitrogen Nitrogen removal is done through aerobic and anoxic processes. Aerobic zone Nitrification is an aerobic process, which involves converting ammonium in wastewater into nitrates. Two types of bacteria are responsible for nitrification, Nitrosomonas and Nitrobacter. The Nitrosomonas oxidise ammonia (largely from urine) to the intermediate product nitrate (NO 2 ). The Nitrobacter convert nitrate to nitrite (NO 3 ). The conversion of ammonia to nitrite involves a complex series of reactions. Significant oxygen is required for the conversion. Aeration supplies the oxygen needed by the bacteria to drive the reaction. Approximate equations for the reactions can be written as: For Nitrosomonas: 2NH 4 + 3O 2 2NO H 2 O + 4H + new cells For Nitrobacter: 2NO O 2 2NO new cells Anoxic zone The next step in the process is removing nitrate and forming nitrogen gas (or denitrification). An anoxic environment is critical to enable denitrification. Under anoxic conditions, there is no free oxygen in the water. Facultative bacteria use either free oxygen, or the oxygen in nitrate for their metabolic processes. When there is no free oxygen, they use the oxygen from nitrate for their metabolic processes, resulting in the release of nitrogen gas. Several types of bacteria are responsible for converting nitrate to nitrogen gas (N 2 ). The basic path for reducing nitrate to nitrogen gas is: Phosphorus Removal of phosphate by phosphate accumulating organisms (POAs) is a two-step process. POAs initially release phosphorus to the mixed liquor under anaerobic conditions, and later on in an aerobic phase of treatment, take up much larger quantities of phosphorus. We can then remove this phosphorus as part of excess sludge. Anerobic zone In the anaerobic zone, volatile fatty acids (VFAs) are introduced as additional food for the POAs. When there is no oxygen available, the POAs take up the VFAs and release phosphate to the mixed liquor. The POAs now have a large supply of energy in the form of stored volatile fatty acids for metabolism and growth. Aerobic zone In the aerobic zone, there is a large increase in the mass of POAs, which are now capable of absorbing much more phosphorus from the mixed liquor than they released during the anaerobic stage. The phosphate Is now part of the bacterial cell mass and is removed as sludge in the clarifier. Removing phosphorous is important as it contributes to eutrophication, where nutrient-rich water leads to an overgrowth of weeds, algae and cyanobacteria (blue-green algae), causing algal blooms, depleting oxygen and killing animal life. Removing phosphorous is also important to improving efficiency at water recycling plants, as high phosphorous levels can effect water recycling equipment such as reverse osmosis membranes. NO 3 - NO 2 - NO N 2 O N 2 nitrite nitrate nitric oxide nitrous oxide nitrogen gas 4

5 Tertiary treatment Neither the IDAL (which is far more effective at reducing nitrogen than phosphorus) or the biological reactor, can reduce phosphorus to discharge limits. Tertiary treatment further improves the quality of wastewater before it is re-used, recycled or discharged to the environment. Tertiary treatment helps remove any remaining inorganic compounds and nutrients, such as nitrogen and phosphorous. Bacteria, viruses and parasites harmful to public health are removed in the disinfection stage. The three main processes involved in tertiary treatment are: 1. Flash mixing Wastewater flows from the biological reactor and IDAL to a pumping station which pumps it to a flash mixer. In the flash mixer, alum is used as a coagulant to help remove additional phosphorous. Alum is a salt consisting of an alkali metal such as sodium, potassium or ammonium and a trivalent metal such as aluminium, iron or chromium. Solid particles in wastewater coagulate into tiny particle clusters or floc, making them bigger, heavier and easier to remove in the deep bed sand filters. This process is also called flocculation. 2. Filtration Wastewater from the flash mixers is gravity fed through six deep bed sand filters, which trap the floc. These have a total surface area of 450 m 2. With five filter bays online, and the sixth offline for backwash and maintenance, the plant can filter 35.6 ML/d on average and ML/d during peak periods. The clear water that passes through the filters is gravity fed into chlorine contact tanks for disinfection. Trapped floc from the filter beds is removed by backwashing the filters every 24 hours in dry weather. The backwash is returned to primary treatment. 3. Disinfection Chlorine in the chlorine contact tank kills microorganisms, including bacteria, viruses and parasites like Giardia and Cryptospiridium. Chlorine is a powerful oxidant and reagent and the most common disinfectant used in industry. Two dosing pumps deliver gaseous sodium hypochlorite into the chlorine contact tank, which holds the wastewater until the chlorine has time to react. As chlorine can be harmful to aquatic life in high concentrations, the remaining chlorine is neutralised (dechlorination) by adding liquid sodium bisulphate to the wastewater before it is discharged. Dechlorination dosing facilities were added to Penrith Wastewater Treatment Plant in 2000, and expanded later. Further treatment Tertiary treated water from Penrith Wastewater Treatment Plant (as well as from Quakers Hill and St Marys Wastewater Treatment Plants) is piped to the St Marys Water Recycling Plant. This recycled water forms part of the Replacement Flows Project. The St Marys Water Recycling Plant produces up to 50 million litres of recycled water a day, using microfiltration and reverse osmosis. The very fine filters in microfiltration trap nutrients, chemicals, bacteria and viruses. Treatment is further enhanced by reverse osmosis, a process where pressure is applied to a solution when it is on one side of a selective membrane. The solute is returned on the pressurised side of the membrane and the solute passes to the other side. Large molecules and ions are removed. This water helps maintain healthy water flows in the Hawkesbury-Nepean River. 5

6 Biosolids treatment At Penrith Wastewater Treatment Plant sludge is collected from the IDAL process, or from wasting excess biological matter from the biological reactor. In biological treatment the population of microorganisms will increase as they consume the available food from the wastewater. This excess or (waste activated) sludge needs to be removed to maintain a stable population of microorganisms. At Penrith, there are several steps to treat this sludge. These are thickening, aerobic digestion, and dewatering. Thickening Sludge from the treatment tanks contains a lot of water. It is fed into a dissolved air floatation (DAF) tank where very fine bubbles of pressurised air are injected below the waste activated sludge (WAS) inlet. As the fine bubbles rise to the surface they attach themselves to the solids in the WAS. The WAS is lifted to the surface where it is scraped from the top of the tank and sent to aerobic digesters. The remaining effluent flows underneath the layer of sludge and returns to the treatment tanks. As a result of thickening the sludge to solids, the volume of sludge that has to be treated in the aerobic digesters is dramatically reduced, meaning we can have smaller digestion tanks and aeration equipment. However, the sludge can t be too thick when it goes to the digesters or it won t mix properly and proper oxygen transfer cannot be maintained. Aerobic digestion An aerobic digester is an oxygen-rich tank where bacterial processes partially breakdown organic matter in the sludge (carbon dioxide is one of the end products). This sludge stabilisation reduces the organic material, odours and pathogens in the sludge. When the sludge has been stabilised it is suitable for beneficial uses, such as land application and composting. Stabilised sludge is known as biosolids. Dewatering The biosolids from the digester still have only a small percentage of solids (for every three kilograms (kg) of solids, there are still 97 kgs of water). The liquid sludge is fed through high-speed centrifuges to remove excess moisture. Penrith Wastewater Treatment Plant produces about 2,000 tonnes of biosolids a year, which are sold as part of Sydney Water s biosolids land application program under the registered business name of Biosoil. Sydney Water uses 100% of captured biosolids. About 190,000 tonnes of Biosoil a year is produced and used as fertilisers to improve soil quality in agriculture and horticulture after testing at laboratories to make sure it is safe for the environment and human health. SW7 07/10 6

WATER TREATMENT PROCESSES. Primary treatment. runoff

WATER TREATMENT PROCESSES. Primary treatment. runoff WATER TREATMENT PROCESSES Effluent Primary treatment Secondary Treatment runoff Tertiary treatment Water Treatment Processes PRIMARY TREATMENT to prepare the wastewater for biological treatment Purpose

More information

WASTEWATER TREATMENT OBJECTIVES

WASTEWATER TREATMENT OBJECTIVES WASTEWATER TREATMENT OBJECTIVES The student will do the following: 1. Define wastewater and list components of wastewater. 2. Describe the function of a wastewater treatment plant. 3. Create a wastewater

More information

Chemistry at Work. How Chemistry is used in the Water Service

Chemistry at Work. How Chemistry is used in the Water Service Chemistry at Work How Chemistry is used in the Water Service WATER TREATMENT Everyday, more than 100 water treatment works in Northern Ireland put approximately 680 million litres of water into the supply

More information

Wastewater Nutrient Removal

Wastewater Nutrient Removal Wastewater Nutrient Removal An overview of phosphorus and nitrogen removal strategies Presented by: William E. Brown, P.E. Peter C. Atherton, P.E. Why are nutrients an issue in the environment? Stimulates

More information

AP ENVIRONMENTAL SCIENCE 2007 SCORING GUIDELINES

AP ENVIRONMENTAL SCIENCE 2007 SCORING GUIDELINES AP ENVIRONMENTAL SCIENCE 2007 SCORING GUIDELINES Question 1 Read the Fremont Examiner article below and answer the questions that follow. (a) Identify ONE component of the sewage that is targeted for removal

More information

Example: 2. Solution. Provide depth D = 1.5 m. Sewage flow = 10000 x 170 x 0.80 x 10-3 = 1360 m 3 /d. Now, 0.182(1+. = 1.562. Q L = 2.

Example: 2. Solution. Provide depth D = 1.5 m. Sewage flow = 10000 x 170 x 0.80 x 10-3 = 1360 m 3 /d. Now, 0.182(1+. = 1.562. Q L = 2. Example: 2 Design low rate trickling filter for secondary treatment of sewage generated from 10000 persons with rate of water supply 170 LPCD. The BOD 5 after primary treatment is 110 mg/l and BOD 5 of

More information

Phosphorus Removal. Wastewater Treatment

Phosphorus Removal. Wastewater Treatment Phosphorus Removal In Wastewater Treatment by Derek Shires (512) 940-2393 Derek.Shires@ett-inc.com Why do we care? Eutrophication of surface water - Especially reservoirs Maximum agronomic uptake - Limiting

More information

Aerobic Digestion, or, It s a Bug eat Bug World. Brett Ward Municipal Technical Advisory Service The University of Tennessee

Aerobic Digestion, or, It s a Bug eat Bug World. Brett Ward Municipal Technical Advisory Service The University of Tennessee Aerobic Digestion, or, It s a Bug eat Bug World Brett Ward Municipal Technical Advisory Service The University of Tennessee Aerobic Digestion Continuation of the Activated Sludge Process Super Extended

More information

Facility Classification Standards

Facility Classification Standards Facility Classification Standards Approval Date: April 3, 2009 Effective Date: April 3, 2009 Approved By: Nancy Vanstone, Deputy Minister Version Control: Replaces Facility Classification Standards dated

More information

Treatment and Biosolids Technologies. City of Morro Bay New Water Reclamation Facility

Treatment and Biosolids Technologies. City of Morro Bay New Water Reclamation Facility Treatment and Biosolids Technologies City of Morro Bay New Water Reclamation Facility Engineering Component of Siting Study Project engineering team will look at the following parameters related to each

More information

COMPLETELY MIXED ACTIVATED SLUDGE PROCESS

COMPLETELY MIXED ACTIVATED SLUDGE PROCESS ACTIVATED SLUDGE PROCESS SCHEMATICS COMPLETELY MIXED ACTIVATED SLUDGE PROCESS Primary Settler Aeration Basin (CSTR) Secondary Settler Primary Sludge Return Activated Sludge (RAS) Advantages 1. Allows good

More information

Module 13 : Characteristics Of Sewage And Overview Of Treatment Methods

Module 13 : Characteristics Of Sewage And Overview Of Treatment Methods 1 P age Module 13 : Characteristics Of Sewage And Overview Of Treatment Methods Lecture 17 : Characteristics Of Sewage And Overview Of Treatment Methods (Contd.) 2 P age 13.8 Sewage Treatment Flow Sheet

More information

TALLINN WATER TREATMENT AND SEWERAGE Tuuli Myllymaa

TALLINN WATER TREATMENT AND SEWERAGE Tuuli Myllymaa TALLINN WATER TREATMENT AND SEWERAGE Tuuli Myllymaa Tallinn is the capital of Estonia. It has approximately 450,000 inhabitants and the town area is about 150 km 2. Tallinn Water Ltd., owned by the City

More information

INTEGRATED POND AND BNR ACTIVATED SLUDGE TREATMENT PROCESS TO ACHIEVE RELIABLE NITROGEN AND PHOSPHORUS REMOVAL

INTEGRATED POND AND BNR ACTIVATED SLUDGE TREATMENT PROCESS TO ACHIEVE RELIABLE NITROGEN AND PHOSPHORUS REMOVAL INTEGRATED POND AND BNR ACTIVATED SLUDGE TREATMENT PROCESS TO ACHIEVE RELIABLE NITROGEN AND PHOSPHORUS REMOVAL Annalien Toerien Golder Associates Africa, PO Box 6001, Halfway House, 1685. E-mail: atoerien@golder.co.za

More information

Provided below is a description of the processes generating wastewater in a poultry plant and a typical pretreatment and full treatment system.

Provided below is a description of the processes generating wastewater in a poultry plant and a typical pretreatment and full treatment system. II. PROCESS OVERVIEW Provided below is a description of the processes generating wastewater in a poultry plant and a typical pretreatment and full treatment system. II.1. Wastewater Generation A typical

More information

Orange County Sanitation District

Orange County Sanitation District Orange County Sanitation District The Orange County Sanitation District operates large wastewater treatment plants in Fountain Valley and Huntington Beach, CA. These plants treat about 230 million gallons

More information

Advanced Wastewater Treatment and Disposal Systems. Water and Wastewater Utility Operation and

Advanced Wastewater Treatment and Disposal Systems. Water and Wastewater Utility Operation and Advanced Wastewater Treatment and Disposal Systems Water and Wastewater Utility Operation and Management for Tribes Preliminary Treatment Primary Treatment Secondary Treatment Tertiary Treatment Disinfection

More information

WASTE WATER TREATMENT SYSTEM (OPERATING MANUALS )

WASTE WATER TREATMENT SYSTEM (OPERATING MANUALS ) Page 1 of 76 1.0 PURPOSE The purpose of the Wastewater Treatment System is to remove contaminates from plant wastewater so that it may be sent to the Final Plant Effluent Tank and eventually discharged

More information

The Nitrogen Cycle in the Planted Aquarium. Raymond Wise. The nitrogen cycle in the aquarium as related to a balanced aquatic ecosystem.

The Nitrogen Cycle in the Planted Aquarium. Raymond Wise. The nitrogen cycle in the aquarium as related to a balanced aquatic ecosystem. The Nitrogen Cycle in the Planted Aquarium Raymond Wise The nitrogen cycle in the aquarium as related to a balanced aquatic ecosystem. What is the Nitrogen Cycle? The nitrogen cycle is simply the process

More information

Glossary of Wastewater Terms

Glossary of Wastewater Terms Glossary of Wastewater Terms Activated Sludge Sludge that has undergone flocculation forming a bacterial culture typically carried out in tanks. Can be extended with aeration. Advanced Primary Treatment

More information

GUIDELINES FOR LEACHATE CONTROL

GUIDELINES FOR LEACHATE CONTROL GUIDELINES FOR LEACHATE CONTROL The term leachate refers to liquids that migrate from the waste carrying dissolved or suspended contaminants. Leachate results from precipitation entering the landfill and

More information

SYNERGISTIC APPLICATION OF ADVANCED PRIMARY AND SECONDARY WASTEWATER TREATMENT SYSTEMS

SYNERGISTIC APPLICATION OF ADVANCED PRIMARY AND SECONDARY WASTEWATER TREATMENT SYSTEMS SYNERGISTIC APPLICATION OF ADVANCED PRIMARY AND SECONDARY WASTEWATER TREATMENT SYSTEMS Published in Water and Waste Digest membrane issue, November 2008 Miroslav Colic; Chief Scientist, Clean Water Technology

More information

OPTIMIZING BIOLOGICAL PHOSPHORUS REMOVAL FROM AN SBR SYSTEM MIDDLEBURY, VT. Paul Klebs, Senior Applications Engineer Aqua-Aerobic Systems, Inc.

OPTIMIZING BIOLOGICAL PHOSPHORUS REMOVAL FROM AN SBR SYSTEM MIDDLEBURY, VT. Paul Klebs, Senior Applications Engineer Aqua-Aerobic Systems, Inc. OPTIMIZING BIOLOGICAL PHOSPHORUS REMOVAL FROM AN SBR SYSTEM ABSTRACT MIDDLEBURY, VT Paul Klebs, Senior Applications Engineer Aqua-Aerobic Systems, Inc. The Middlebury Wastwater Treatment Plant, located

More information

Town of New Castle Utility Department Introduction

Town of New Castle Utility Department Introduction Town of New Castle Utility Department Introduction Town of New Castle Utility Department Mission Statement Our commitment is to ensure that our customers receive high quality water and wastewater treatment

More information

Module 16: The Activated Sludge Process - Part II Instructor Guide Answer Key

Module 16: The Activated Sludge Process - Part II Instructor Guide Answer Key Unit 1 Process Control Strategies Exercise Module 16: The Activated Sludge Process - Part II Instructor Guide Answer Key 1. What are the six key monitoring points within the activated sludge process? Ans:

More information

Presented by Paul Krauth Utah DEQ. Salt Lake Countywide Watershed Symposium October 28-29, 2008

Presented by Paul Krauth Utah DEQ. Salt Lake Countywide Watershed Symposium October 28-29, 2008 Basic Nutrient Removal from Water Beta Edition Presented by Paul Krauth Utah DEQ Salt Lake Countywide Watershed Symposium October 28-29, 2008 Presentation Outline Salt Lake County waters / 303(d) listings

More information

Removing Heavy Metals from Wastewater

Removing Heavy Metals from Wastewater Removing Heavy Metals from Wastewater Engineering Research Center Report David M. Ayres Allen P. Davis Paul M. Gietka August 1994 1 2 Removing Heavy Metals From Wastewater Introduction This manual provides

More information

Phosphorus Removal in Wastewater Treatment

Phosphorus Removal in Wastewater Treatment RESEARCH & DEVELOPMENT REPORT NO. Phosphorus Removal in Wastewater Treatment (Final Report) Research and Development Section Electrical & Mechanical Projects Division Nov 2013 Final Report endorsed by

More information

Cambridge Wastewater Treatment Facility

Cambridge Wastewater Treatment Facility Cambridge Wastewater Treatment Facility Emergency Situations If you have a water or sewer emergency that relates to the City s utility system call the Public Works office at 763-689-1800 on normal working

More information

Engineers Edge, LLC PDH & Professional Training

Engineers Edge, LLC PDH & Professional Training 510 N. Crosslane Rd. Monroe, Georgia 30656 (770) 266-6915 fax (678) 643-1758 Engineers Edge, LLC PDH & Professional Training Copyright, All Rights Reserved Engineers Edge, LLC An Introduction to Advanced

More information

1.85 WATER AND WASTEWATER TREATMENT ENGINEERING FINAL EXAM DECEMBER 20, 2005

1.85 WATER AND WASTEWATER TREATMENT ENGINEERING FINAL EXAM DECEMBER 20, 2005 1.85 WATER AND WASTEWATER TREATMENT ENGINEERING FINAL EXAM DECEMBER 20, 2005 This is an open-book exam. You are free to use your textbook, lecture notes, homework, and other sources other than the internet.

More information

Appendix 2-1. Sewage Treatment Process Options

Appendix 2-1. Sewage Treatment Process Options Appendix 2-1 Sewage Treatment Process Options Table of Contents Appendix 2-1 Sewage Treatment Process Options 1 Introduction...1 2 Chemically Enhanced Primary Treatment (CEPT) Processes...2 2.1 CEPT with

More information

IMPACT OF CHEMICALS ADDITION IN WATER/WASTEWATER TREATMENT ON TDS CONCENTRATION AND SLUDGE GENERATION Jurek Patoczka, PhD, PE Hatch Mott MacDonald 27 Bleeker Str., Millburn, NJ 07041 (973) 912 2541 jurek.patoczka@hatchmott.com

More information

WATER TREATMENT IN AUCKLAND

WATER TREATMENT IN AUCKLAND WATER TREATMENT IN AUCKLAND Auckland's water (like water throughout New Zealand) is a combination of water from dams and water from underground springs. Depending on the source of the water, it has different

More information

Nutrient Removal at Wastewater Treatment Facilities. Nitrogen and Phosphorus. Gary M. Grey HydroQual, Inc. ggrey@hydroqual.com 201 529 5151 X 7167

Nutrient Removal at Wastewater Treatment Facilities. Nitrogen and Phosphorus. Gary M. Grey HydroQual, Inc. ggrey@hydroqual.com 201 529 5151 X 7167 Nutrient Removal at Wastewater Treatment Facilities Nitrogen and Phosphorus Gary M. Grey HydroQual, Inc. ggrey@hydroqual.com 201 529 5151 X 7167 1 Agenda Nitrification and Denitrification Fundamentals

More information

Activated Sludge Design, Startup, Operation, Monitoring and Troubleshooting

Activated Sludge Design, Startup, Operation, Monitoring and Troubleshooting Activated Sludge Design, Startup, Operation, Monitoring and Troubleshooting Ohio Water Environment Association Plant Operations Workshop Columbus, Ohio September 1, 2010 Phil Anderson Operations Specialist

More information

ENVIRONMENTAL ISSUES IN THE RENDERING INDUSTRY. Gregory L. Sindt, P.E. Environmental Engineer Bolton and Menk, Inc.

ENVIRONMENTAL ISSUES IN THE RENDERING INDUSTRY. Gregory L. Sindt, P.E. Environmental Engineer Bolton and Menk, Inc. Summary ENVIRONMENTAL ISSUES IN THE RENDERING INDUSTRY Gregory L. Sindt, P.E. Environmental Engineer Bolton and Menk, Inc. The rendering industry has a significant positive impact on environmental quality.

More information

Chapter 14 Quiz. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 14 Quiz. Multiple Choice Identify the choice that best completes the statement or answers the question. Chapter 14 Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is NOT true regarding the Chesapeake Bay? a. it is one of many small

More information

CHAPTER 8 UPGRADING EXISTING TREATMENT FACILITIES

CHAPTER 8 UPGRADING EXISTING TREATMENT FACILITIES CHAPTER 8 UPGRADING EXISTING TREATMENT FACILITIES 8-1. General. Upgrading of wastewater treatment plants may be required to handle increased hydraulic and organic loadings to meet existing effluent quality

More information

Activated Sludge Biological Nutrient Removal Process Variations

Activated Sludge Biological Nutrient Removal Process Variations Activated Sludge Biological Nutrient Removal Process Variations Western Chapter Spring Wastewater Conference May 17, 2016 Dan Miklos, Senior Associate, Midwest Region, Hazen and Sawyer Activated Sludge

More information

Remediation of Water-Based Drilling Fluids and Cleaning of Cuttings

Remediation of Water-Based Drilling Fluids and Cleaning of Cuttings OVERVIEW Water-Based Drilling Fluids are environmentally friendly compared with oil-based drilling fluids; however their safe disposal can still be a challenge. There are normally no hydrocarbons present,

More information

ADVANCED TREATMENT TECHNOLOGIES FOR RECYCLE/REUSE OF DOMESTIC WASTEWATER

ADVANCED TREATMENT TECHNOLOGIES FOR RECYCLE/REUSE OF DOMESTIC WASTEWATER ADVANCED TREATMENT TECHNOLOGIES FOR RECYCLE/REUSE OF DOMESTIC WASTEWATER H. H. Ngo and S. Vigneswaran Faculty of Engineering, University of Technology, Sydney, Australia M. Sundaravadivel Graduate School

More information

Choosing an Effluent Treatment Plant

Choosing an Effluent Treatment Plant Choosing an Effluent Treatment Plant M. Akhtaruzzaman Alexandra Clemett Jerry Knapp Mahbubul A. Mahmood Samiya Ahmed This booklet forms part of a series written by the Managing Industrial Pollution from

More information

Microscopic Examination of Activated Sludge

Microscopic Examination of Activated Sludge Microscopic Examination of Activated Sludge Educational Objectives Upon completion of this course, the operator should be able to use the microscope to view microorganisms present in activated sludge,

More information

HUBER Vacuum Rotation Membrane VRM Bioreactor

HUBER Vacuum Rotation Membrane VRM Bioreactor HUBER Vacuum Rotation Membrane VRM Bioreactor VRM The rotating plate membrane for clean water applications. The future-oriented solution designed for the ever increasing requirements in wastewater treatment

More information

DESIGN OF A COMMON EFFLUENT TREATMENT PLANT FOR AN INDUSTRIAL ESTATE

DESIGN OF A COMMON EFFLUENT TREATMENT PLANT FOR AN INDUSTRIAL ESTATE DESIGN OF A COMMON EFFLUENT TREATMENT PLANT FOR AN INDUSTRIAL ESTATE S. RAMPAIR1, C. VENKOBACHAR2, R. CHEVANNES3, F. GRANT1, & D. THORNHILL4 1. Undergraduate Students Department of Civil Engineering, UWI,

More information

NUTRIENT REMOVAL WASTEWATER TREATMENT CLIFFORD W. RANDALL, PHD EMERITUS PROFESSOR VIRGINIA TECH

NUTRIENT REMOVAL WASTEWATER TREATMENT CLIFFORD W. RANDALL, PHD EMERITUS PROFESSOR VIRGINIA TECH NUTRIENT REMOVAL WASTEWATER TREATMENT CLIFFORD W. RANDALL, PHD EMERITUS PROFESSOR VIRGINIA TECH The Impacts of Excess Nutrients Nitrogen and Phosphorus Are the nutrients that cause over fertilization of

More information

Advanced Treatment of Hazardous Wastes(1) Advanced Treatment of Hazardous Wastes(2) Advanced Environmental Chemistry. Design of Solid Waste Landfill

Advanced Treatment of Hazardous Wastes(1) Advanced Treatment of Hazardous Wastes(2) Advanced Environmental Chemistry. Design of Solid Waste Landfill Course Description (전체 개설 교과목 개요) Advanced Treatment of Hazardous Wastes(1) This course is concerned with the management of hazardous materials and wastes in depth. We will deal with the physico-chemical

More information

The City of Boulder 75 th Street Wastewater Treatment Facility

The City of Boulder 75 th Street Wastewater Treatment Facility The City of Boulder 75 th Street Wastewater Treatment Facility Wastewater Collection and Treatment The Foundation of Public Health Wastewater Collection Boulder s wastewater collection system, also known

More information

BOD / CBOD FROM A TO Z. Amy Starkey Stark County Sanitary Engineers

BOD / CBOD FROM A TO Z. Amy Starkey Stark County Sanitary Engineers BOD / CBOD FROM A TO Z Amy Starkey Stark County Sanitary Engineers What is BOD???? What is BOD? It is a measure of the amount of oxygen consumed by bacteria during the decomposition of organic materials.

More information

This Questionnaire is divided into 8 sections referring to different capacity areas on the safe use of wastewater in agriculture:

This Questionnaire is divided into 8 sections referring to different capacity areas on the safe use of wastewater in agriculture: Annex - II Questionnaire to support the Capacity Development Needs Assessment In the framework of the Capacity Development Project on Safe Use of Wastewater 1 in Agriculture Phase I The Food and Agriculture

More information

1.3 Wastewater and Ambient Water Quality

1.3 Wastewater and Ambient Water Quality 1.3 Wastewater and Ambient Water Quality Applicability and Approach...25 General Liquid Effluent Quality...26 Discharge to Surface Water...26 Discharge to Sanitary Sewer Systems...26 Land Application of

More information

CHAPTER 7: REMEDIATION TECHNOLOGIES FOR CONTAMINATED GROUNDWATER

CHAPTER 7: REMEDIATION TECHNOLOGIES FOR CONTAMINATED GROUNDWATER CHAPTER 7: REMEDIATION TECHNOLOGIES FOR CONTAMINATED GROUNDWATER There are a number of technologies that are being use to remediate contaminated groundwater. The choice of a certain remediation technology

More information

Module 17: The Activated Sludge Process Part III

Module 17: The Activated Sludge Process Part III Wastewater Treatment Plant Operator Certification Training Module 17: The Activated Sludge Process Part III Revised October 2014 This course includes content developed by the Pennsylvania Department of

More information

HUBER Dissolved Air Flotation HDF

HUBER Dissolved Air Flotation HDF HUBER Dissolved Air Flotation HDF Removal / recovery of solids, fat, oil and grease from wastewater or process water Exceptional separation performance Non-clogging saturation and pressure release system

More information

Environmental Science 101 Waste. Fall 2012. Lecture Outline: Terms You Should Know: Learning Objectives: Reading Assignment: Chlorinated.

Environmental Science 101 Waste. Fall 2012. Lecture Outline: Terms You Should Know: Learning Objectives: Reading Assignment: Chlorinated. Environmental Science 101 Waste Fall 2012 1 Lecture Outline: 17. SEWAGE DISPOSAL A. Sewage Handling B. Raw Sewage C. Wastewater Treatment Steps D. Individual Septic Systems E. Taking Stock Learning Objectives:

More information

A copy of Worksheet 1 at the appropriate level for each pupil. Ask pupils to answer the question 'What is sewerage?'

A copy of Worksheet 1 at the appropriate level for each pupil. Ask pupils to answer the question 'What is sewerage?' Waste Water Treatment 1. Fascinating Facts Aim: To introduce pupils to key facts about waste water Materials: A copy of Worksheet 1 at the appropriate level for each pupil String Method: Ask pupils to

More information

Environmental Technology March/April 1998

Environmental Technology March/April 1998 Treating Metal Finishing Wastewater Sultan I. Amer, Ph.D. AQUACHEM INC. Environmental Technology March/April 1998 Wastewater from metal finishing industries contains high concentrations of contaminants

More information

Description of the Water Conserv II Facility

Description of the Water Conserv II Facility Description of the Water Conserv II Facility Introduction The Water Conserv II (WCII) Water Reclamation Facility provides service to a majority of the southwest section of Orlando. The WCII facility has

More information

Sewage Discharge in Estuaries: The case for Trapping.

Sewage Discharge in Estuaries: The case for Trapping. Sewage Discharge in Estuaries: The case for Trapping. Group N- Sarah Wrigley, Bryony Wood, Laura Wicks, Helen Whiting, Daniel Wood, David Willock, Nicholas Wilson, Joanna Williams, Luke Warwick and Alex

More information

How to Set-up a Halimeda Aquarium

How to Set-up a Halimeda Aquarium How to Set-up a Halimeda Aquarium Heather Spalding, Gk-12 Program Setting up a salt-water aquarium for tropical fish requires a lot of time, energy and resources. The nutrient levels, salinity, water temperature,

More information

Mine Water Management & Treatment Mining & Metals

Mine Water Management & Treatment Mining & Metals Mine Water Management & Treatment Mining & Metals Water is a critical resource for mining projects. Its management and protection are of paramount importance to every mine. Amec Foster Wheeler offers industry-leading

More information

STOCKMEIER water chemicals Strong bonds for clear water

STOCKMEIER water chemicals Strong bonds for clear water STOCKMEIER water chemicals Strong bonds for clear water Water a strong compound for life Why H O is so unique Water, the source of all life. Without water, life would never have developed on our planet

More information

ABC eed-to-know Criteria for Wastewater Treatment Operators

ABC eed-to-know Criteria for Wastewater Treatment Operators ABC eed-to-know Criteria for Wastewater Treatment Operators 2805 SW Snyder Blvd., Suite 535, Ankeny, Iowa 50023 Phone (515) 232-3623 Fax (515) 965-6827 Email abc@abccert.org Website www.abccert.org. Copyright

More information

Sewage and Wastewater Odor Control Dr. Giancarlo Riva, Ozono Elettronica Internazionale, Muggio, Italy

Sewage and Wastewater Odor Control Dr. Giancarlo Riva, Ozono Elettronica Internazionale, Muggio, Italy Introduction Sewage and Wastewater Odor Control Dr. Giancarlo Riva, Ozono Elettronica Internazionale, Muggio, Italy Sewage and industrial plants located near residential areas can be subject to political

More information

Experts Review of Aerobic Treatment Unit Operation and Maintenance. Bruce Lesikar Texas AgriLife Extension Service

Experts Review of Aerobic Treatment Unit Operation and Maintenance. Bruce Lesikar Texas AgriLife Extension Service Experts Review of Aerobic Treatment Unit Operation and Maintenance Bruce Lesikar Texas AgriLife Extension Service Overview Overview of Aerobic Treatment Units Installing for accessibility to system components

More information

Oasis Clearwater ENVIRONMENTAL SYSTEMS WASTEWATER TREATMENT ENGINEERS

Oasis Clearwater ENVIRONMENTAL SYSTEMS WASTEWATER TREATMENT ENGINEERS Oasis Clearwater ENVIRONMENTAL SYSTEMS WASTEWATER TREATMENT ENGINEERS The evolution continues in decentralised wastewater technology... The Process Decentralised wastewater treatment systems are defined

More information

Carbon and Nitrogen Cycles Interdependence within Environmental Systems. Carbon the Element

Carbon and Nitrogen Cycles Interdependence within Environmental Systems. Carbon the Element Carbon the Element The element carbon is one of the most essential elements on our planet. All living organisms contain carbon, making it a critical component of all life on planet earth. In fact, the

More information

How to measure Ammonia and Organic Nitrogen: Kjeldahl Method

How to measure Ammonia and Organic Nitrogen: Kjeldahl Method World Bank & Government of The Netherlands funded Training module # WQ - 38 How to measure Ammonia and Organic Nitrogen: Kjeldahl Method New Delhi, March 2000 CSMRS Building, 4th Floor, Olof Palme Marg,

More information

Bioremediation. Introduction

Bioremediation. Introduction Bioremediation Introduction In the twentieth century, the ever increase in the global human population and industrialization led to the exploitation of natural resources. The increased usage of heavy metals

More information

A NOVEL ION-EXCHANGE/ELECTROCHEMICAL TECHNOLOGY FOR THE TREATMENT OF AMMONIA IN WASTEWATER

A NOVEL ION-EXCHANGE/ELECTROCHEMICAL TECHNOLOGY FOR THE TREATMENT OF AMMONIA IN WASTEWATER A NOVEL ION-EXCHANGE/ELECTROCHEMICAL TECHNOLOGY FOR THE TREATMENT OF AMMONIA IN WASTEWATER ABSTRACT Leonard P. Seed, M.Sc., P.Eng., Enpar Technologies Inc. * Daren D. Yetman, A.Sc.T., Enpar Technologies

More information

Water Treatment. Session Objectives

Water Treatment. Session Objectives Water Treatment Session Objectives To demonstrate the need for treatment of surface waters and some groundwaters for drinking purposes. To introduce the concept of the multiple barrier principle and to

More information

Retrofitting an Aeration Basin with Anoxic Zone to Reduce Operations Cost and Improve Performance

Retrofitting an Aeration Basin with Anoxic Zone to Reduce Operations Cost and Improve Performance Retrofitting an Aeration Basin with Anoxic Zone to Reduce Operations Cost and Improve Performance Ed Griffenberg, Operations Specialist HDR Engineering, Edmonds, WA 2012 PNCWA Conference, Boise, Idaho Case

More information

Lesson Plan: How Do We Clean Polluted Water?

Lesson Plan: How Do We Clean Polluted Water? Lesson Plan: How Do We Clean Polluted Water? Oil Spill Cleanup / Phosphate Cleanup / Groundwater Contamination / Water Treatment Simulation Estimated Time: 2-4 days State Standards taught and addressed

More information

California Wastewater

California Wastewater Abridged Edition L A Y P E R S O N S G U I D E T O California Wastewater Prepared by the Water Education Foundation Contents The Layperson s Guide to California Wastewater is prepared and distributed by

More information

COD/BOD 5 Reduction with ROTAMAT Fine and Micro Screens

COD/BOD 5 Reduction with ROTAMAT Fine and Micro Screens COD/BOD 5 Reduction with ROTAMAT Fine and Micro Screens Removal of particulate material from wastewater Eco-efficient use of capital Water pollution control through maximum COD/BOD 5 reduction Service

More information

Treatment Industries. Wagga Wagga New South Wales 2650

Treatment Industries. Wagga Wagga New South Wales 2650 Treatment Industries Wagga Wagga New South Wales 2650 Water Forever Treatment Industries A Division Of Neylan Water Pty. Ltd. Forever EVERHARD Ei I N D U S T R I E S Everhard Industries Awareness Training

More information

Welcome to the Understanding Dissolved Oxygen learning module. This section provides information on the following topics:

Welcome to the Understanding Dissolved Oxygen learning module. This section provides information on the following topics: Introduction Welcome to the learning module. This section provides information on the following topics: How dissolved oxygen is defined and measured in numbers Why dissolved oxygen is important Natural

More information

Looking after your Septic Tank System

Looking after your Septic Tank System Looking after your Septic Tank System Name: Bought to you by Address: File this in your property file. 0800 TO FLUSH Call 0800 TO FLUSH 1 What do you know about your septic tank system? Just like your

More information

BALANCING REDOX EQUATIONS. Each redox equation contains two parts -- the oxidation and reduction parts. Each is balanced separately.

BALANCING REDOX EQUATIONS. Each redox equation contains two parts -- the oxidation and reduction parts. Each is balanced separately. C & EE 255B Prof. M. K. Stenstrom Winter 2015 BALANCING REDOX EQUATIONS Balancing redox (oxidation-reduction) equations is a simple and very useful technique of performing balances from empirical equations

More information

ACTIFLO Process For Wet Weather and Wastewater Treatment

ACTIFLO Process For Wet Weather and Wastewater Treatment ACTIFLO Process For Wet Weather and Wastewater Treatment ACTIFLO Microsand Ballasted Clarification Process ACTIFLO is a high rate, compact process developed by Veolia Solutions & Technologies. The process

More information

THE MARSHALL STREET ADVANCED POLLUTION CONTROL FACILITY (CLEARWATER, FLORIDA) CONVERSION TO 4-STAGE BARDENPHO TO IMPROVE BIOLOGICAL NITROGEN REMOVAL

THE MARSHALL STREET ADVANCED POLLUTION CONTROL FACILITY (CLEARWATER, FLORIDA) CONVERSION TO 4-STAGE BARDENPHO TO IMPROVE BIOLOGICAL NITROGEN REMOVAL THE MARSHALL STREET ADVANCED POLLUTION CONTROL FACILITY (CLEARWATER, FLORIDA) CONVERSION TO 4-STAGE BARDENPHO TO IMPROVE BIOLOGICAL NITROGEN REMOVAL ABSTRACT Timur Deniz, Ph.D., Thomas W. Friedrich, P.E.

More information

William E. Dunn Water Reclamation Facility. Facility Overview & Information

William E. Dunn Water Reclamation Facility. Facility Overview & Information William E. Dunn Water Reclamation Facility Facility Overview & Information General Area Served: Plant History Facility Highlights Northern Pinellas County St. Joseph Sound to East Lake Road (E/W) Tampa

More information

CERTIFICATION TO OPERATE WATER AND WASTEWATER TREATMENT SYSTEMS APPLICATION INSTRUCTIONS

CERTIFICATION TO OPERATE WATER AND WASTEWATER TREATMENT SYSTEMS APPLICATION INSTRUCTIONS COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION STATE BOARD FOR CERTIFICATION OF WATER AND WASTEWATER SYSTEMS OPERATORS CERTIFICATION TO OPERATE WATER AND WASTEWATER TREATMENT SYSTEMS

More information

Small Wastewater Treatment Systems

Small Wastewater Treatment Systems Small Wastewater Treatment Systems By Michael Albanese, P.Eng. H2FLOW EQUIPMENT INC. www.h2flow.com Why do you need one? Typical Reasons Enviromental Regulations New Development Failing Septic Systems

More information

Dewatering Equipment Selection Squeezing the Most Out of Your Decision for Municipal Solids Handling

Dewatering Equipment Selection Squeezing the Most Out of Your Decision for Municipal Solids Handling Squeezing the Most Out of Your Decision for Municipal Solids Handling Dewatering Selection Why dewater anyway? 21,594 Publicly Operated Treatment Works (POTW s) provide wastewater collection, treatment

More information

Trichloramine and Asthma in Swimming pools & spas Problem solved

Trichloramine and Asthma in Swimming pools & spas Problem solved 1 Trichloramine and Asthma in Swimming pools & spas By Dr.Howard T Dryden October 2006 In recent years there have been many reports in the press regarding trichloramine and its potential implications as

More information

Septic System Care & Maintenance

Septic System Care & Maintenance Septic System Care & Maintenance A User s Guide for Home/Cottage Owners Spring 2003 Preventing Septic Failure & Malfunction How many of us know how our septic system works, or think we know? We expect

More information

MODULE 23: Management of Healthcare Wastewater

MODULE 23: Management of Healthcare Wastewater MODULE 23: Management of Healthcare Wastewater Module Overview Describe sources of wastewater in a healthcare facility Describe characteristics and hazards associated with wastewater from healthcare facilities

More information

WASTE WATER TREATMENT for surface treatment applications

WASTE WATER TREATMENT for surface treatment applications WASTE WATER TREATMENT for surface treatment applications Effluent an important cost factor Effluent cannot be avoided Water and compound are essential for vibratory mass finishing. During the finishing

More information

Development of Advanced Wastewater Treatment and Reclamation System

Development of Advanced Wastewater Treatment and Reclamation System 14 Development of Advanced Wastewater Treatment and Reclamation System TAKESHI TERAZAKI *1 HOZUMI OTOZAI *2 KOSUKE SHIGIISHI *2 HIDEO SUZUKI *3 HIROSHI NAKASHOJI *4 HIROYUKI KAWAMOTO *5 Recycling and the

More information

7. Use the dead tree in Fig 3-10 to describe the processes of detritus feeders and decomposers.

7. Use the dead tree in Fig 3-10 to describe the processes of detritus feeders and decomposers. APES Miller 17th ed. Chapter 3 Questions 5. Describe the 2 chemical equations used by autotrophs and heterotrophs to gain energy for chemical functions. Compare/contrast respiration to fossil fuel combustion

More information

PROPAK AquaBio Complete Water Restoration Systems

PROPAK AquaBio Complete Water Restoration Systems PROPAK AquaBio Complete Water Restoration Systems Conserving natural resources and lowering operating expenses is no longer an option, it is a necessity. Water, sewer and discharge fees are continuing

More information

ANAEROBIC/ANOXIC TANKS

ANAEROBIC/ANOXIC TANKS PROCESS DESCRIPTION In the anaerobic/anoxic tanks, wastewater is prepared for further treatment in the biological reactors. Denitrification and luxury uptake of phosphorus take place by mixing a food source

More information

Module 18 The Activated Sludge Process Part IV Revised November 2014

Module 18 The Activated Sludge Process Part IV Revised November 2014 Wastewater Treatment Plant Operator Certification Training Module 18 The Activated Sludge Process Part IV Revised November 2014 This course includes content developed by the Pennsylvania Department of

More information

astewater Central Treatment

astewater Central Treatment QUICK FACTS The drop on water Wastewater Central Treatment Wastewater or sewage is water that has been used for washing, flushing, or manufacturing processes by homes, businesses, and industries. About

More information

Overview of Best Available Technologies for Onsite Septic Systems and Management Considerations Presentation to NAHB

Overview of Best Available Technologies for Onsite Septic Systems and Management Considerations Presentation to NAHB Overview of Best Available Technologies for Onsite Septic Systems and Management Considerations Presentation to NAHB A. R. Rubin, Professor Emeritus, NCSU-BAE Technical Wastewater Issues Treatment Septic

More information

ALL YOU NEED TO KNOW...

ALL YOU NEED TO KNOW... ALL YOU NEED TO KNOW... What do you know about your septic tank system? For the purposes of this booklet, a septic tank system refers to any kind of on-site sewage management system including traditional

More information

Water Management in Helsinki. Water supply. Mikael Sillfors

Water Management in Helsinki. Water supply. Mikael Sillfors Water Management in Helsinki Mikael Sillfors Helsinki is located on the northern shore of the Gulf of Finland. The main water systems in the area are the Gulf of Finland and River Vantaa, which runs through

More information

Sewage (Wastewater) Treatment *

Sewage (Wastewater) Treatment * Sewage (Wastewater) Treatment * Sewage, or wastewater, includes all the water from a household that is used for washing and toilet wastes. Rainwater flowing into street drains and some industrial wastes

More information