# Mixed Potentials Concepts and Basics

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Lecture 11 Mixed Potentials Concepts and Basics Keywords: Mixed Potential, Charge Conservation, Corrosion Potential Principle of charge conservation: Total rate of oxidation must be equal to total rate of reduction. i.e. Sum of anodic oxidation currents must be equal to sum of cathodic reduction currents. General Anodic reaction M = M e Cathodic reactions can be different depending on environmental conditions. a) Evolution of hydrogen from acid or neutral solution 2H + + 2e = H 2 (acid) 2H 2 O + 2e = H 2 + 2OH - (neutral or alkaline) b) Reduction of dissolved oxygen in acid or neutral solution. O 2 + 4H + + 4e = 2H 2 O (acid) O 2 + 2H 2 O + 4e = 4OH - (neutral) e) Reduction of dissolved oxidizers such as ferric ions Eg: Fe e = Fe ++ To understand the combined effect of various reducible species on the corrosion of a metal (M), it is essential to use the zero current criterion, = i a M = i c H(M) + i c O 2 (M) + i c Fe+++(M) 1

2 Take for example, the case of an active divalent metal, M corroding in an acid electrolyte. M = M e (anodic reaction) 2H + + 2e = H 2 (cathodic reaction) M + 2H + = M ++ + H 2 (net reaction) The metal corrodes with the evolution of hydrogen. There are two half-reactions as shown above and they cannot coexist as separate entities on the same metal surface. Each half reaction has its own electrode potential and exchange current density (see Fig. 11.1). Fig 11.1 Anodic and cathodic half cell reactions occurring simultaneously on a corroding metal, M. 2

3 Each electrode polarizes (shifts in potentials in anodic and cathodic directions) to an intermediate value (between the two half-cell potentials). Since such a polarized potential is a mixture of the two half cell potentials, it is referred to as MIXED POTENTIAL (See Fig. 11.2). Fig 11.2 Polarization of anodic and cathodic reactions to yield a mixed potential E corr is corrosion potential which is a mixed potential. At E corr, rates of anodic and cathodic reactions are equal. i c = i a = i corr, at E corr i corr is the corrosion rate of the metal in the acid, and also represents the rate of hydrogen liberation at the metal surface. With a knowledge of and i o for the system, corrosion rate of the metal in the acid solution can be estimated. 3

4 From actual practice, corrosion of zinc or iron in hydrochloric acid can be represented as detailed above. A mixed potential due to anodic oxidation of zinc (or iron) and reduction of hydrogen ions from the acid (with liberation of hydrogen gas on the metal surface) could be realized. However, kinetic parameters including the exchange current density for the redox reaction at the given metal surface need be considered in assessing the corrosion behavior (and rate) of the metal in the corrosive medium. Comparing the corrosion rates for zinc and iron (when present separately) in dilute hydrochloric acid solutions, zinc dissolution is expected to be higher than that of iron from a thermodynamic view point (E 0 zn/zn++ = -0.76V compared to E 0 for Fe Fe ++ = V). The corrosion rate of iron will however be higher than that of pure zinc, when immersed in similar concentrations of hydrochloric acid due to differences in their exchange current densities for hydrogen liberation reaction. Exchange current density for hydrogen reduction on zinc is lower than that on iron (see Table 9.1). Engineering systems are heterogeneous and complex. The zero current criterion (Σ i a = Σi c ) in such multi-electrode systems in a corrosive environment becomes all the more relevant. Consider two electrodes X and Y with one reduction reaction in an acid solution. i X a + i Y a = i H(X) H(Y) c + i c Relative areas of the anode and cathode are important in the prediction of anodic corrosion rates and current density (current / unit area) need be considered. 4

5 Corrosion rates need to be estimated based on kinetic parameters such as overpotential and exchange current density. Driving force for corrosion in fact depends on the overpotential and not essentially on their electrode potential differences. 5

### EXPERIMENT #9 CORROSION OF METALS

EXPERIMENT #9 CORROSION OF METALS Objective The objective of this experiment is to measure the corrosion rate of two different metals and to show the effectiveness of the use of inhibitors to protect metals

### Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.

Chapter 13: Electrochemistry Redox Reactions Galvanic Cells Cell Potentials Cell Potentials and Equilbrium Batteries Electrolysis Electrolysis and Stoichiometry Corrosion Prevention Electrochemistry The

### HOW TO PREDICT WHETHER A REDOX REACTION WILL BE SPONTANEOUS:

Chemistry 12 UNIT 5 OXIDATION AND REDUCTION PACKAGE #2 HOW TO PREDICT WHETHER A REDOX REACTION WILL BE SPONTANEOUS: Looking at the table in the data booklet on page 8, INCREASING TENDENCY TO REDUCE = INCREASING

### ELECTROCHEMISTRY. these are systems involving oxidation or reduction there are several types METALS IN CONTACT WITH SOLUTIONS OF THEIR IONS

1 ELECTROCHEMISTRY REDOX Reduction gain of electrons Cu + 2e > Cu(s) Oxidation removal of electrons Zn(s) > Zn + 2e HALF CELLS these are systems involving oxidation or reduction there are several types

### ELECTROCHEMISTRY. these are systems involving oxidation or reduction there are several types METALS IN CONTACT WITH SOLUTIONS OF THEIR IONS

1 ELECTROCHEMISTRY REDOX Reduction gain of electrons Cu 2+ + 2e > Cu (s) Oxidation removal of electrons Zn (s) > Zn 2+ + 2e HALF CELLS these are systems involving oxidation or reduction there are several

### Discovering Electrochemical Cells

Discovering Electrochemical Cells Part I Electrolytic Cells Many important industrial processes PGCC CHM 102 Cell Construction e e power conductive medium What chemical species would be present in a vessel

### Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

### The Electrical Control of Chemical Reactions E3-1

Experiment 3 The Electrical Control of Chemical Reactions E3-1 E3-2 The Task In this experiment you will explore the processes of oxidation and reduction, in which electrons flow between materials, and

### FUNDAMENTALS OF CATHODIC PROTECTION

FUNDAMENTALS OF CATHODIC PROTECTION Corrosion is the deterioration of a metal because of a reaction with its environment. For the purpose of this report, corrosion is the result of an electrochemical reaction

### o Electrons are written in half reactions but not in net ionic equations. Why? Well, let s see.

REDOX REACTION EQUATIONS AND APPLICATIONS Overview of Redox Reactions: o Change in Oxidation State: Loses Electrons = Oxidized (Oxidation number increases) Gains Electrons = Reduced (Oxidation Number Reduced)

### CHM1 Review Exam 12. Topics REDOX

CHM1 Review Exam 12 Topics REDOX REDOX Reactions Oxidation Reduction Oxidizing agent Reducing agent Galvanic (Voltaic) Cells Anode Cathode Salt bridge Electrolyte Half-reactions Voltage o Positive voltages

### ELECTROCHEMICAL CELLS

1 ELECTROCHEMICAL CELLS Allessandra Volta (1745-1827) invented the electric cell in 1800 A single cell is also called a voltaic cell, galvanic cell or electrochemical cell. Volta joined several cells together

### M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y. 3.014 Materials Laboratory Fall 2006

D E P A R T M E N T O F M A T E R I A L S S C I E N C E A N D E N G I N E E R I N G M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y 3.014 Materials Laboratory Fall 2006 LABORATORY 3:

### Figure 1. A voltaic cell Cu,Cu 2+ Ag +, Ag. gas is, by convention, assigned a reduction potential of 0.00 V.

Voltaic Cells Introduction In this lab you will first prepare a set of simple standard half-cells and then measure the voltage between the half-cells with a voltmeter. From this data you will be able to

### Similarities and Differences Galvanic and Electrolytic Cell:

Electrolytic Cells Voltaic cells are driven by a spontaneous chemical reaction that produces an electric current through an outside circuit. These cells are important because they are the basis for the

### Galvanic cell and Nernst equation

Galvanic cell and Nernst equation Galvanic cell Some times called Voltaic cell Spontaneous reaction redox reaction is used to provide a voltage and an electron flow through some electrical circuit When

### Building Electrochemical Cells

Cautions Heavy metals, such as lead, and solutions of heavy metals may be toxic and an irritant. Purpose To determine the cell potential (E cell ) for various voltaic cells and compare the data with the

### THE ELECTROCHEMISTRY OF CORROSION Edited by Gareth Hinds from the original work of J G N Thomas

THE ELECTROCHEMISTRY OF CORROSION Edited by Gareth Hinds from the original work of J G N Thomas INTRODUCTION The surfaces of all metals (except for gold) in air are covered with oxide films. When such

### Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Electrochemistry deals with the relationships between electricity and chemical reactions. Oxidation-reduction (redox) reactions were introduced in Chapter 4 Can be simple displacement

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chemistry 1C-Dr. Larson Chapter 20 Review Questions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) is reduced in the following reaction: Cr2O7

### Electrochemical Half Cells and Reactions

Suggested reading: Chang text pages 81 89 Cautions Heavy metals, such as lead, and solutions of heavy metals may be toxic and an irritant. Purpose To determine the cell potential (E cell ) for various

### 1332 CHAPTER 18 Sample Questions

1332 CHAPTER 18 Sample Questions Couple E 0 Couple E 0 Br 2 (l) + 2e 2Br (aq) +1.06 V AuCl 4 + 3e Au + 4Cl +1.00 V Ag + + e Ag +0.80 V Hg 2+ 2 + 2e 2 Hg +0.79 V Fe 3+ (aq) + e Fe 2+ (aq) +0.77 V Cu 2+

### Corrosion. Chemistry. Grade 10-12 LEARNING OUTCOMES DESCRIPTION MATERIALS READINESS ACTIVITIES. Science

Science Grade 10-12 Classroom Individual reading DESCRIPTION The characteristic red color of Prince Edward Island soil can be explained by a chemical reaction. The process is known as corrosion or rusting.

### Electrochemistry Voltaic Cells

Electrochemistry Voltaic Cells Many chemical reactions can be classified as oxidation-reduction or redox reactions. In these reactions one species loses electrons or is oxidized while another species gains

### 5.111 Principles of Chemical Science

MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 26.1 5.111 Lecture

### Redox and Electrochemistry

Name: Thursday, May 08, 2008 Redox and Electrochemistry 1. A diagram of a chemical cell and an equation are shown below. When the switch is closed, electrons will flow from 1. the Pb(s) to the Cu(s) 2+

### Galvanic Cells. SCH4U7 Ms. Lorenowicz. Tuesday, December 6, 2011

Galvanic Cells SCH4U7 Ms. Lorenowicz 1 Electrochemistry Concepts 1.Redox reactions involve the transfer of electrons from one reactant to another 2.Electric current is a flow of electrons in a circuit

### CELL POTENTIAL, E. Terms Used for Galvanic Cells. Uses of E o Values CELL POTENTIAL, E. Galvanic Cell. Organize halfreactions

Electrons move from anode to cathode in the wire. Anions & cations move thru the salt bridge. Terms Used for Galvanic Cells Galvanic Cell We can calculate the potential of a Galvanic cell using one of

### reduction ore = metal oxides metal oxidation

Cathodic Protection and Interferences René Gregoor Madrid, June 18 th and 19 th 2009 1 Cathodic protection and interferences Corrosion Cathodic protection Protection criterion ON potential measurements

### MULTIPLE CHOICE. Choose the one alternative that best complet es the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best complet es the statement or answers the question. 1) The first law of thermodynamics can be given as. A) for any spontaneous process, the entropy of

### K + Cl - Metal M. Zinc 1.0 M M(NO

Redox and Electrochemistry This section should be fresh in your minds because we just did this section in the text. Closely related to electrochemistry is redox chemistry. Count on at least one question

### Part A Corrosion of metals

Part A Corrosion of metals This section on the corrosion of metals is greatly simplified for purposes of clarity. It is not meant to train the student with the intention of making him/her an expert in

### Chemistry 122 Mines, Spring 2014

Chemistry 122 Mines, Spring 2014 Answer Key, Problem Set 9 1. 18.44(c) (Also indicate the sign on each electrode, and show the flow of ions in the salt bridge.); 2. 18.46 (do this for all cells in 18.44

### Electrochemical cells

Electrochemical cells Introduction: Sudha Madhugiri D.Chem. Collin College Department of Chemistry Have you used a battery before for some purpose? I bet you have. The type of chemistry that is used in

Electrochemistry - ANSWERS 1. Using a table of standard electrode potentials, predict if the following reactions will occur spontaneously as written. a) Al 3+ + Ni Ni 2+ + Al Al 3+ + 3e - Al E = -1.68

### BALANCING REDOX EQUATIONS EXERCISE

+5 6 1. Ag + NO3 Ag 1+ + NO 0 +5 2 +1 +2 2 4 +4 +2 2 2. N2H4 + H2O2 N2 + H2O 2 +1 +1 1 0 +1 2 +6 6 +4 4 3. CO + Fe2O3 FeO + CO2 +2 2 +3 2 +2 2 +4 2 +5 6 +4 4 +4 4 4. NO3 + CO CO2 + NO2 +5 2 +2 2 +4 2 +4

### 4.18 Principles of Cathodic Protection

4.18 Principles of Cathodic Protection V. Ashworth This article is a revision of the Third Edition article 10.1 by V. Ashworth, volume 2, pp 10:3 10:28, ß 2010 Elsevier B.V. 4.18.1 Historical Background

### Petri Dish Electrolysis Electrolysis Reactions

elearning 2009 Introduction Petri Dish Electrolysis Electrolysis Reactions Publication No. 95008 Electrolysis is defined as the decomposition of a substance by means of an electric current. When an electric

### Name Electrochemical Cells Practice Exam Date:

Name Electrochemical Cells Practice Exam Date: 1. Which energy change occurs in an operating voltaic cell? 1) chemical to electrical 2) electrical to chemical 3) chemical to nuclear 4) nuclear to chemical

### Sample Exercise 20.1 Identifying Oxidizing and Reducing Agents

Sample Exercise 20.1 Identifying Oxidizing and Reducing Agents The nickel-cadmium (nicad) battery, a rechargeable dry cell used in battery-operated devices, uses the following redox reaction to generate

### Electrochemistry. Chapter 17 Electrochemistry GCC CHM152. Ox # examples. Redox: LEO the lion goes GER. Oxidation Numbers (Chapter 4).

Chapter 17 Electrochemistry GCC CHM152 Electrochemistry Electrochemistry is the study of batteries and the conversion between chemical and electrical energy. Based on redox (oxidation-reduction) reactions

### environmental engineering master degree Department of Hydraulic, Geotechnical & Environmental Engineering ABSTRACT

U N I V E R S I T Y O F N A P L E S " F E D E R I C O I I " environmental engineering master degree Department of Hydraulic, Geotechnical & Environmental Engineering ABSTRACT Localization of Corrosion

### Electrochemistry Worksheet

Electrochemistry Worksheet 1. Assign oxidation numbers to each atom in the following: a. P 4 O 6 b. BiO 3 c. N 2 H 4 d. Mg(BrO 4 ) 2 e. MnSO 4 f. Mn(SO 4 ) 2 2. For each of the reactions below identify

### CHAPTER 21 ELECTROCHEMISTRY

Chapter 21: Electrochemistry Page 1 CHAPTER 21 ELECTROCHEMISTRY 21-1. Consider an electrochemical cell formed from a Cu(s) electrode submerged in an aqueous Cu(NO 3 ) 2 solution and a Cd(s) electrode submerged

### Galvanic Cells and the Nernst Equation

Exercise 7 Page 1 Illinois Central College CHEMISTRY 132 Laboratory Section: Galvanic Cells and the Nernst Equation Name: Equipment Voltage probe wires 0.1 M solutions of Pb(NO 3, Fe(NO 3 ) 3, and KNO

### Oxidation / Reduction Handout Chem 2 WS11

Oxidation / Reduction Handout Chem 2 WS11 The original concept of oxidation applied to reactions where there was a union with oxygen. The oxygen was either furnished by elemental oxygen or by compounds

### Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions

Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions OCN 623 Chemical Oceanography Balanced chemical reactions are the math of chemistry They show the relationship between the reactants

### Redox Titrations. -the oxidation/reduction reaction between analyte and titrant

Redox Titrations -the oxidation/reduction reaction between analyte and titrant -titrants are commonly oxidizing agents, although reducing titrants can be used -the uivalence point is based upon: A ox +

### Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.

GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all

### CHM2S1-B Electrochemistry

CHM2S1-B Electrochemistry This lecture course will closely follow the Textbook Atkins, Elements of Physical Chemistry, Chapter 9 The Examples (worked questions) and part of the Self-tests in the Textbook

### Electrochemistry. Chapter 18 Electrochemistry and Its Applications. Redox Reactions. Redox Reactions. Redox Reactions

John W. Moore Conrad L. Stanitski Peter C. Jurs http://academic.cengage.com/chemistry/moore Chapter 18 Electrochemistry and Its Applications Stephen C. Foster Mississippi State University Electrochemistry

### Experiment 9 Electrochemistry I Galvanic Cell

9-1 Experiment 9 Electrochemistry I Galvanic Cell Introduction: Chemical reactions involving the transfer of electrons from one reactant to another are called oxidation-reduction reactions or redox reactions.

### Introduction to electrolysis - electrolytes and non-electrolytes

Introduction to electrolysis - electrolytes and non-electrolytes Electrolysis is the process of electrically inducing chemical changes in a conducting melt or solution e.g. splitting an ionic compound

### The Potentiodynamic Polarization Scan. Technical Report 33

Technical Report 33 Technical Report 33 David G Enos Center for Electrochemical Science & Engineering Department of Materials Science & Engineering University of Virginia Charlottesville, VA Louie L Scribner

### Chapter 3 BASICS OF CORROSION MEASUREMENTS. Mixed-Potential Theory. The mixed potential-theory (1) consists of two simple

Chapter 3 BASICS OF CORROSION MEASUREMENTS Mixed-Potential Theory. The mixed potential-theory (1) consists of two simple hypothesis: (1) any electrochemical reaction can be divided into two or more partial

### CHAPTER 9. ANS: a. ANS: d. ANS: c. ANS: a. ANS: c

CHAPTER 9 1. Which one of the following is the acid in vinegar? a. acetic acid b. citric acid c. muriatic acid d. ascorbic acid 2. Which is a basic or alkaline substance? a. gastric fluid b. black coffee

### Electrochemistry, part 2 Electrodes, cells and corrosion

Chemistry course ACME Faculty, EHVE course B.Sc. Studies, I year, I semester Leszek Niedzicki, PhD, Eng. Electrochemistry, part 2 Electrodes, cells and corrosion Electrochemical series (standard electrode

### III. Reaction Kinetics

III. Reaction Kinetics Lecture 13: Butler-Volmer equation Notes by ChangHoon Lim (and MZB) 1. Interfacial Equilibrium At lecture 11, the reaction rate R for the general Faradaic half-cell reaction was

### Chapter 20. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 20 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The gain of electrons by an element is called. A) oxidation B) reduction C) sublimation

### WRITING REDOX EQUATIONS : HALF-EQUATION METHOD

30 WRITING REDOX EQUATIONS : HALF-EQUATION METHOD Comparing different methods for balancing redox equations: If the objective is simply to balance an equation, and the equation can be balanced easily BY

### 1. Oxidation number is 0 for atoms in an element. 3. In compounds, alkalis have oxidation number +1; alkaline earths have oxidation number +2.

à xidation numbers In the Lewis model of bonding, when nonidentical atoms are bonded together, an important consideration is how the bonding electrons are apportioned between the atoms. There are two different

### Practical Examples of Galvanic Cells

56 Practical Examples of Galvanic Cells There are many practical examples of galvanic cells in use in our everyday lives. We are familiar with batteries of all types. One of the most common is the lead-acid

### Electrochemistry. (Referring to the loss/gain of electrons)

1. What occurs during a redox reaction? Electrochemistry Electrons are transferred. 2. What does the acronym OIL RIG stand for? Oxidation Is Loss Reduction Is Gain (Referring to the loss/gain of electrons)

### Multiple Choice Questions NCERT

CHAPTER 3 Metals and Non-metals Multiple Choice Questions 1. Which of the following property is generally not shown by metals? (a) Electrical conduction (b) Sonorous in nature (c) Dullness (d) Ductility

### Preliminary Concepts. Preliminary Concepts. Class 8.3 Oxidation/Reduction Reactions and Electrochemistry I. Friday, October 15 Chem 462 T.

Class 8.3 Oxidation/Reduction Reactions and Electrochemistry I Friday, October 15 Chem 462 T. Hughbanks Preliminary Concepts Electrochemistry: the electrical generation of, or electrical exploitation of

### EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C

EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C Chapter 16 1. Burn sulfur in air to give sulfur dioxide. S(s) + O 2 (g) ----> SO 2 (g) Pass this with more air over

### Chem 1721 Brief Notes: Chapter 19

Chem 1721 Brief Notes: Chapter 19 Chapter 19: Electrochemistry Consider the same redox reaction set up 2 different ways: Cu metal in a solution of AgNO 3 Cu Cu salt bridge electrically conducting wire

### Two Types of Chemical Rxns. Oxidation/Reduction. Two Types of Chemical Rxns. Two Types of Chemical Rxns. Review of Oxidation Numbers

Two Types of Chemical Rxns Oxidation/Reduction Chapter 20 1. Exchange of Ions no change in charge/oxidation numbers Acid/Base Rxns NaOH + HCl Two Types of Chemical Rxns Precipitation Rxns Pb(NO 3 ) 2 (aq)

### Chapter 4: Reactions in Aqueous Solution (Sections )

Chapter 4: Reactions in Aqueous Solution (Sections 4.1-4.12) Chapter Goals Be able to: Classify substances as electrolytes or nonelectrolytes. Write molecular, ionic, and net ionic equations for precipitation,

### GALVANIC MODEL FOR LOCALIZED CO2 CORROSION

Paper No. 687 GALVANIC MODEL FOR LOCALIZED CO CORROSION Jiabin Han, Srdjan Nešić and Bruce N. Brown Institute for Corrosion and Multiphase Technology Department of Chemical and Biomolecular Engineering

### Study the effect of magnetic field on the corrosion of steel in sodium chloride solution (NaCl)

30 Study the effect of magnetic field on the corrosion of steel in sodium chloride solution (NaCl) L. Samir H. Nasher School of applied sciences University of Technology L.A. Buraq Talib Shalash College

### AP* Chemistry ELECTROCHEMISTRY

Terms to Know: AP* Chemistry ELECTROCHEMISTRY the study of the interchange of chemical and electrical energy OIL RIG oxidation is loss, reduction is gain (of electrons) Oxidation the loss of electrons,

### Chapter 4 Notes - Types of Chemical Reactions and Solution Chemistry

AP Chemistry A. Allan Chapter 4 Notes - Types of Chemical Reactions and Solution Chemistry 4.1 Water, the Common Solvent A. Structure of water 1. Oxygen's electronegativity is high (3.5) and hydrogen's

### Chemical Reactions in Water Ron Robertson

Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Properties of Compounds in Water Electrolytes and nonelectrolytes Water soluble compounds

### Chemical Reactions in Water

Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Acids, Bases and Salts Acids dissolve in water to give H + ions. These ions attach

### CHEM1001 Example Multiple Choice Questions

HM00 xample Multiple hoice Questions The following multiple choice questions are provided to illustrate the type of questions used in this section of the paper and to provide you with extra practice. It

### 1 A FRAMEWORK FOR CONSERVATION OF METALS

1 A FRAMEWORK FOR CONSERVATION OF METALS 1.1 INTRODUCTION The conservation procedure developed for any artefact is essentially a decision making tool based on gathering, using and recording information

### To determine relative oxidizing and reducing strengths of a series of metals and ions.

Redox Reactions PURPOSE To determine relative oxidizing and reducing strengths of a series of metals and ions. GOALS 1 To explore the relative oxidizing and reducing strengths of different metals. 2 To

### ELECTROCHEMICAL CELLS LAB

ELECTROCHEMICAL CELLS LAB Purpose: The purpose of this lab is to demonstrate the ability of chemistry to make electric current using oxidation/reduction (REDOX) reactions, and to measure the electric current

### Electrochemical Corrosion. A. Senthil Kumar Roll No. 07317402 M.Tech Energy Systems IIT Bombay

Electrochemical Corrosion A. Senthil Kumar Roll No. 07317402 M.Tech Energy Systems IIT Bombay August 2008 Contents 1. Review of the Electrochemical Basis of Corrosion 2. Quantitative Corrosion Theory 3.

### CATHODIC PROTECTION MODELLING OF BURIED STRUCTURES

CATHODIC PROTECTION MODELLING OF BURIED STRUCTURES By ALOK SHANKAR A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER

### Dr. Ali Abadi Chapter 5: Chemical Effect Materials Properties. What is corrosion?

Dr. Ali Abadi Chapter 5: Chemical Effect Materials Properties (Corrosion) Introduction 1 By the end of this tutorial, you should have an understanding of: relative susceptibility of different metals to

### A SHORT INTRODUCTION TO CORROSION AND ITS CONTROL

A SHORT INTRODUCTION TO CORROSION AND ITS CONTROL CORROSION OF METALS AND ITS PREVENTION WHAT IS CORROSION Corrosion is the deterioration of materials by chemical interaction with their environment. The

### 38. Consider the following reaction that occurs in a breathalyzer: 2Cr 2 O 7

Electrochemistry Multiple Choice January 1999 37. Consider the following redox reaction: 2MnO 4 - + 3ClO 3 - + H 2 O 3ClO 4 - + 2MnO 2 + 2OH - The reducing agent is A. H 2 O B. ClO 3 - C. MnO 2 D. MnO

### Formation of Anodic Films on Mg Al Alloys in NaOH solutions at Constant Potentials

Materials Transactions, Vol. 44, No. 5 (2003) pp. 1036 to 1041 #2003 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Formation of Anodic Films on Mg Al Alloys in NaOH solutions at Constant Potentials

### Energy Flow in Marine Ecosystem

Energy Flow in Marine Ecosystem Introduction Marin ecosystem is a functional system and consists of living groups and the surrounding environment It is composed of some groups and subgroups 1. The physical

### Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) R f = k f * C A (2) R b = k b * C B (3)

Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) 1. Background Consider the reaction given below: A B (1) If k f and k b are the rate constants of the forward

### CORROSION PROTECTION OF METALS

CORROSION PROTECTION OF METALS Two methods of combating corrosion which are widely used in New Zealand are cathodic protection and chemical inhibitors. Both methods depend on controlling the charge on

### Determining Equivalent Weight by Copper Electrolysis

Purpose The purpose of this experiment is to determine the equivalent mass of copper based on change in the mass of a copper electrode and the volume of hydrogen gas generated during an electrolysis reaction.

### Chapter 14 - Acids and Bases

Chapter 14 - Acids and Bases 14.1 The Nature of Acids and Bases A. Arrhenius Model 1. Acids produce hydrogen ions in aqueous solutions 2. Bases produce hydroxide ions in aqueous solutions B. Bronsted-Lowry

### Copyright 2012 Nelson Education Ltd. Chapter 10: Electrochemical Cells 10-2

Chapter 10 Review, pages 678 683 Knowledge 1. (b) 2. (b) 3. (d) 4. (c) 5. (a) 6. (d) 7. False. In a galvanic cell, electrons travel from the anode to the cathode via the external circuit. 8. True 9. True

### Chapter 21a Electrochemistry: The Electrolytic Cell

Electrochemistry Chapter 21a Electrochemistry: The Electrolytic Cell Electrochemical reactions are oxidation-reduction reactions. The two parts of the reaction are physically separated. The oxidation reaction

### Determining Equivalent Weight by Copper Electrolysis

Purpose To determine the equivalent mass of copper based on change in the mass of a copper electrode and the volume of hydrogen gas generated during an electrolysis experiment. The volume of hydrogen gas

### Solutions & Colloids

Chemistry 100 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, Organic and Biochemistry Chapter 6 Solutions & Colloids Solutions Components of a Solution Solvent: The substance

### Redox Reactions and Electrochemistry

Redox Reactions and Electrochemistry Problem Set Chapter 5: 21-26, Chapter 21: 15-17, 32, 34, 43, 53, 72, 74 Oxidation/Reduction & Electrochemistry Oxidation a reaction in which a substance gains oxygen

### stoichiometry = the numerical relationships between chemical amounts in a reaction.

1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse

### AP Chemistry CHAPTER 20- Electrochemistry 20.1 Oxidation States

AP Chemistry CHAPTER 20- Electrochemistry 20.1 Oxidation States Chemical reactions in which the oxidation state of a substance changes are called oxidation-reduction reactions (redox reactions). Oxidation

3.14 MATERIALS LABORATORY MODULE BETA 1 NOVEMBER 13 17, 26 GEETHA P. BERERA LEAD-ACID STORAGE CELL OBJECTIVES: Understand the relationship between Gibbs Free Energy and Electrochemical Cell Potential.