Scheduling policy. ULK3e 7.1. Operating Systems: Scheduling in Linux p. 1
|
|
|
- Georgiana Eaton
- 10 years ago
- Views:
Transcription
1 Scheduling policy ULK3e 7.1 Goals fast process response time good throughput for background jobs avoidance of process starvation reconciliation of needs of low- and high-priority processes Operating Systems: Scheduling in Linux p. 1
2 Scheduling policy ULK2e 11.1 Combination of priority scheduling + round robin scheduling Preemptive when a process enters the TASK_RUNNING state, kernel checks priority if priority of current task is less than priority of new process, it is preempted Priority is dynamically calculated increase priority of waiting processes decrease priority of processes running for a long time Operating Systems: Scheduling in Linux p. 2
3 2.4 Scheduler 2.4 Scheduler Operating Systems: Scheduling in Linux p. 3
4 Static priority (rt_priority) assigned to real-time processes only ranges from 1 to 99; 0 for conventional processes never changed by the scheduler Priorities Dynamic priority applies only to conventional processes dynamic priority of conventional process is always less than static priority of real-time process Operating Systems: Scheduling in Linux p. 4
5 Scheduling algorithm ULK2e 11.2 CPU time is divided into epochs In each epoch, every process gets a specified time quantum quantum = maximum CPU time assigned to the process in that epoch duration of quantum computed when epoch begins different processes may have different time quantum durations when process forks, remainder of parent s quantum is split / shared between parent and child Epoch ends when all runnable processes have exhausted their quanta At end of epoch, scheduler algorithm recomputes the time-quantum durations of all processes; new epoch begins Operating Systems: Scheduling in Linux p. 5
6 Implementation Scheduling related fields in proc structure counter: contains quantum alloted to a process when new epoch begins decremented for current process by 1 at every tick nice: contains values ranging between -20 and +19 negative values high priority processes positive values low priority processes 0 (default value) normal processes. Operating Systems: Scheduling in Linux p. 6
7 Scheduling algorithm Process selection: c = -1000; list_for_each(tmp, &runqueue_head) { p = list_entry(tmp, struct task_struct, run_list); if (p->cpus_runnable & p->cpus_allowed & (1 << this_cpu)) { int weight = goodness(p, this_cpu, prev->active_mm); if (weight > c) c = weight, next = p; // break ties using FCFS } } Best candidate may be the current process c == 0 new epoch begins for_each_task(p) // all EXISTING processes p->counter = (p->counter >> 1) + (20 - p->nice) / 4 + 1; Operating Systems: Scheduling in Linux p. 7
8 goodness() Case I: p is a conventional process that has exhausted its quantum (p->counter is zero) weight = 0 Case II: p is a conventional process that has not exhausted its quantum weight = p->counter p->nice; if (p->processor == this_cpu) weight +=15; if (p->mm == this_mm!p->mm) weight += 1; /* 2 <= weight <= 77 */ Case III: p is a real-time process weight = p->counter // weight >= 1000 Operating Systems: Scheduling in Linux p. 8
9 Limitations ULK2e Scalability: if # of existing/runnable processes is large inefficient to recompute all dynamic priorities I/O bound processes are boosted only at the end of an epoch interactive applications have longer response time if number of runnable processes is large I/O-bound process boosting strategy: batch programs with almost no user interaction may be I/O-bound e.g. database search engine, network application that collects data from a remote host on a slow link Operating Systems: Scheduling in Linux p. 9
10 2.6 Scheduler 2.6 Scheduler Operating Systems: Scheduling in Linux p. 10
11 Priorities ULK3e 7.2 Static priority (static_prio) low value high priority 0 99: real-time processes : conventional process default value is 120 may be changed via nice() new process inherits static priority of its parent Base time quantum time (ms) allocated to a process when it has exhausted its previous time quantum if (static_prio < 120) base = (140-static_prio) * 20; else if (static_prio >= 120) base = (140-static_prio)*5; Operating Systems: Scheduling in Linux p. 11
12 Priorities Dynamic priority (prio) interactive tasks receive a prio bonus CPU bound tasks receive a prio penalty prio = MAX(100, MIN(static_prio - bonus + 5, 139)) where bonus = MIN(sleep_avg / 100, 10) Operating Systems: Scheduling in Linux p. 12
13 Active vs. expired processes Active processes: runnable processes that have not yet exhausted their time quantum Expired processes: runnable processes that have exhausted their time quantum Time quantum is recalculated on expiry (cf. base time quantum) Active batch processes that finish time quantum expire Active interactive processes that finish time quantum: if the eldest expired process has already waited for a long time, or if an expired process has higher static priority than the interactive process expire otherwise, time quantum is refilled and process remains in the set of active processes Process is interactive if bonus - 5 >= static_prio / 4-28 Operating Systems: Scheduling in Linux p. 13
14 ULK3e 7.3 Data structures Bitmap keeps track of which process lists are non-empty Operating Systems: Scheduling in Linux p. 14
15 scheduler_tick() 1. Decrease the ticks left in the allocated time of the process. 2. Update dynamic priority using sleep_avg. 3. If necessary, refill the time allocation for the process with the base quantum. 4. Insert process in expired queue / active queue based on (i) whether the task is interactive, (ii) whether the expired tasks are starving, (iii) relative priority of the process w.r.t. expired processes. Operating Systems: Scheduling in Linux p. 15
Linux scheduler history. We will be talking about the O(1) scheduler
CPU Scheduling Linux scheduler history We will be talking about the O(1) scheduler SMP Support in 2.4 and 2.6 versions 2.4 Kernel 2.6 Kernel CPU1 CPU2 CPU3 CPU1 CPU2 CPU3 Linux Scheduling 3 scheduling
Scheduling 0 : Levels. High level scheduling: Medium level scheduling: Low level scheduling
Scheduling 0 : Levels High level scheduling: Deciding whether another process can run is process table full? user process limit reached? load to swap space or memory? Medium level scheduling: Balancing
Scheduling. Yücel Saygın. These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum
Scheduling Yücel Saygın These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum 1 Scheduling Introduction to Scheduling (1) Bursts of CPU usage alternate with periods
Linux Process Scheduling Policy
Lecture Overview Introduction to Linux process scheduling Policy versus algorithm Linux overall process scheduling objectives Timesharing Dynamic priority Favor I/O-bound process Linux scheduling algorithm
W4118 Operating Systems. Instructor: Junfeng Yang
W4118 Operating Systems Instructor: Junfeng Yang Outline Advanced scheduling issues Multilevel queue scheduling Multiprocessor scheduling issues Real-time scheduling Scheduling in Linux Scheduling algorithm
Comp 204: Computer Systems and Their Implementation. Lecture 12: Scheduling Algorithms cont d
Comp 204: Computer Systems and Their Implementation Lecture 12: Scheduling Algorithms cont d 1 Today Scheduling continued Multilevel queues Examples Thread scheduling 2 Question A starvation-free job-scheduling
Process Scheduling in Linux
Process Scheduling in Linux Scheduling Mechanism: how to switch. Scheduling Policy: when to switch and what process to choose. Some scheduling objectives: fast process response time avoidance of process
Operating Systems Concepts: Chapter 7: Scheduling Strategies
Operating Systems Concepts: Chapter 7: Scheduling Strategies Olav Beckmann Huxley 449 http://www.doc.ic.ac.uk/~ob3 Acknowledgements: There are lots. See end of Chapter 1. Home Page for the course: http://www.doc.ic.ac.uk/~ob3/teaching/operatingsystemsconcepts/
Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6
Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6 Winter Term 2008 / 2009 Jun.-Prof. Dr. André Brinkmann [email protected] Universität Paderborn PC² Agenda Multiprocessor and
Process Scheduling CS 241. February 24, 2012. Copyright University of Illinois CS 241 Staff
Process Scheduling CS 241 February 24, 2012 Copyright University of Illinois CS 241 Staff 1 Announcements Mid-semester feedback survey (linked off web page) MP4 due Friday (not Tuesday) Midterm Next Tuesday,
Linux Scheduler. Linux Scheduler
or or Affinity Basic Interactive es 1 / 40 Reality... or or Affinity Basic Interactive es The Linux scheduler tries to be very efficient To do that, it uses some complex data structures Some of what it
CPU Scheduling. Basic Concepts. Basic Concepts (2) Basic Concepts Scheduling Criteria Scheduling Algorithms Batch systems Interactive systems
Basic Concepts Scheduling Criteria Scheduling Algorithms Batch systems Interactive systems Based on original slides by Silberschatz, Galvin and Gagne 1 Basic Concepts CPU I/O Burst Cycle Process execution
Konzepte von Betriebssystem-Komponenten. Linux Scheduler. Valderine Kom Kenmegne [email protected]. Proseminar KVBK Linux Scheduler Valderine Kom
Konzepte von Betriebssystem-Komponenten Linux Scheduler Kenmegne [email protected] 1 Contents: 1. Introduction 2. Scheduler Policy in Operating System 2.1 Scheduling Objectives 2.2 Some Scheduling
Linux O(1) CPU Scheduler. Amit Gud amit (dot) gud (at) veritas (dot) com http://amitgud.tk
Linux O(1) CPU Scheduler Amit Gud amit (dot) gud (at) veritas (dot) com http://amitgud.tk April 27, 2005 Agenda CPU scheduler basics CPU scheduler algorithms overview Linux CPU scheduler goals What is
Process Scheduling II
Process Scheduling II COMS W4118 Prof. Kaustubh R. Joshi [email protected] hdp://www.cs.columbia.edu/~krj/os References: OperaWng Systems Concepts (9e), Linux Kernel Development, previous W4118s Copyright
Operating Systems. III. Scheduling. http://soc.eurecom.fr/os/
Operating Systems Institut Mines-Telecom III. Scheduling Ludovic Apvrille [email protected] Eurecom, office 470 http://soc.eurecom.fr/os/ Outline Basics of Scheduling Definitions Switching
ò Paper reading assigned for next Thursday ò Lab 2 due next Friday ò What is cooperative multitasking? ò What is preemptive multitasking?
Housekeeping Paper reading assigned for next Thursday Scheduling Lab 2 due next Friday Don Porter CSE 506 Lecture goals Undergrad review Understand low-level building blocks of a scheduler Understand competing
CPU Scheduling. CPU Scheduling
CPU Scheduling Electrical and Computer Engineering Stephen Kim ([email protected]) ECE/IUPUI RTOS & APPS 1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling
Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run
SFWR ENG 3BB4 Software Design 3 Concurrent System Design 2 SFWR ENG 3BB4 Software Design 3 Concurrent System Design 11.8 10 CPU Scheduling Chapter 11 CPU Scheduling Policies Deciding which process to run
Processor Scheduling. Queues Recall OS maintains various queues
Processor Scheduling Chapters 9 and 10 of [OS4e], Chapter 6 of [OSC]: Queues Scheduling Criteria Cooperative versus Preemptive Scheduling Scheduling Algorithms Multi-level Queues Multiprocessor and Real-Time
Scheduling Algorithms
Scheduling Algorithms List Pros and Cons for each of the four scheduler types listed below. First In First Out (FIFO) Simplicity FIFO is very easy to implement. Less Overhead FIFO will allow the currently
CPU SCHEDULING (CONT D) NESTED SCHEDULING FUNCTIONS
CPU SCHEDULING CPU SCHEDULING (CONT D) Aims to assign processes to be executed by the CPU in a way that meets system objectives such as response time, throughput, and processor efficiency Broken down into
CPU Scheduling Outline
CPU Scheduling Outline What is scheduling in the OS? What are common scheduling criteria? How to evaluate scheduling algorithms? What are common scheduling algorithms? How is thread scheduling different
Scheduling. Scheduling. Scheduling levels. Decision to switch the running process can take place under the following circumstances:
Scheduling Scheduling Scheduling levels Long-term scheduling. Selects which jobs shall be allowed to enter the system. Only used in batch systems. Medium-term scheduling. Performs swapin-swapout operations
Chapter 5 Process Scheduling
Chapter 5 Process Scheduling CPU Scheduling Objective: Basic Scheduling Concepts CPU Scheduling Algorithms Why Multiprogramming? Maximize CPU/Resources Utilization (Based on Some Criteria) CPU Scheduling
Objectives. Chapter 5: Process Scheduling. Chapter 5: Process Scheduling. 5.1 Basic Concepts. To introduce CPU scheduling
Objectives To introduce CPU scheduling To describe various CPU-scheduling algorithms Chapter 5: Process Scheduling To discuss evaluation criteria for selecting the CPUscheduling algorithm for a particular
Completely Fair Scheduler and its tuning 1
Completely Fair Scheduler and its tuning 1 Jacek Kobus and Rafał Szklarski 1 Introduction The introduction of a new, the so called completely fair scheduler (CFS) to the Linux kernel 2.6.23 (October 2007)
OPERATING SYSTEMS SCHEDULING
OPERATING SYSTEMS SCHEDULING Jerry Breecher 5: CPU- 1 CPU What Is In This Chapter? This chapter is about how to get a process attached to a processor. It centers around efficient algorithms that perform
CPU Scheduling. Multitasking operating systems come in two flavours: cooperative multitasking and preemptive multitasking.
CPU Scheduling The scheduler is the component of the kernel that selects which process to run next. The scheduler (or process scheduler, as it is sometimes called) can be viewed as the code that divides
Operating Systems Lecture #6: Process Management
Lecture #6: Process Written by based on the lecture series of Dr. Dayou Li and the book Understanding 4th ed. by I.M.Flynn and A.McIver McHoes (2006) Department of Computer Science and Technology,., 2013
Job Scheduling Model
Scheduling 1 Job Scheduling Model problem scenario: a set of jobs needs to be executed using a single server, on which only one job at a time may run for theith job, we have an arrival timea i and a run
Operating System: Scheduling
Process Management Operating System: Scheduling OS maintains a data structure for each process called Process Control Block (PCB) Information associated with each PCB: Process state: e.g. ready, or waiting
Objectives. Chapter 5: CPU Scheduling. CPU Scheduler. Non-preemptive and preemptive. Dispatcher. Alternating Sequence of CPU And I/O Bursts
Objectives Chapter 5: CPU Scheduling Introduce CPU scheduling, which is the basis for multiprogrammed operating systems Describe various CPU-scheduling algorithms Discuss evaluation criteria for selecting
W4118 Operating Systems. Instructor: Junfeng Yang
W4118 Operating Systems Instructor: Junfeng Yang Outline Introduction to scheduling Scheduling algorithms 1 Direction within course Until now: interrupts, processes, threads, synchronization Mostly mechanisms
Real-Time Scheduling 1 / 39
Real-Time Scheduling 1 / 39 Multiple Real-Time Processes A runs every 30 msec; each time it needs 10 msec of CPU time B runs 25 times/sec for 15 msec C runs 20 times/sec for 5 msec For our equation, A
CPU Scheduling. Core Definitions
CPU Scheduling General rule keep the CPU busy; an idle CPU is a wasted CPU Major source of CPU idleness: I/O (or waiting for it) Many programs have a characteristic CPU I/O burst cycle alternating phases
ò Scheduling overview, key trade-offs, etc. ò O(1) scheduler older Linux scheduler ò Today: Completely Fair Scheduler (CFS) new hotness
Last time Scheduling overview, key trade-offs, etc. O(1) scheduler older Linux scheduler Scheduling, part 2 Don Porter CSE 506 Today: Completely Fair Scheduler (CFS) new hotness Other advanced scheduling
Chapter 5: CPU Scheduling. Operating System Concepts 8 th Edition
Chapter 5: CPU Scheduling Silberschatz, Galvin and Gagne 2009 Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating
ICS 143 - Principles of Operating Systems
ICS 143 - Principles of Operating Systems Lecture 5 - CPU Scheduling Prof. Nalini Venkatasubramanian [email protected] Note that some slides are adapted from course text slides 2008 Silberschatz. Some
Readings for this topic: Silberschatz/Galvin/Gagne Chapter 5
77 16 CPU Scheduling Readings for this topic: Silberschatz/Galvin/Gagne Chapter 5 Until now you have heard about processes and memory. From now on you ll hear about resources, the things operated upon
Announcements. Basic Concepts. Histogram of Typical CPU- Burst Times. Dispatcher. CPU Scheduler. Burst Cycle. Reading
Announcements Reading Chapter 5 Chapter 7 (Monday or Wednesday) Basic Concepts CPU I/O burst cycle Process execution consists of a cycle of CPU execution and I/O wait. CPU burst distribution What are the
CPU Scheduling 101. The CPU scheduler makes a sequence of moves that determines the interleaving of threads.
CPU Scheduling CPU Scheduling 101 The CPU scheduler makes a sequence of moves that determines the interleaving of threads. Programs use synchronization to prevent bad moves. but otherwise scheduling choices
Linux Process Scheduling. sched.c. schedule() scheduler_tick() hooks. try_to_wake_up() ... CFS CPU 0 CPU 1 CPU 2 CPU 3
Linux Process Scheduling sched.c schedule() scheduler_tick() try_to_wake_up() hooks RT CPU 0 CPU 1 CFS CPU 2 CPU 3 Linux Process Scheduling 1. Task Classification 2. Scheduler Skeleton 3. Completely Fair
Threads Scheduling on Linux Operating Systems
Threads Scheduling on Linux Operating Systems Igli Tafa 1, Stavri Thomollari 2, Julian Fejzaj 3 Polytechnic University of Tirana, Faculty of Information Technology 1,2 University of Tirana, Faculty of
Main Points. Scheduling policy: what to do next, when there are multiple threads ready to run. Definitions. Uniprocessor policies
Scheduling Main Points Scheduling policy: what to do next, when there are multiple threads ready to run Or multiple packets to send, or web requests to serve, or Definitions response time, throughput,
2. is the number of processes that are completed per time unit. A) CPU utilization B) Response time C) Turnaround time D) Throughput
Import Settings: Base Settings: Brownstone Default Highest Answer Letter: D Multiple Keywords in Same Paragraph: No Chapter: Chapter 5 Multiple Choice 1. Which of the following is true of cooperative scheduling?
Project No. 2: Process Scheduling in Linux Submission due: April 28, 2014, 11:59pm
Project No. 2: Process Scheduling in Linux Submission due: April 28, 2014, 11:59pm PURPOSE Getting familiar with the Linux kernel source code. Understanding process scheduling and how different parameters
Load Balancing in Distributed System. Prof. Ananthanarayana V.S. Dept. Of Information Technology N.I.T.K., Surathkal
Load Balancing in Distributed System Prof. Ananthanarayana V.S. Dept. Of Information Technology N.I.T.K., Surathkal Objectives of This Module Show the differences between the terms CPU scheduling, Job
Linux process scheduling
Linux process scheduling David Morgan General neediness categories realtime processes whenever they demand attention, need it immediately other processes interactive care about responsiveness demand no
4003-440/4003-713 Operating Systems I. Process Scheduling. Warren R. Carithers ([email protected]) Rob Duncan ([email protected])
4003-440/4003-713 Operating Systems I Process Scheduling Warren R. Carithers ([email protected]) Rob Duncan ([email protected]) Review: Scheduling Policy Ideally, a scheduling policy should: Be: fair, predictable
Road Map. Scheduling. Types of Scheduling. Scheduling. CPU Scheduling. Job Scheduling. Dickinson College Computer Science 354 Spring 2010.
Road Map Scheduling Dickinson College Computer Science 354 Spring 2010 Past: What an OS is, why we have them, what they do. Base hardware and support for operating systems Process Management Threads Present:
Mitigating Starvation of Linux CPU-bound Processes in the Presence of Network I/O
Mitigating Starvation of Linux CPU-bound Processes in the Presence of Network I/O 1 K. Salah 1 Computer Engineering Department Khalifa University of Science Technology and Research (KUSTAR) Sharjah, UAE
Process Scheduling. Process Scheduler. Chapter 7. Context Switch. Scheduler. Selection Strategies
Chapter 7 Process Scheduling Process Scheduler Why do we even need to a process scheduler? In simplest form, CPU must be shared by > OS > Application In reality, [multiprogramming] > OS : many separate
Tasks Schedule Analysis in RTAI/Linux-GPL
Tasks Schedule Analysis in RTAI/Linux-GPL Claudio Aciti and Nelson Acosta INTIA - Depto de Computación y Sistemas - Facultad de Ciencias Exactas Universidad Nacional del Centro de la Provincia de Buenos
Understanding the Linux 2.6.8.1 CPU Scheduler
Understanding the Linux 2.6.8.1 CPU Scheduler By Josh Aas c 2005 Silicon Graphics, Inc. (SGI) 17th February 2005 Contents 1 Introduction 3 1.1 Paper Overview............................ 3 1.2 Linux Kernel
Understanding the Linux 2.6.8.1 CPU Scheduler
Understanding the Linux 2.6.8.1 CPU Scheduler By Josh Aas c 2005 Silicon Graphics, Inc. (SGI) 17th February 2005 Contents 1 Introduction 3 1.1 Paper Overview............................................
CS4410 - Fall 2008 Homework 2 Solution Due September 23, 11:59PM
CS4410 - Fall 2008 Homework 2 Solution Due September 23, 11:59PM Q1. Explain what goes wrong in the following version of Dekker s Algorithm: CSEnter(int i) inside[i] = true; while(inside[j]) inside[i]
Introduction. Scheduling. Types of scheduling. The basics
Introduction In multiprogramming systems, when there is more than one runable (i.e., ready), the operating system must decide which one to activate. The decision is made by the part of the operating system
Linux Block I/O Scheduling. Aaron Carroll [email protected] December 22, 2007
Linux Block I/O Scheduling Aaron Carroll [email protected] December 22, 2007 As of version 2.6.24, the mainline Linux tree provides four block I/O schedulers: Noop, Deadline, Anticipatory (AS)
Improvement of Scheduling Granularity for Deadline Scheduler
Improvement of Scheduling Granularity for Deadline Scheduler Yoshitake Kobayashi Advanced Software Technology Group Corporate Software Engineering Center TOSHIBA CORPORATION Copyright 2012, Toshiba Corporation.
Operating Systems, 6 th ed. Test Bank Chapter 7
True / False Questions: Chapter 7 Memory Management 1. T / F In a multiprogramming system, main memory is divided into multiple sections: one for the operating system (resident monitor, kernel) and one
Lecture Outline Overview of real-time scheduling algorithms Outline relative strengths, weaknesses
Overview of Real-Time Scheduling Embedded Real-Time Software Lecture 3 Lecture Outline Overview of real-time scheduling algorithms Clock-driven Weighted round-robin Priority-driven Dynamic vs. static Deadline
A Group based Time Quantum Round Robin Algorithm using Min-Max Spread Measure
A Group based Quantum Round Robin Algorithm using Min-Max Spread Measure Sanjaya Kumar Panda Department of CSE NIT, Rourkela Debasis Dash Department of CSE NIT, Rourkela Jitendra Kumar Rout Department
Chapter 5 Linux Load Balancing Mechanisms
Chapter 5 Linux Load Balancing Mechanisms Load balancing mechanisms in multiprocessor systems have two compatible objectives. One is to prevent processors from being idle while others processors still
CPU Scheduling. CSC 256/456 - Operating Systems Fall 2014. TA: Mohammad Hedayati
CPU Scheduling CSC 256/456 - Operating Systems Fall 2014 TA: Mohammad Hedayati Agenda Scheduling Policy Criteria Scheduling Policy Options (on Uniprocessor) Multiprocessor scheduling considerations CPU
CS414 SP 2007 Assignment 1
CS414 SP 2007 Assignment 1 Due Feb. 07 at 11:59pm Submit your assignment using CMS 1. Which of the following should NOT be allowed in user mode? Briefly explain. a) Disable all interrupts. b) Read the
10.04.2008. Thomas Fahrig Senior Developer Hypervisor Team. Hypervisor Architecture Terminology Goals Basics Details
Thomas Fahrig Senior Developer Hypervisor Team Hypervisor Architecture Terminology Goals Basics Details Scheduling Interval External Interrupt Handling Reserves, Weights and Caps Context Switch Waiting
Multilevel Load Balancing in NUMA Computers
FACULDADE DE INFORMÁTICA PUCRS - Brazil http://www.pucrs.br/inf/pos/ Multilevel Load Balancing in NUMA Computers M. Corrêa, R. Chanin, A. Sales, R. Scheer, A. Zorzo Technical Report Series Number 049 July,
Task Scheduling for Multicore Embedded Devices
Embedded Linux Conference 2013 Task Scheduling for Multicore Embedded Devices 2013. 02. 22. Gap-Joo Na ([email protected]) Contents 2 What is multicore?? 1. Multicore trends 2. New Architectures 3. Software
On Linux Starvation of CPU-bound Processes in the Presence of Network I/O
On Linux Starvation of CPU-bound Processes in the Presence of Network I/O 1 K. Salah 1 Computer Engineering Department Khalifa University of Science Technology and Research (KUSTAR) Sharjah, UAE Email:
Job Scheduling for MapReduce
UC Berkeley Job Scheduling for MapReduce Matei Zaharia, Dhruba Borthakur *, Joydeep Sen Sarma *, Scott Shenker, Ion Stoica RAD Lab, * Facebook Inc 1 Motivation Hadoop was designed for large batch jobs
Overview of the Linux Scheduler Framework
Overview of the Linux Scheduler Framework WORKSHOP ON REAL-TIME SCHEDULING IN THE LINUX KERNEL Pisa, June 27th, 2014 Marco Cesati University of Rome Tor Vergata Marco Cesati (Univ. of Rome Tor Vergata)
Jorix kernel: real-time scheduling
Jorix kernel: real-time scheduling Joris Huizer Kwie Min Wong May 16, 2007 1 Introduction As a specialized part of the kernel, we implemented two real-time scheduling algorithms: RM (rate monotonic) and
Technical Properties. Mobile Operating Systems. Overview Concepts of Mobile. Functions Processes. Lecture 11. Memory Management.
Overview Concepts of Mobile Operating Systems Lecture 11 Concepts of Mobile Operating Systems Mobile Business I (WS 2007/08) Prof Dr Kai Rannenberg Chair of Mobile Business and Multilateral Security Johann
Real- Time Scheduling
Real- Time Scheduling Chenyang Lu CSE 467S Embedded Compu5ng Systems Readings Ø Single-Processor Scheduling: Hard Real-Time Computing Systems, by G. Buttazzo. q Chapter 4 Periodic Task Scheduling q Chapter
4. Fixed-Priority Scheduling
Simple workload model 4. Fixed-Priority Scheduling Credits to A. Burns and A. Wellings The application is assumed to consist of a fixed set of tasks All tasks are periodic with known periods This defines
Scheduling algorithms for Linux
Scheduling algorithms for Linux Anders Peter Fugmann IMM-THESIS-2002-65 IMM Trykt af IMM, DTU Foreword This report is the result of a masters thesis entitled Scheduling algorithms for Linux. The thesis
A Markovian Sensibility Analysis for Parallel Processing Scheduling on GNU/Linux
A Markovian Sensibility Analysis for Parallel Processing Scheduling on GNU/Linux Regiane Y. Kawasaki 1, Luiz Affonso Guedes 2, Diego L. Cardoso 1, Carlos R. L. Francês 1, Glaucio H. S. Carvalho 1, Solon
OS OBJECTIVE QUESTIONS
OS OBJECTIVE QUESTIONS Which one of the following is Little s formula Where n is the average queue length, W is the time that a process waits 1)n=Lambda*W 2)n=Lambda/W 3)n=Lambda^W 4)n=Lambda*(W-n) Answer:1
REAL TIME OPERATING SYSTEMS. Lesson-10:
REAL TIME OPERATING SYSTEMS Lesson-10: Real Time Operating System 1 1. Real Time Operating System Definition 2 Real Time A real time is the time which continuously increments at regular intervals after
Linux Load Balancing
Linux Load Balancing Hyunmin Yoon 2 Load Balancing Linux scheduler attempts to evenly distribute load across CPUs Load of CPU (run queue): sum of task weights Load balancing is triggered by Timer interrupts
Lecture 3 Theoretical Foundations of RTOS
CENG 383 Real-Time Systems Lecture 3 Theoretical Foundations of RTOS Asst. Prof. Tolga Ayav, Ph.D. Department of Computer Engineering Task States Executing Ready Suspended (or blocked) Dormant (or sleeping)
PROCESS SCHEDULING ALGORITHMS: A REVIEW
Volume No, Special Issue No., May ISSN (online): -7 PROCESS SCHEDULING ALGORITHMS: A REVIEW Ekta, Satinder Student, C.R. College of Education, Hisar, Haryana, (India) Assistant Professor (Extn.), Govt.
A Review on Load Balancing In Cloud Computing 1
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 4 Issue 6 June 2015, Page No. 12333-12339 A Review on Load Balancing In Cloud Computing 1 Peenaz Pathak, 2 Er.Kamna
Safe Kernel Scheduler Development with Bossa
Safe Kernel Scheduler Development with Bossa Gilles Muller Obasco Group, Ecole des Mines de Nantes/INRIA, LINA Julia L. Lawall DIKU, University of Copenhagen http://www.emn.fr/x-info/bossa 1 1 Process
Process definition Concurrency Process status Process attributes PROCESES 1.3
Process Management Outline Main concepts Basic services for process management (Linux based) Inter process communications: Linux Signals and synchronization Internal process management Basic data structures:
CS 377: Operating Systems. Outline. A review of what you ve learned, and how it applies to a real operating system. Lecture 25 - Linux Case Study
CS 377: Operating Systems Lecture 25 - Linux Case Study Guest Lecturer: Tim Wood Outline Linux History Design Principles System Overview Process Scheduling Memory Management File Systems A review of what
Announcements. Midterms. Mt #1 Tuesday March 6 Mt #2 Tuesday April 15 Final project design due April 11. Chapters 1 & 2 Chapter 5 (to 5.
Announcements Midterms Mt #1 Tuesday March 6 Mt #2 Tuesday April 15 Final project design due April 11 Midterm #1 Chapters 1 & 2 Chapter 5 (to 5.2) 1 Congestion Too much traffic can destroy performance
Operating System Aspects. Real-Time Systems. Resource Management Tasks
Operating System Aspects Chapter 2: Basics Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Multimedia Transfer and Control Protocols Quality of
A Comparative Study of CPU Scheduling Algorithms
IJGIP Journal homepage: www.ifrsa.org A Comparative Study of CPU Scheduling Algorithms Neetu Goel Research Scholar,TEERTHANKER MAHAVEER UNIVERSITY Dr. R.B. Garg Professor Delhi School of Professional Studies
