Describe various CPU-scheduling algorithms. Describe various multi- processor CPU-scheduling algorithms

Size: px
Start display at page:

Download "Describe various CPU-scheduling algorithms. Describe various multi- processor CPU-scheduling algorithms"

Transcription

1 CPU Scheduling

2 Objectives Describe various CPU-scheduling algorithms Describe various multi- processor CPU-scheduling algorithms To discuss evaluation criteria for selecting a CPUscheduling algorithm for a particular system CPU scheduling 2

3 Basic Concepts Almost all computer resources are scheduled before use. The CPU is one of the primary computer resources. CPU scheduling is the basis of multi-programmed operating systems. What are multi-programmed operating systems? What are the benefits of multiprogramming? CPU scheduling 3

4 Basic Concepts In a single-processor system, only one process can run at a time; any others must wait until the CPU is free and can be rescheduled. The objective of multiprogramming is to have some process running at all times, to maximize CPU utilization. How is multiprogramming achieved? CPU scheduling 4

5 Cycle of CPU execution and I/O wait The success of CPU scheduling depends on an observed property of processes:» Process execution consists of a cycle of CPU execution and I/O wait. Processes alternate between these two states. CPU scheduling 5

6 Cycle of CPU execution and I/O wait CPU scheduling 6

7 Cycle of CPU execution and I/O wait Process execution begins with a CPU burst. That is followed by an I/O burst, which is followed by another CPU burst, then another I/O burst, and so on. Eventually, the final CPU burst ends with a system request to terminate execution. CPU scheduling 7

8 Short term Scheduler Selects from among the processes in ready queue, and allocates the CPU to one of them Queue may be ordered in various ways. What are this ways? (think real life queues) CPU scheduling 8

9 CPU scheduling CPU scheduling decisions may take place when a process: 1. Switches from running to waiting state 2. Switches from running to ready state 3. Switches from waiting to ready 4. Terminates CPU scheduling 9

10 Non-preemptive & preemptive CPU Scheduling algorithms can be categorized into two;» Non-Preemptive» Preemptive CPU scheduling 10

11 Non-preemptive & preemptive Under non preemptive scheduling, once the CPU has been allocated to a process, the process keeps the CPU until it releases the CPU either by terminating or by switching to the waiting state The process cannot be interrupted With Preemptive a process can be interrupted during its course of execution CPU scheduling 11

12 Scheduling Algorithms

13 CPU scheduling deals with the problem of deciding which of the processes in the ready queue is to be allocated the processor. There are many different CPU scheduling algorithms. These are; CPU scheduling 13

14 First-Come, First-Served Scheduling Shortest-Job-First Scheduling Priority Scheduling Round-Robin Scheduling Multilevel Queue Scheduling Multilevel Feedback-Queue Scheduling CPU scheduling 14

15 First-Come, First-Served (FCFS) Scheduling The simplest CPU-scheduling algorithm With this scheme, the process that requests the CPU first is allocated the CPU first. The implementation of the FCFS policy is easily managed with a FIFO queue. When a process enters the ready queue, its PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to the process at the head of the queue. The running process is then removed from the queue. CPU scheduling 15

16 First come First Served (FCFS)

17 First-Come, First-Served (FCFS) Scheduling Process Burst Time P 1 24 P 2 3 P 3 3 Suppose that the processes arrive in the order: P 1, P 2, P 3 CPU scheduling 17

18 First-Come, First-Served (FCFS) Scheduling The Gantt Chart for the schedule is: P 1 P 2 P Waiting time for P 1 = 0; P 2 = 24; P 3 = 27 Average waiting time: ( )/3 = 17miliseconds CPU scheduling 18

19 FCFS Scheduling (Cont.) Suppose that the processes arrive in the order: P 2, P 3, P 1 Will there be a difference in the average waiting time? CPU scheduling 19

20 FCFS Scheduling (summary) The FCFS scheduling algorithm is non-preemptive. What does this mean? FCFS algorithm is troublesome for time-sharing systems because Once the CPU has been allocated to a process, that process keeps the CPU until it releases the CPU, either by terminating or by requesting I/O. CPU scheduling 20

21 Class Exercise 1 Process l Time Burst Time P P P P Determine the average waiting time if FCFS scheduling algorithm was in use CPU scheduling 21

22 Shortest Job First (SJF)

23 Shortest-Job-First (SJF) Scheduling This algorithm associates with each process the length of the process's next CPU burst. When the CPU is available, it is assigned to the process that has the smallest next CPU burst. What if two processes have the same CPU burst? If the next CPU bursts of two processes are the same, FCFS scheduling is used to break the tie. CPU scheduling 23

24 Example of SJF Process l Time Burst Time P P P P P 4 P 3 P 1 P Average waiting time = ( ) / 4 = 7 miliseconds CPU scheduling 24

25 Class Exercise 2 Process Burst Time P 1 24 P 2 3 P 3 3 Assume STF scheduling algorithm is used, what would the order of the processes be? Compute average waiting time if STF scheduling algorithm was used CPU scheduling 25

26 Difficulties with SJF The real difficulty with the SJF algorithm is knowing the length of the next CPU request. However For long-term (job) scheduling, we can use the length of the process specified when the process is submited. SJF is much difficult to implement at the level of short-term CPU scheduling. There is no way to know the exact length of the next CPU burst. What are the possible solutions to address this issue? CPU scheduling 26

27 SJF cont The SJF algorithm can be either preemptive or nonpreemptive. In Preemtive, The choice arises when a new process arrives at the ready queue while a previous process is still executing. The next CPU burst of the newly arrived process may be shorter than what is left of the currently executing process CPU scheduling 27

28 SJF cont A preemptive SJF algorithm will preempt the currently executing process, whereas a non-preemptive SJF algorithm will allow the currently running process to finish its CPU burst. CPU scheduling 28

29 SJF cont Preemptive SJF scheduling is sometimes called shortestremaining-time-first scheduling. CPU scheduling 29

30 Shortest Remaining time First (SRTF)

31 Example of Shortest-remaining-time-first ProcessAarrArrival TimeT Burst Time P P P P Class Discussion Questions What will be the order of process execution? Compute the average waiting time Compute the average waiting time if the algorithm is non preemptive CPU scheduling 31

32 Example of Shortest-remaining-time-first ProcessAarri Arrival TimeTBurst Time P P P P Preemptive SJF Gantt Chart P 2 P 1 P 1 P 4 P Average waiting time = 6.5 msec CPU scheduling 32

33 Non-preemptive ProcessAarri Arrival TimeTBurst Time P P P P Order of execution will be P1-P2-P4-P3 P1 0 P2 7 P3 9 P4 15 Average waiting time = 7.75 msec CPU scheduling 33

34 Class Exercise ProcessAarri Arrival TimeTBurst Time P P P P i. Draw a gantt chart to represent the following processes ii. Compute the average waiting time of the following set of processes using» SJF (preemptive)-3m/s» SJF (non-preemptive)-4m/s CPU scheduling 34

35 Priority Scheduling

36 Priority Scheduling A priority is associated with each process, and the CPU is allocated to the process with the highest priority. Would we be right to say that the SJF algorithm is a special case of the general priority scheduling algorithm? What would happen if two processes have the same priority? When two processes have the same priority, First come first served algorithm is used to schedule CPU scheduling 36

37 Priority Scheduling Note that we discuss scheduling in terms of high priority and low priority. Priorities are generally indicated by some fixed range of numbers, such as 0 to 7 or 0 to 4,095. However, there is no general agreement on whether 0 is the highest or lowest priority. Some systems use low numbers to represent low priority; others use low numbers for high priority. This difference can lead to confusion. In our class, we assume that low numbers represent high priority. CPU scheduling 37

38 Example of Priority Scheduling assumption is that all processes are in the ready queue ProcessAarriBurst TimeT Priority P P P P P Class discussion questions Draw the Gantt chart for the processes above What will the average waiting time be? CPU scheduling 38

39 Example of Priority Scheduling Solution assumption is that all processes are in the ready queue P 5 P 2 P 3 P 1 P Priority scheduling Gantt Chart CPU scheduling 39

40 Priority Scheduling Priorities can be defined either internally or externally. Internally defined priorities use some measurable quantity or quantities to compute the priority of a process. For example, time limits, memory requirements, the number of open files, and the ratio of average I/O burst to average CPU burst have been used in computing priorities. CPU scheduling 40

41 Priority Scheduling External priorities are set by criteria outside the operating system, such as the importance of the process. Examples? Priority scheduling can be either preemptive or nonpreemptive. Explain CPU scheduling 41

42 Problems with Priority Scheduling A major problem with priority scheduling algorithms is indefinite blocking, or starvation. A process that is ready to run but waiting for the CPU can be considered blocked. A priority scheduling algorithm can leave some low priority processes waiting indefinitely. In a heavily loaded computer system, a steady stream of higher-priority processes can prevent a low-priority process from ever getting the CPU. CPU scheduling 42

43 Indefinite blocking solution A solution to the problem of indefinite blockage of low-priority processes is aging. Aging is a technique of gradually increasing the priority of processes that wait in the system for a long time. For example, if priorities range from 127 (low) to 0 (high), we could increase the priority of a waiting process by 1 every 15 minutes. CPU scheduling 43

44 Class Exercise Process Duration Priority Arrival Time P P P P Draw a Gantt chart to represent the following processes Compute the average waiting time of the following set of processes using preemptive priority scheduling algorithm CPU scheduling 44

45 Round Robin (RR)

46 Round Robin (RR) The round-robin (RR) scheduling algorithm is designed especially for time sharing systems. It is similar to FCFS scheduling, but preemption is added to switch between processes. A small unit of time, called a time quantum or time slice, is defined. The CPU scheduler goes around the ready queue, allocating the CPU to each process for a time interval of up to 1 time quantum. CPU scheduling 46

47 Example of RR with Time Quantum = 4 The Gantt chart is: Process Burst Time P 1 24 P 2 3 P 3 3 P 1 P 2 P 3 P 1 P 1 P 1 P 1 P What will the average waiting time be? What will the average Turn-around time be? CPU scheduling 47

48 Class Exercise : Time Quantum = 4 Process Burst Time Arrival time P 1 8 P 2 4 P 3 9 P 4 5 Draw the Gantt chart to represent the execution for a time quantum of 4 and 5 Compute the average waiting time for a time quantum of 4 and 5 Compute the average turn-around time for a time quantum of 4 and 5 (comment on the turn around time) CPU scheduling 48

49 Turnaround Time Vs Time Quantum Would we be right to conclude that turnaround time of a set of processes improves as the time-quantum size increases? CPU scheduling 49

50 Turnaround Time Vs Time Quantum The average turnaround time of a set of processes does not necessarily improve as the time-quantum size increases. In general, the average turnaround time can be improved if most processes finish their next CPU burst in a single time quantum. CPU scheduling 50

51 Multilevel Queue

52 Multilevel Queue Multilevel queues are used for situations where processes are easily classified into different groups. A common division is made between foreground (interactive) processes and background processes. These two types of processes have different response-time requirements and so may have different scheduling needs CPU scheduling 52

53 Multilevel Queue A multilevel queue scheduling algorithm partitions the ready queue into several separate queues. The processes are permanently assigned to one queue, generally based on some property of the process, such as memory size, process priority, or process type. Each queue has its own scheduling algorithm. CPU scheduling 53

54 Multilevel Queue Scheduling CPU scheduling 54

55 Multilevel Feedback Queue In contrast to Multilevel queue, this algorithm allows a process to move between queues. The idea is to separate processes according to the characteristics of their CPU bursts. If a process uses too much CPU time, it will be moved to a lower-priority queue. This scheme leaves I/Obound and interactive processes in the higher-priority queues. CPU scheduling 55

56 Multilevel Feedback Queues CPU scheduling 56

57 Scheduling Criteria Different CPU scheduling algorithms have different properties, and the choice of a particular algorithm may favor one class of processes over another. Many criteria have been suggested for comparing CPU scheduling algorithms. Which characteristics are used for comparison can make a substantial difference in which algorithm is judged to be best. The criteria include the following: CPU scheduling 57

58 Scheduling Criteria CPU utilization keep the CPU as busy as possible Throughput # of processes that complete their execution per time unit Turnaround time From the point of view of a particular process amount of time to execute a particular process Waiting time amount of time a process has been waiting in the ready queue Response time amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment) CPU scheduling 58

59 Scheduling Algorithm Optimization Criteria Max CPU utilization Max throughput Min turnaround time Min waiting time Min response time CPU scheduling 59

60 Multilevel Queue Scheduling-Example ML queue, 2 levels 10 units FCFS RR gets priority over FCFS Process Arrival Burst Queue P FCFS P RR P FCFS P RR Non-preemptive and preemptive Draw a Gantt charts to represent this algorithm both for preemptive and non-preemptive Compute average waiting and turn around time. CPU scheduling 60

61 Ole Sangale Road, Madaraka Estate. PO Box , Nairobi, Kenya Tel: (+254) (0) /200/300 Fax : +254 (0) info@strathmore.edu Website:

Objectives. Chapter 5: CPU Scheduling. CPU Scheduler. Non-preemptive and preemptive. Dispatcher. Alternating Sequence of CPU And I/O Bursts

Objectives. Chapter 5: CPU Scheduling. CPU Scheduler. Non-preemptive and preemptive. Dispatcher. Alternating Sequence of CPU And I/O Bursts Objectives Chapter 5: CPU Scheduling Introduce CPU scheduling, which is the basis for multiprogrammed operating systems Describe various CPU-scheduling algorithms Discuss evaluation criteria for selecting

More information

Objectives. Chapter 5: Process Scheduling. Chapter 5: Process Scheduling. 5.1 Basic Concepts. To introduce CPU scheduling

Objectives. Chapter 5: Process Scheduling. Chapter 5: Process Scheduling. 5.1 Basic Concepts. To introduce CPU scheduling Objectives To introduce CPU scheduling To describe various CPU-scheduling algorithms Chapter 5: Process Scheduling To discuss evaluation criteria for selecting the CPUscheduling algorithm for a particular

More information

CPU Scheduling. CPU Scheduling

CPU Scheduling. CPU Scheduling CPU Scheduling Electrical and Computer Engineering Stephen Kim (dskim@iupui.edu) ECE/IUPUI RTOS & APPS 1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling

More information

CPU Scheduling. Basic Concepts. Basic Concepts (2) Basic Concepts Scheduling Criteria Scheduling Algorithms Batch systems Interactive systems

CPU Scheduling. Basic Concepts. Basic Concepts (2) Basic Concepts Scheduling Criteria Scheduling Algorithms Batch systems Interactive systems Basic Concepts Scheduling Criteria Scheduling Algorithms Batch systems Interactive systems Based on original slides by Silberschatz, Galvin and Gagne 1 Basic Concepts CPU I/O Burst Cycle Process execution

More information

W4118 Operating Systems. Instructor: Junfeng Yang

W4118 Operating Systems. Instructor: Junfeng Yang W4118 Operating Systems Instructor: Junfeng Yang Outline Introduction to scheduling Scheduling algorithms 1 Direction within course Until now: interrupts, processes, threads, synchronization Mostly mechanisms

More information

Chapter 5 Process Scheduling

Chapter 5 Process Scheduling Chapter 5 Process Scheduling CPU Scheduling Objective: Basic Scheduling Concepts CPU Scheduling Algorithms Why Multiprogramming? Maximize CPU/Resources Utilization (Based on Some Criteria) CPU Scheduling

More information

Announcements. Basic Concepts. Histogram of Typical CPU- Burst Times. Dispatcher. CPU Scheduler. Burst Cycle. Reading

Announcements. Basic Concepts. Histogram of Typical CPU- Burst Times. Dispatcher. CPU Scheduler. Burst Cycle. Reading Announcements Reading Chapter 5 Chapter 7 (Monday or Wednesday) Basic Concepts CPU I/O burst cycle Process execution consists of a cycle of CPU execution and I/O wait. CPU burst distribution What are the

More information

ICS 143 - Principles of Operating Systems

ICS 143 - Principles of Operating Systems ICS 143 - Principles of Operating Systems Lecture 5 - CPU Scheduling Prof. Nalini Venkatasubramanian nalini@ics.uci.edu Note that some slides are adapted from course text slides 2008 Silberschatz. Some

More information

Introduction. Scheduling. Types of scheduling. The basics

Introduction. Scheduling. Types of scheduling. The basics Introduction In multiprogramming systems, when there is more than one runable (i.e., ready), the operating system must decide which one to activate. The decision is made by the part of the operating system

More information

PROCESS SCHEDULING ALGORITHMS: A REVIEW

PROCESS SCHEDULING ALGORITHMS: A REVIEW Volume No, Special Issue No., May ISSN (online): -7 PROCESS SCHEDULING ALGORITHMS: A REVIEW Ekta, Satinder Student, C.R. College of Education, Hisar, Haryana, (India) Assistant Professor (Extn.), Govt.

More information

CPU Scheduling. Core Definitions

CPU Scheduling. Core Definitions CPU Scheduling General rule keep the CPU busy; an idle CPU is a wasted CPU Major source of CPU idleness: I/O (or waiting for it) Many programs have a characteristic CPU I/O burst cycle alternating phases

More information

4003-440/4003-713 Operating Systems I. Process Scheduling. Warren R. Carithers (wrc@cs.rit.edu) Rob Duncan (rwd@cs.rit.edu)

4003-440/4003-713 Operating Systems I. Process Scheduling. Warren R. Carithers (wrc@cs.rit.edu) Rob Duncan (rwd@cs.rit.edu) 4003-440/4003-713 Operating Systems I Process Scheduling Warren R. Carithers (wrc@cs.rit.edu) Rob Duncan (rwd@cs.rit.edu) Review: Scheduling Policy Ideally, a scheduling policy should: Be: fair, predictable

More information

Comp 204: Computer Systems and Their Implementation. Lecture 12: Scheduling Algorithms cont d

Comp 204: Computer Systems and Their Implementation. Lecture 12: Scheduling Algorithms cont d Comp 204: Computer Systems and Their Implementation Lecture 12: Scheduling Algorithms cont d 1 Today Scheduling continued Multilevel queues Examples Thread scheduling 2 Question A starvation-free job-scheduling

More information

OPERATING SYSTEMS SCHEDULING

OPERATING SYSTEMS SCHEDULING OPERATING SYSTEMS SCHEDULING Jerry Breecher 5: CPU- 1 CPU What Is In This Chapter? This chapter is about how to get a process attached to a processor. It centers around efficient algorithms that perform

More information

2. is the number of processes that are completed per time unit. A) CPU utilization B) Response time C) Turnaround time D) Throughput

2. is the number of processes that are completed per time unit. A) CPU utilization B) Response time C) Turnaround time D) Throughput Import Settings: Base Settings: Brownstone Default Highest Answer Letter: D Multiple Keywords in Same Paragraph: No Chapter: Chapter 5 Multiple Choice 1. Which of the following is true of cooperative scheduling?

More information

Chapter 5: CPU Scheduling. Operating System Concepts 8 th Edition

Chapter 5: CPU Scheduling. Operating System Concepts 8 th Edition Chapter 5: CPU Scheduling Silberschatz, Galvin and Gagne 2009 Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating

More information

CPU Scheduling Outline

CPU Scheduling Outline CPU Scheduling Outline What is scheduling in the OS? What are common scheduling criteria? How to evaluate scheduling algorithms? What are common scheduling algorithms? How is thread scheduling different

More information

Scheduling. Yücel Saygın. These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum

Scheduling. Yücel Saygın. These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum Scheduling Yücel Saygın These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum 1 Scheduling Introduction to Scheduling (1) Bursts of CPU usage alternate with periods

More information

CPU Scheduling. Multitasking operating systems come in two flavours: cooperative multitasking and preemptive multitasking.

CPU Scheduling. Multitasking operating systems come in two flavours: cooperative multitasking and preemptive multitasking. CPU Scheduling The scheduler is the component of the kernel that selects which process to run next. The scheduler (or process scheduler, as it is sometimes called) can be viewed as the code that divides

More information

Process Scheduling. Process Scheduler. Chapter 7. Context Switch. Scheduler. Selection Strategies

Process Scheduling. Process Scheduler. Chapter 7. Context Switch. Scheduler. Selection Strategies Chapter 7 Process Scheduling Process Scheduler Why do we even need to a process scheduler? In simplest form, CPU must be shared by > OS > Application In reality, [multiprogramming] > OS : many separate

More information

Job Scheduling Model

Job Scheduling Model Scheduling 1 Job Scheduling Model problem scenario: a set of jobs needs to be executed using a single server, on which only one job at a time may run for theith job, we have an arrival timea i and a run

More information

Operating Systems. III. Scheduling. http://soc.eurecom.fr/os/

Operating Systems. III. Scheduling. http://soc.eurecom.fr/os/ Operating Systems Institut Mines-Telecom III. Scheduling Ludovic Apvrille ludovic.apvrille@telecom-paristech.fr Eurecom, office 470 http://soc.eurecom.fr/os/ Outline Basics of Scheduling Definitions Switching

More information

Processor Scheduling. Queues Recall OS maintains various queues

Processor Scheduling. Queues Recall OS maintains various queues Processor Scheduling Chapters 9 and 10 of [OS4e], Chapter 6 of [OSC]: Queues Scheduling Criteria Cooperative versus Preemptive Scheduling Scheduling Algorithms Multi-level Queues Multiprocessor and Real-Time

More information

A Comparative Study of CPU Scheduling Algorithms

A Comparative Study of CPU Scheduling Algorithms IJGIP Journal homepage: www.ifrsa.org A Comparative Study of CPU Scheduling Algorithms Neetu Goel Research Scholar,TEERTHANKER MAHAVEER UNIVERSITY Dr. R.B. Garg Professor Delhi School of Professional Studies

More information

Scheduling. Scheduling. Scheduling levels. Decision to switch the running process can take place under the following circumstances:

Scheduling. Scheduling. Scheduling levels. Decision to switch the running process can take place under the following circumstances: Scheduling Scheduling Scheduling levels Long-term scheduling. Selects which jobs shall be allowed to enter the system. Only used in batch systems. Medium-term scheduling. Performs swapin-swapout operations

More information

Main Points. Scheduling policy: what to do next, when there are multiple threads ready to run. Definitions. Uniprocessor policies

Main Points. Scheduling policy: what to do next, when there are multiple threads ready to run. Definitions. Uniprocessor policies Scheduling Main Points Scheduling policy: what to do next, when there are multiple threads ready to run Or multiple packets to send, or web requests to serve, or Definitions response time, throughput,

More information

Process Scheduling CS 241. February 24, 2012. Copyright University of Illinois CS 241 Staff

Process Scheduling CS 241. February 24, 2012. Copyright University of Illinois CS 241 Staff Process Scheduling CS 241 February 24, 2012 Copyright University of Illinois CS 241 Staff 1 Announcements Mid-semester feedback survey (linked off web page) MP4 due Friday (not Tuesday) Midterm Next Tuesday,

More information

Analysis and Comparison of CPU Scheduling Algorithms

Analysis and Comparison of CPU Scheduling Algorithms Analysis and Comparison of CPU Scheduling Algorithms Pushpraj Singh 1, Vinod Singh 2, Anjani Pandey 3 1,2,3 Assistant Professor, VITS Engineering College Satna (MP), India Abstract Scheduling is a fundamental

More information

OS OBJECTIVE QUESTIONS

OS OBJECTIVE QUESTIONS OS OBJECTIVE QUESTIONS Which one of the following is Little s formula Where n is the average queue length, W is the time that a process waits 1)n=Lambda*W 2)n=Lambda/W 3)n=Lambda^W 4)n=Lambda*(W-n) Answer:1

More information

Operating Systems Lecture #6: Process Management

Operating Systems Lecture #6: Process Management Lecture #6: Process Written by based on the lecture series of Dr. Dayou Li and the book Understanding 4th ed. by I.M.Flynn and A.McIver McHoes (2006) Department of Computer Science and Technology,., 2013

More information

Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run

Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run SFWR ENG 3BB4 Software Design 3 Concurrent System Design 2 SFWR ENG 3BB4 Software Design 3 Concurrent System Design 11.8 10 CPU Scheduling Chapter 11 CPU Scheduling Policies Deciding which process to run

More information

Scheduling 0 : Levels. High level scheduling: Medium level scheduling: Low level scheduling

Scheduling 0 : Levels. High level scheduling: Medium level scheduling: Low level scheduling Scheduling 0 : Levels High level scheduling: Deciding whether another process can run is process table full? user process limit reached? load to swap space or memory? Medium level scheduling: Balancing

More information

Operating System: Scheduling

Operating System: Scheduling Process Management Operating System: Scheduling OS maintains a data structure for each process called Process Control Block (PCB) Information associated with each PCB: Process state: e.g. ready, or waiting

More information

CPU SCHEDULING (CONT D) NESTED SCHEDULING FUNCTIONS

CPU SCHEDULING (CONT D) NESTED SCHEDULING FUNCTIONS CPU SCHEDULING CPU SCHEDULING (CONT D) Aims to assign processes to be executed by the CPU in a way that meets system objectives such as response time, throughput, and processor efficiency Broken down into

More information

Scheduling Algorithms

Scheduling Algorithms Scheduling Algorithms List Pros and Cons for each of the four scheduler types listed below. First In First Out (FIFO) Simplicity FIFO is very easy to implement. Less Overhead FIFO will allow the currently

More information

Road Map. Scheduling. Types of Scheduling. Scheduling. CPU Scheduling. Job Scheduling. Dickinson College Computer Science 354 Spring 2010.

Road Map. Scheduling. Types of Scheduling. Scheduling. CPU Scheduling. Job Scheduling. Dickinson College Computer Science 354 Spring 2010. Road Map Scheduling Dickinson College Computer Science 354 Spring 2010 Past: What an OS is, why we have them, what they do. Base hardware and support for operating systems Process Management Threads Present:

More information

A Group based Time Quantum Round Robin Algorithm using Min-Max Spread Measure

A Group based Time Quantum Round Robin Algorithm using Min-Max Spread Measure A Group based Quantum Round Robin Algorithm using Min-Max Spread Measure Sanjaya Kumar Panda Department of CSE NIT, Rourkela Debasis Dash Department of CSE NIT, Rourkela Jitendra Kumar Rout Department

More information

CPU Scheduling. CSC 256/456 - Operating Systems Fall 2014. TA: Mohammad Hedayati

CPU Scheduling. CSC 256/456 - Operating Systems Fall 2014. TA: Mohammad Hedayati CPU Scheduling CSC 256/456 - Operating Systems Fall 2014 TA: Mohammad Hedayati Agenda Scheduling Policy Criteria Scheduling Policy Options (on Uniprocessor) Multiprocessor scheduling considerations CPU

More information

REDUCING TIME: SCHEDULING JOB. Nisha Yadav, Nikita Chhillar, Neha jaiswal

REDUCING TIME: SCHEDULING JOB. Nisha Yadav, Nikita Chhillar, Neha jaiswal Journal Of Harmonized Research (JOHR) Journal Of Harmonized Research in Engineering 1(2), 2013, 45-53 ISSN 2347 7393 Original Research Article REDUCING TIME: SCHEDULING JOB Nisha Yadav, Nikita Chhillar,

More information

Operating Systems Concepts: Chapter 7: Scheduling Strategies

Operating Systems Concepts: Chapter 7: Scheduling Strategies Operating Systems Concepts: Chapter 7: Scheduling Strategies Olav Beckmann Huxley 449 http://www.doc.ic.ac.uk/~ob3 Acknowledgements: There are lots. See end of Chapter 1. Home Page for the course: http://www.doc.ic.ac.uk/~ob3/teaching/operatingsystemsconcepts/

More information

Operating Systems, 6 th ed. Test Bank Chapter 7

Operating Systems, 6 th ed. Test Bank Chapter 7 True / False Questions: Chapter 7 Memory Management 1. T / F In a multiprogramming system, main memory is divided into multiple sections: one for the operating system (resident monitor, kernel) and one

More information

A Review on Load Balancing In Cloud Computing 1

A Review on Load Balancing In Cloud Computing 1 www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 4 Issue 6 June 2015, Page No. 12333-12339 A Review on Load Balancing In Cloud Computing 1 Peenaz Pathak, 2 Er.Kamna

More information

Overview of Presentation. (Greek to English dictionary) Different systems have different goals. What should CPU scheduling optimize?

Overview of Presentation. (Greek to English dictionary) Different systems have different goals. What should CPU scheduling optimize? Overview of Presentation (Greek to English dictionary) introduction to : elements, purpose, goals, metrics lambda request arrival rate (e.g. 200/second) non-preemptive first-come-first-served, shortest-job-next

More information

Weight-based Starvation-free Improvised Round-Robin (WSIRR) CPU Scheduling Algorithm

Weight-based Starvation-free Improvised Round-Robin (WSIRR) CPU Scheduling Algorithm International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-4, Special Issue-1 E-ISSN: 2347-2693 Weight-based Starvation-free Improvised Round-Robin (WSIRR) CPU Scheduling

More information

CPU Scheduling 101. The CPU scheduler makes a sequence of moves that determines the interleaving of threads.

CPU Scheduling 101. The CPU scheduler makes a sequence of moves that determines the interleaving of threads. CPU Scheduling CPU Scheduling 101 The CPU scheduler makes a sequence of moves that determines the interleaving of threads. Programs use synchronization to prevent bad moves. but otherwise scheduling choices

More information

Lecture Outline Overview of real-time scheduling algorithms Outline relative strengths, weaknesses

Lecture Outline Overview of real-time scheduling algorithms Outline relative strengths, weaknesses Overview of Real-Time Scheduling Embedded Real-Time Software Lecture 3 Lecture Outline Overview of real-time scheduling algorithms Clock-driven Weighted round-robin Priority-driven Dynamic vs. static Deadline

More information

A LECTURE NOTE ON CSC 322 OPERATING SYSTEM I DR. S. A. SODIYA

A LECTURE NOTE ON CSC 322 OPERATING SYSTEM I DR. S. A. SODIYA A LECTURE NOTE ON CSC 322 OPERATING SYSTEM I BY DR. S. A. SODIYA 1 SECTION ONE 1.0 INTRODUCTION TO OPERATING SYSTEMS 1.1 DEFINITIONS OF OPERATING SYSTEMS An operating system (commonly abbreviated OS and

More information

Syllabus MCA-404 Operating System - II

Syllabus MCA-404 Operating System - II Syllabus MCA-404 - II Review of basic concepts of operating system, threads; inter process communications, CPU scheduling criteria, CPU scheduling algorithms, process synchronization concepts, critical

More information

CS4410 - Fall 2008 Homework 2 Solution Due September 23, 11:59PM

CS4410 - Fall 2008 Homework 2 Solution Due September 23, 11:59PM CS4410 - Fall 2008 Homework 2 Solution Due September 23, 11:59PM Q1. Explain what goes wrong in the following version of Dekker s Algorithm: CSEnter(int i) inside[i] = true; while(inside[j]) inside[i]

More information

Readings for this topic: Silberschatz/Galvin/Gagne Chapter 5

Readings for this topic: Silberschatz/Galvin/Gagne Chapter 5 77 16 CPU Scheduling Readings for this topic: Silberschatz/Galvin/Gagne Chapter 5 Until now you have heard about processes and memory. From now on you ll hear about resources, the things operated upon

More information

Analysis of Job Scheduling Algorithms in Cloud Computing

Analysis of Job Scheduling Algorithms in Cloud Computing Analysis of Job Scheduling s in Cloud Computing Rajveer Kaur 1, Supriya Kinger 2 1 Research Fellow, Department of Computer Science and Engineering, SGGSWU, Fatehgarh Sahib, India, Punjab (140406) 2 Asst.Professor,

More information

CS414 SP 2007 Assignment 1

CS414 SP 2007 Assignment 1 CS414 SP 2007 Assignment 1 Due Feb. 07 at 11:59pm Submit your assignment using CMS 1. Which of the following should NOT be allowed in user mode? Briefly explain. a) Disable all interrupts. b) Read the

More information

A Priority based Round Robin CPU Scheduling Algorithm for Real Time Systems

A Priority based Round Robin CPU Scheduling Algorithm for Real Time Systems A Priority based Round Robin CPU Scheduling Algorithm for Real Time Systems Ishwari Singh Rajput Department of Computer Science and Engineering Amity School of Engineering and Technology, Amity University,

More information

Scheduling. Monday, November 22, 2004

Scheduling. Monday, November 22, 2004 Scheduling Page 1 Scheduling Monday, November 22, 2004 11:22 AM The scheduling problem (Chapter 9) Decide which processes are allowed to run when. Optimize throughput, response time, etc. Subject to constraints

More information

Design and performance evaluation of Advanced Priority Based Dynamic Round Robin Scheduling Algorithm (APBDRR)

Design and performance evaluation of Advanced Priority Based Dynamic Round Robin Scheduling Algorithm (APBDRR) International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-4, Special Issue-1 E-ISSN: 2347-2693 Design and performance evaluation of Advanced Priority Based Dynamic Round

More information

Efficiency of Batch Operating Systems

Efficiency of Batch Operating Systems Efficiency of Batch Operating Systems a Teodor Rus rus@cs.uiowa.edu The University of Iowa, Department of Computer Science a These slides have been developed by Teodor Rus. They are copyrighted materials

More information

Load Balancing Scheduling with Shortest Load First

Load Balancing Scheduling with Shortest Load First , pp. 171-178 http://dx.doi.org/10.14257/ijgdc.2015.8.4.17 Load Balancing Scheduling with Shortest Load First Ranjan Kumar Mondal 1, Enakshmi Nandi 2 and Debabrata Sarddar 3 1 Department of Computer Science

More information

Linux Process Scheduling Policy

Linux Process Scheduling Policy Lecture Overview Introduction to Linux process scheduling Policy versus algorithm Linux overall process scheduling objectives Timesharing Dynamic priority Favor I/O-bound process Linux scheduling algorithm

More information

Real-Time Scheduling 1 / 39

Real-Time Scheduling 1 / 39 Real-Time Scheduling 1 / 39 Multiple Real-Time Processes A runs every 30 msec; each time it needs 10 msec of CPU time B runs 25 times/sec for 15 msec C runs 20 times/sec for 5 msec For our equation, A

More information

Konzepte von Betriebssystem-Komponenten. Linux Scheduler. Valderine Kom Kenmegne Valderinek@hotmail.com. Proseminar KVBK Linux Scheduler Valderine Kom

Konzepte von Betriebssystem-Komponenten. Linux Scheduler. Valderine Kom Kenmegne Valderinek@hotmail.com. Proseminar KVBK Linux Scheduler Valderine Kom Konzepte von Betriebssystem-Komponenten Linux Scheduler Kenmegne Valderinek@hotmail.com 1 Contents: 1. Introduction 2. Scheduler Policy in Operating System 2.1 Scheduling Objectives 2.2 Some Scheduling

More information

This tutorial will take you through step by step approach while learning Operating System concepts.

This tutorial will take you through step by step approach while learning Operating System concepts. About the Tutorial An operating system (OS) is a collection of software that manages computer hardware resources and provides common services for computer programs. The operating system is a vital component

More information

Lecture 3 Theoretical Foundations of RTOS

Lecture 3 Theoretical Foundations of RTOS CENG 383 Real-Time Systems Lecture 3 Theoretical Foundations of RTOS Asst. Prof. Tolga Ayav, Ph.D. Department of Computer Engineering Task States Executing Ready Suspended (or blocked) Dormant (or sleeping)

More information

Operating System Tutorial

Operating System Tutorial Operating System Tutorial OPERATING SYSTEM TUTORIAL Simply Easy Learning by tutorialspoint.com tutorialspoint.com i ABOUT THE TUTORIAL Operating System Tutorial An operating system (OS) is a collection

More information

Scheduling policy. ULK3e 7.1. Operating Systems: Scheduling in Linux p. 1

Scheduling policy. ULK3e 7.1. Operating Systems: Scheduling in Linux p. 1 Scheduling policy ULK3e 7.1 Goals fast process response time good throughput for background jobs avoidance of process starvation reconciliation of needs of low- and high-priority processes Operating Systems:

More information

Load Balancing in Distributed System Using FCFS Algorithm with RBAC Concept and Priority Scheduling

Load Balancing in Distributed System Using FCFS Algorithm with RBAC Concept and Priority Scheduling Website: www.ijrdet.com (ISSN 47-645(Online) Volume, Issue 6, December 4) Load Balancing in Distributed System Using FCFS Algorithm with RBAC Ccept and Priority Scheduling Geeta, Charanjit Singh M.Tech

More information

218 Chapter 5 CPU Scheduling

218 Chapter 5 CPU Scheduling 218 Chapter 5 CPU Scheduling First-come, first-served (FCFS) scheduling is the simplest scheduling algorithm, but it can cause short processes to wait for very long processes. Shortestjob-first (SJF) scheduling

More information

Module 6. Embedded System Software. Version 2 EE IIT, Kharagpur 1

Module 6. Embedded System Software. Version 2 EE IIT, Kharagpur 1 Module 6 Embedded System Software Version 2 EE IIT, Kharagpur 1 Lesson 30 Real-Time Task Scheduling Part 2 Version 2 EE IIT, Kharagpur 2 Specific Instructional Objectives At the end of this lesson, the

More information

Operating Systems OBJECTIVES 7.1 DEFINITION. Chapter 7. Note:

Operating Systems OBJECTIVES 7.1 DEFINITION. Chapter 7. Note: Chapter 7 OBJECTIVES Operating Systems Define the purpose and functions of an operating system. Understand the components of an operating system. Understand the concept of virtual memory. Understand the

More information

The International Journal Of Science & Technoledge (ISSN 2321 919X) www.theijst.com

The International Journal Of Science & Technoledge (ISSN 2321 919X) www.theijst.com THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE Efficient Parallel Processing on Public Cloud Servers using Load Balancing Manjunath K. C. M.Tech IV Sem, Department of CSE, SEA College of Engineering

More information

W4118 Operating Systems. Instructor: Junfeng Yang

W4118 Operating Systems. Instructor: Junfeng Yang W4118 Operating Systems Instructor: Junfeng Yang Outline Advanced scheduling issues Multilevel queue scheduling Multiprocessor scheduling issues Real-time scheduling Scheduling in Linux Scheduling algorithm

More information

OPERATING SYSTEM - VIRTUAL MEMORY

OPERATING SYSTEM - VIRTUAL MEMORY OPERATING SYSTEM - VIRTUAL MEMORY http://www.tutorialspoint.com/operating_system/os_virtual_memory.htm Copyright tutorialspoint.com A computer can address more memory than the amount physically installed

More information

Real-Time Scheduling (Part 1) (Working Draft) Real-Time System Example

Real-Time Scheduling (Part 1) (Working Draft) Real-Time System Example Real-Time Scheduling (Part 1) (Working Draft) Insup Lee Department of Computer and Information Science School of Engineering and Applied Science University of Pennsylvania www.cis.upenn.edu/~lee/ CIS 41,

More information

Chapter 19: Real-Time Systems. Overview of Real-Time Systems. Objectives. System Characteristics. Features of Real-Time Systems

Chapter 19: Real-Time Systems. Overview of Real-Time Systems. Objectives. System Characteristics. Features of Real-Time Systems Chapter 19: Real-Time Systems System Characteristics Features of Real-Time Systems Chapter 19: Real-Time Systems Implementing Real-Time Operating Systems Real-Time CPU Scheduling VxWorks 5.x 19.2 Silberschatz,

More information

Efficient Parallel Processing on Public Cloud Servers Using Load Balancing

Efficient Parallel Processing on Public Cloud Servers Using Load Balancing Efficient Parallel Processing on Public Cloud Servers Using Load Balancing Valluripalli Srinath 1, Sudheer Shetty 2 1 M.Tech IV Sem CSE, Sahyadri College of Engineering & Management, Mangalore. 2 Asso.

More information

Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6

Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6 Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6 Winter Term 2008 / 2009 Jun.-Prof. Dr. André Brinkmann Andre.Brinkmann@uni-paderborn.de Universität Paderborn PC² Agenda Multiprocessor and

More information

Performance Comparison of RTOS

Performance Comparison of RTOS Performance Comparison of RTOS Shahmil Merchant, Kalpen Dedhia Dept Of Computer Science. Columbia University Abstract: Embedded systems are becoming an integral part of commercial products today. Mobile

More information

4. Fixed-Priority Scheduling

4. Fixed-Priority Scheduling Simple workload model 4. Fixed-Priority Scheduling Credits to A. Burns and A. Wellings The application is assumed to consist of a fixed set of tasks All tasks are periodic with known periods This defines

More information

Convenience: An OS makes a computer more convenient to use. Efficiency: An OS allows the computer system resources to be used in an efficient manner.

Convenience: An OS makes a computer more convenient to use. Efficiency: An OS allows the computer system resources to be used in an efficient manner. Introduction to Operating System PCSC-301 (For UG students) (Class notes and reference books are required to complete this study) Release Date: 27.12.2014 Operating System Objectives and Functions An OS

More information

Real-Time Software. Basic Scheduling and Response-Time Analysis. René Rydhof Hansen. 21. september 2010

Real-Time Software. Basic Scheduling and Response-Time Analysis. René Rydhof Hansen. 21. september 2010 Real-Time Software Basic Scheduling and Response-Time Analysis René Rydhof Hansen 21. september 2010 TSW (2010e) (Lecture 05) Real-Time Software 21. september 2010 1 / 28 Last Time Time in a real-time

More information

Linux scheduler history. We will be talking about the O(1) scheduler

Linux scheduler history. We will be talking about the O(1) scheduler CPU Scheduling Linux scheduler history We will be talking about the O(1) scheduler SMP Support in 2.4 and 2.6 versions 2.4 Kernel 2.6 Kernel CPU1 CPU2 CPU3 CPU1 CPU2 CPU3 Linux Scheduling 3 scheduling

More information

III. SCHEDULING MODEL A. Users: The user enters the jobs to be executed on processor in computational grid.

III. SCHEDULING MODEL A. Users: The user enters the jobs to be executed on processor in computational grid. Volume 3, Issue 5, May 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Job Scheduling Algorithm

More information

Common Approaches to Real-Time Scheduling

Common Approaches to Real-Time Scheduling Common Approaches to Real-Time Scheduling Clock-driven time-driven schedulers Priority-driven schedulers Examples of priority driven schedulers Effective timing constraints The Earliest-Deadline-First

More information

Technical Properties. Mobile Operating Systems. Overview Concepts of Mobile. Functions Processes. Lecture 11. Memory Management.

Technical Properties. Mobile Operating Systems. Overview Concepts of Mobile. Functions Processes. Lecture 11. Memory Management. Overview Concepts of Mobile Operating Systems Lecture 11 Concepts of Mobile Operating Systems Mobile Business I (WS 2007/08) Prof Dr Kai Rannenberg Chair of Mobile Business and Multilateral Security Johann

More information

Operating System Aspects. Real-Time Systems. Resource Management Tasks

Operating System Aspects. Real-Time Systems. Resource Management Tasks Operating System Aspects Chapter 2: Basics Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Multimedia Transfer and Control Protocols Quality of

More information

Performance Analysis of Load Balancing Algorithms in Distributed System

Performance Analysis of Load Balancing Algorithms in Distributed System Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 1 (2014), pp. 59-66 Research India Publications http://www.ripublication.com/aeee.htm Performance Analysis of Load Balancing

More information

Chapter 2: OS Overview

Chapter 2: OS Overview Chapter 2: OS Overview CmSc 335 Operating Systems 1. Operating system objectives and functions Operating systems control and support the usage of computer systems. a. usage users of a computer system:

More information

Load Balancing in Distributed System. Prof. Ananthanarayana V.S. Dept. Of Information Technology N.I.T.K., Surathkal

Load Balancing in Distributed System. Prof. Ananthanarayana V.S. Dept. Of Information Technology N.I.T.K., Surathkal Load Balancing in Distributed System Prof. Ananthanarayana V.S. Dept. Of Information Technology N.I.T.K., Surathkal Objectives of This Module Show the differences between the terms CPU scheduling, Job

More information

Survey of software architectures: function-queue-scheduling architecture and real time OS

Survey of software architectures: function-queue-scheduling architecture and real time OS Survey of software architectures: function-queue-scheduling architecture and real time OS Reference: Simon chapter 5 Last class: round robin with interrupts and without interrupts Function-Queue-Scheduling

More information

LAB 5: Scheduling Algorithms for Embedded Systems

LAB 5: Scheduling Algorithms for Embedded Systems LAB 5: Scheduling Algorithms for Embedded Systems Say you have a robot that is exploring an area. The computer controlling the robot has a number of tasks to do: getting sensor input, driving the wheels,

More information

Operatin g Systems: Internals and Design Principle s. Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings

Operatin g Systems: Internals and Design Principle s. Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings Operatin g Systems: Internals and Design Principle s Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles Bear in mind,

More information

Real-time scheduling algorithms, task visualization

Real-time scheduling algorithms, task visualization Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 2006 Real-time scheduling algorithms, task visualization Kevin Churnetski Follow this and additional works at:

More information

Comparison between scheduling algorithms in RTLinux and VxWorks

Comparison between scheduling algorithms in RTLinux and VxWorks Comparison between scheduling algorithms in RTLinux and VxWorks Linköpings Universitet Linköping 2006-11-19 Daniel Forsberg (danfo601@student.liu.se) Magnus Nilsson (magni141@student.liu.se) Abstract The

More information

Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 26 Real - Time POSIX. (Contd.) Ok Good morning, so let us get

More information

Predictable response times in event-driven real-time systems

Predictable response times in event-driven real-time systems Predictable response times in event-driven real-time systems Automotive 2006 - Security and Reliability in Automotive Systems Stuttgart, October 2006. Presented by: Michael González Harbour mgh@unican.es

More information

Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS?

Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS? 18-345: Introduction to Telecommunication Networks Lectures 20: Quality of Service Peter Steenkiste Spring 2015 www.cs.cmu.edu/~prs/nets-ece Overview What is QoS? Queuing discipline and scheduling Traffic

More information

174: Scheduling Systems. Emil Michta University of Zielona Gora, Zielona Gora, Poland 1 TIMING ANALYSIS IN NETWORKED MEASUREMENT CONTROL SYSTEMS

174: Scheduling Systems. Emil Michta University of Zielona Gora, Zielona Gora, Poland 1 TIMING ANALYSIS IN NETWORKED MEASUREMENT CONTROL SYSTEMS 174: Scheduling Systems Emil Michta University of Zielona Gora, Zielona Gora, Poland 1 Timing Analysis in Networked Measurement Control Systems 1 2 Introduction to Scheduling Systems 2 3 Scheduling Theory

More information

OPERATING SYSTEMS. Table of Contents. Republic of Cameroon Peace Work Fatherland School Year 2013/2014

OPERATING SYSTEMS. Table of Contents. Republic of Cameroon Peace Work Fatherland School Year 2013/2014 Ministry of Secondary Education Progressive Comprehensive High School & PCHS Mankon Bamenda Department of Computer Studies Republic of Cameroon Peace Work Fatherland School Year 2013/2014 OPERATING SYSTEMS

More information

Project No. 2: Process Scheduling in Linux Submission due: April 28, 2014, 11:59pm

Project No. 2: Process Scheduling in Linux Submission due: April 28, 2014, 11:59pm Project No. 2: Process Scheduling in Linux Submission due: April 28, 2014, 11:59pm PURPOSE Getting familiar with the Linux kernel source code. Understanding process scheduling and how different parameters

More information

3. Scheduling issues. Common approaches /1. Common approaches /2. Common approaches /3. 2012/13 UniPD / T. Vardanega 23/01/2013. Real-Time Systems 1

3. Scheduling issues. Common approaches /1. Common approaches /2. Common approaches /3. 2012/13 UniPD / T. Vardanega 23/01/2013. Real-Time Systems 1 Common approaches /1 3. Scheduling issues Clock-driven (time-driven) scheduling Scheduling decisions are made beforehand (off line) and carried out at predefined time instants The time instants normally

More information

2.2 การจ ดการตารางงานของซ พ ย ( CPU Scheduling )

2.2 การจ ดการตารางงานของซ พ ย ( CPU Scheduling ) 2.2 การจ ดการตารางงานของซ พ ย ( CPU Scheduling ) - CPU Utilization 2.2.1 ช วงเวลากระทาของซ พ ย และ ของอ ปกรณ นาเข าก บส งออก ( CPU I/O Burst Cycle ) : Load Store Add Store Read from file Wait for I/O Store

More information