Introduction to the course Chemical Reaction Engineering I
|
|
- Helen Edwards
- 2 years ago
- Views:
Transcription
1 Introduction to the course Chemical Reaction Engineering I Gabriele Pannocchia First Year course, MS in Chemical Engineering, University of Pisa Academic Year Department of Civil and Industrial Engineering (DICI) University of Pisa Italy Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 1 / 16
2 Outline 1 Setting the stage An overview of chemical processes Introduction to Chemical Reaction Engineering An example process 2 Course presentation General information Objectives and methodology Syllabus Course material Student office hours Examination Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 2 / 16
3 General scheme of a chemical process Reactants Recycle Raw Materials Physical Treatment Chemical Reaction Separation (physical) Product (recycle) Effluent Treatment Secondary Products Reactants Recycle Waste Raw Materials Physical Treatment Chemical Reaction Separation (physical) Product (recycle) Effluent Treatment Secondary Products Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 3 / 16
4 Introduction Basics of reactor design and analysis We use three main reactor architectures: batch, continuous-stirred tank, plug-flow reactors Complex reactors can be approximated as a combination of them Material and energy balances for the three reactors are first-order, nonlinear ordinary differential equations (ODEs) or nonlinear algebraic equations Momentum balance is usually neglected although fluid flow patterns are sometimes addressed Concentration, pressure, temperature are dependent variables, whereas time or distance along the reactor are independent variables In simple cases, balances can be solved easily. In more general cases, computational languages are necessary Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 4 / 16
5 Terminology Classifications and Terminology Ideal reactors have certain assumption on the fluid flow: Batch and continuous-stirred tank reactors are assumed to be ideally well mixed (all properties are homogeneous in space) Plug-flow is a special type of flow in a tube in which the fluid is perfectly mixed in radial direction and varies continuously in axial direction The phase in which the reaction occurs is important: In homogeneous reactions, reactants and products are in a single (fluid) phase Sometimes reactants and products are transported in one phase (often gas) but the reaction occurs over another phase (often solid) Sometimes reactants are in different phases, although the reaction usually occurs in one such phase The mode of operation can be different: Batch: reactants are loaded in the reactor, reaction occurs, and products are discharged Semi-batch: one or more reactants are loaded into the reactor, other reactants are added continuously, finally products are discharged Continuous: reactants are fed and products are discharged continuously Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 5 / 16
6 An Example Process Hydrodesulfurization Crude oil and associated products contain organosulfur compounds (RS) Sulfur must be removed to avoid catalyst poisoning and to meet pollution restrictions in fuels Sulfur is removed using hydrogen at high pressure according to the reaction: RS + 2H 2 RH 2 + H 2 S The reaction rate, over catalyst, is expressed as: kc α c β H r = 2 RS (1 + K H2 c H2 + K RS c RS ) γ Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 6 / 16
7 An Example Process HDS process scheme (from Wikipedia) Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 7 / 16
8 General information Course teacher Gabriele Pannocchia Department of Civil and Industrial Engineering (former Dept. of Chemical Engineering section) 2nd floor (1 floor down main entrance), room 201 Telephone: Web Site: Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 8 / 16
9 Objectives and methodology of the course Course objectives 1 Understand kinetic (as well as thermodynamic) aspects of chemical reactions 2 Understand the fundamentals of isothermal reactors 3 Understand methods to compute kinetic parameters from experimental data 4 Understand thermal effects in chemical reactors 5 Understand complex kinetic mechanisms 6 Understand mixing effects in reactors Course methodology Lectures (about 60% of time) Class Exercise (about 40% of time) Occasionally, Homework Assignments (not graded) Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 9 / 16
10 Course syllabus Part I: stoichiometry and thermodynamics fundamentals 1 Stoichiometry of Chemical Reactions 1 Examples of Chemical Reactions and Stoichiometry Matrix 2 Independent Reactions 3 Reaction Rates and Production Rates 2 Thermodynamics of Chemical Reactions 1 Reaction Equilibrium 2 Temperature Dependence of Reaction Equilibrium 3 Multiple Reaction Equilibrium Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 10 / 16
11 Course syllabus (continued) Part II: Chemical Reactors in Isothermal Conditions 3 General Mole Balance 4 Batch Reactor 1 Single Irreversible (Reversible) Reactions 2 Multiple (Series or Parallel) Reactions 3 Non-Constant Density Case 5 Continuous Stirred Tank Reactor (CSTR) 1 Unsteady and Steady-State Conditions 2 Non-Constant Density Case 3 Multiple Reactions 6 Semi-Batch Reactor 7 Plug Flow Reactor (PFR) 1 Unsteady and Steady-State Conditions 2 Non-Constant Density Case 3 Multiple Reactions 8 Comparisons of Reactors Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 11 / 16
12 Course syllabus (continued) Part III: Computation of Kinetic Parameters 9 Determination of Kinetic Parameters via Integral Method 10 Determination of Kinetic Parameters via Differential Method 11 Arrhenius Law and Computation of its Parameters Part IV: Chemical Kinetics 12 Elementary Reaction Fundamentals 13 Fast and Slow Time Scales 14 Rate Expressions for Complex Mechanisms Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 12 / 16
13 Course syllabus (continued) Part V: Energy Balance for Chemical Reactors 15 General Energy Balance 16 Batch Reactor 17 CSTR 1 Unsteady and Steady-State Conditions 2 Steady-State Multiplicity and Reactor Stability 18 Semi-Batch Reactor 19 PFR 1 Unsteady and Steady-State Operation 2 PFR Hot Spot and Runaway 20 Reactor Networks and Optimization Part VI: Mixing in Chemical Reactors 21 Residence Time Distribution 22 RTD for CSTR, PFR, Batch and Combinations 23 Limits of Reactor Mixing Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 13 / 16
14 Course material Books Most followed in this course (can be borrowed from the teacher): J. B. Rawlings and J. G. Ekerdt Chemical Reactor Analysis and Design Fundamentals, 2002, Nob Hill Publishing Other good books: 1 S. H. Fogler Elements of Chemical Reaction Engineering, 2005, Prentice Hall 2 O. Levenspiel Chemical Reaction Engineering, 1999, John Wiley & Sons 3 G. F. Froment and K. B. Bischoff Chemical Reactor Analysis and Design, 1990, John Wiley & Sons Lecture slides and additional material The following material will be available at the School of Engineering E-learning web site: Lecture slides Past exams (some samples) Simulation files (MATLAB/Octave) for some exercises Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 14 / 16
15 Student office hours and list Student office hours GP will be available for questions and clarifications on Monday 14:30 16:30 Presence must be confirmed by Quick questions can also be asked/answered by Student list Each student must send an to GP including the followings: First name and last name address A mailing list of the course will be used for common questions/answers Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 15 / 16
16 Examination Examination scheme Written exam covering both theory and computational aspects of the course Oral is only for possible clarifications on the written exam Vote registration is joint with IRC-2 (ceiling-rounded average of the two votes) Exam can be repeated even if successfully passed in a previous session: only the last outcome matters Preparation for the exam Study theory (books, lecture notes and slides) > A lot! Solve exercises (especially those without solution) > A bit! Identify critical aspects (of both theory and exercise) and check with you colleagues; if still unclear, ask GP Gabriele Pannocchia Introduction to the course Chemical Reaction Engineering I 16 / 16
Dynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
Lafayette College Department of Civil and Environmental Engineering
Lafayette College Department of Civil and Environmental Engineering CE 321: Introduction to Environmental Engineering Fall 2010 Homework #4 SOLUTIONS Due: Monday, 9/27/10 SOLUTIONS 1. A completely mixed
Ch 3. Rate Laws and Stoichiometry
Ch 3. Rate Laws and Stoichiometry How do we obtain r A = f(x)? We do this in two steps 1. Rate Law Find the rate as a function of concentration, r A = k fn (C A, C B ). Stoichiometry Find the concentration
STEADY STATE MODELING AND SIMULATION OF HYDROCRACKING REACTOR
Petroleum & Coal ISSN 1337-7027 Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 54 (1) 59-64, 2012 STEADY STATE MODELING AND SIMULATION OF HYDROCRACKING REACTOR Abhinanyu Kumar, Shishir
k 2f, k 2r C 2 H 5 + H C 2 H 6
hemical Engineering HE 33 F pplied Reaction Kinetics Fall 04 Problem Set 4 Solution Problem. The following elementary steps are proposed for a gas phase reaction: Elementary Steps Rate constants H H f,
INTBIOAMB - Introduction to Environmental Biotechnology
Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 250 - ETSECCPB - Barcelona School of Civil Engineering 745 - EAB - Department of Agri-Food Engineering and Biotechnology MASTER'S
The Material Balance for Chemical Reactors
The Material Balance for Chemical Reactors Copyright c 2016 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate
The Material Balance for Chemical Reactors. Copyright c 2016 by Nob Hill Publishing, LLC
The Material Balance for Chemical Reactors Copyright c 2016 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate
Exergy: the quality of energy N. Woudstra
Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if
Tentamen i Kemisk Reaktionsteknik Del A (KMT 007)
Tentamen i Kemisk Reaktionsteknik Del (KMT 007) 2001-01-08 Lärare: Jonas Hedlund (tel: 72105) Skrivtid: 0900-1500 Resultatet anslås: 010119 Totala antalet uppgifter: 5st Maxpoäng: 55 För godkänd krävs:
Science Standard Articulated by Grade Level Strand 5: Physical Science
Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties
Effects of mass transfer processes in designing a heterogeneous catalytic reactor
Project Report 2013 MVK160 Heat and Mass Transport May 13, 2013, Lund, Sweden Effects of mass transfer processes in designing a heterogeneous catalytic reactor Maryneth de Roxas Dept. of Energy Sciences,
CHEMICAL EQUILIBRIUM (ICE METHOD)
CHEMICAL EQUILIBRIUM (ICE METHOD) Introduction Chemical equilibrium occurs when opposing reactions are proceeding at equal rates. The rate at which the products are formed from the reactants equals the
Reacting System Examples
Reacting System Examples Here are six examples of the chemical systems. The goal of this handout is to show you how to formulate a model of a chemical system, but some of the examples include solutions
Lecture 36 (Walker 18.8,18.5-6,)
Lecture 36 (Walker 18.8,18.5-6,) Entropy 2 nd Law of Thermodynamics Dec. 11, 2009 Help Session: Today, 3:10-4:00, TH230 Review Session: Monday, 3:10-4:00, TH230 Solutions to practice Lecture 36 final on
Chemical Equilibrium. Rate Forward Reaction = Rate Reverse Reaction. Chapter 14. Hill, Petrucci, McCreary & Perry 4 th. Ed.
Chapter 14 Chemical Equilibrium Hill, Petrucci, McCreary & Perry 4 th Ed. Chemical Equilibrium Many Reactions seem to STOP before all the reactants are used up. The Concentrations of Reactants and Products
ChE 344 Chemical Reaction Engineering Winter 1999 Exam I Part 1 (80%) Solution
ChE 344 Chemical Reaction Engineering Winter 1999 Exam I Part 1 (80%) Solution (10 pts) 1) The trimerization 3A(g) A 3 (g,l) is carried out isothermally and without pressure drop in a PFR at 98 K and atm.
Syllabus in English. 608 088 438,
Syllabus in English COURSE TITLE: Institute/Division: Course code: Type of course: BIOREACTORS Institute of Chemical and Process Engineering SI-/1 Obligatory Number of contact hours: 60 h (lectures 30
Answers: Given: No. [COCl 2 ] = K c [CO][Cl 2 ], but there are many possible values for [CO]=[Cl 2 ]
Chemical Equilibrium What are the concentrations of reactants and products at equilibrium? How do changes in pressure, volume, temperature, concentration and the use of catalysts affect the equilibrium
Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals
Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals Originally published in 2007 American Society for Engineering Education Conference Proceedings
AP CHEMISTRY 2007 SCORING GUIDELINES. Question 2
AP CHEMISTRY 2007 SCORING GUIDELINES Question 2 N 2 (g) + 3 F 2 (g) 2 NF 3 (g) ΔH 298 = 264 kj mol 1 ; ΔS 298 = 278 J K 1 mol 1 The following questions relate to the synthesis reaction represented by the
Chapter 4 Material Balances
Chapter 4 Material Balances Note: Be sure to read carefully through all the examples in this chapter. The key concepts are best learned by problem solving. Material balances: material balances express
GATE Syllabus for Chemical Engineering
2017 YOUR CAREER QUEST ENDS HERE GATE Syllabus for Chemical Engineering Section 1: Engineering Mathematics Linear Algebra: 1. Matrix algebra, 2. Systems of linear equations, 3. Eigen values and eigenvectors.
STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM 150 - COLLEGE CHEMISTRY I
STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM 150 - COLLEGE CHEMISTRY I PREPARED BY: NICOLE HELDT SCHOOL OF SCIENCE, HEALTH, AND PROFESSIONAL STUDIES SCIENCE DEPARTMENT
Aspen Plus Workshop for Reaction Engineering and Design
Aspen Plus Workshop for Reaction Engineering and Design H. Scott Fogler sfogler@umich.edu Nihat M. Gurmen gurmen@umich.edu 3/12/2002 The University of Michigan Department of Chemical Engineering Ann Arbor,
Chapter 14. CHEMICAL EQUILIBRIUM
Chapter 14. CHEMICAL EQUILIBRIUM 14.1 THE CONCEPT OF EQUILIBRIUM AND THE EQUILIBRIUM CONSTANT Many chemical reactions do not go to completion but instead attain a state of chemical equilibrium. Chemical
CHEM-UA 652: Thermodynamics and Kinetics
1 CHEM-UA 652: Thermodynamics and Kinetics Notes for Lecture 21 I. COMPLEX REACTION MECHANISMS A major goal in chemical kinetics is to determine the sequence of elementary reactions, or the reaction mechanism,
DEPARTMENT OF CHEMICAL AND PETROLEUM ENGINEERING
DEPARTMENT OF CHEMICAL AND PETROLEUM ENGINEERING Chemical Engineering Program Mission The Chemical and Petroleum Engineering Department is devoted to educating exemplary chemical engineers by instituting
Contents. Bibliografische Informationen digitalisiert durch
1 Introduction 1 1.1 Introduction to Maple 1 1.1.1 Getting Started with Maple 1 1.1.2 Plotting with Maple 3 1.1.3 Solving Linear and Nonlinear Equations 5 1.1.4 Matrix Operations 6 1.1.5 Differential Equations
LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK NATURAL SCIENCES DEPARTMENT
LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK NATURAL SCIENCES DEPARTMENT SCC 110: Foundations of Chemistry Course Coordinator: Dr. Nalband S. Hussain Office: M 210 E-mail: nhussain@lagcc.cuny.edu
Modelling and Simulation of High Pressure Industrial Autoclave Polyethylene Reactor
Modelling and Simulation of High Pressure Industrial Autoclave Polyethylene Reactor Érico Caliani 1, Marcello Cavalcanti 2, Fabiano A.N. Fernandes 3, Liliane M.F. Lona 1 1 Universidade Estadual de Campinas,
Study Plan. MASTER IN (Energy Management) (Thesis Track)
Plan 2005 T Study Plan MASTER IN (Energy Management) (Thesis Track) A. General Rules and Conditions: 1. This plan conforms to the regulations of the general frame of the programs of graduate studies. 2.
Evaluation of Oxy-Coal Combustion Modelling at Semi-Industrial Scale
Institute of Combustion and Power Plant Technology Prof. Dr. techn. G. Scheffknecht Evaluation of Oxy-Coal Combustion Modelling at Semi-Industrial Scale 6th Trondheim CCS Conference June 14-16, 2011, Trondheim,
Chemical Equilibrium
Chapter 13 Chemical Equilibrium Equilibrium Physical Equilibrium refers to the equilibrium between two or more states of matter (solid, liquid and gas) A great example of physical equilibrium is shown
GUJARAT TECHNOLOGICAL UNIVERSITY Environmental Science & Technology(35) BE 1st To 8th Semester Exam Scheme & Subject Code
GUJARAT TECHNOLOGICAL UNIVERSITY Environmental Science & Technology(35) BE 1st To 8th Semester Scheme & Subject EVALUATION SCHEME () Process(M) MAX MIN MAX MIN MAX MIN MAX MIN 20 8 10 4 70 23 X 50% of
AP Chemistry Syllabus
AP Chemistry Syllabus AP Chemistry is a course designed by the College Board Advanced Placement Program to be the equivalent of the general chemistry course usually taken by college freshmen, with emphasis
Equilibrium, Acids and Bases Unit Summary:
Equilibrium, Acids and Bases Unit Summary: Prerequisite Skills and Knowledge Understand concepts of concentration, solubility, saturation point, pressure, density, viscosity, flow rate, and temperature
GENERAL STRUCTURE AND ORGANISATION OF THE CHEMICAL ENGINEERING DEGREE IN THE UNIVERSITY OF VALENCIA
GENERAL STRUCTURE AND ORGANISATION OF THE CHEMICAL ENGINEERING DEGREE IN THE UNIVERSITY OF VALENCIA The programme is taught within the framework of a modular, semester-based scheme. Assessment is based
Transport phenomena and reaction engineering: basic research and practical applications
Transport phenomena and reaction engineering: basic research and practical applications Renzo Di Felice 1,2 1 School of Engineering Nazarbayev University, ASTANA (Kazakhstan) and 2 Dipartimento di Ingegneria
The Next Generation of Activated Carbon Adsorbents for the Pre- Combustion Capture of Carbon Dioxide.
The Next Generation of Activated Carbon Adsorbents for the Pre- Combustion Capture of Carbon Dioxide. Power Plant Modelling Workshop at University of Warwick Dr. Joe Wood,Prof. Jihong Wang, Simon Caldwell,
Concepts in Syngas Manufacture
CATALYTIC SCIENCE SERIES VOL. 10 Series Editor: Graham J. Hutchings Concepts in Syngas Manufacture Jens Rostrup-Nielsen Lars J. Christiansen Haldor Topsoe A/S, Denmark Imperial College Press Contents Preface
6 Material and Energy Balances for Engineers and Environmentalists
CHAPTER ONE THE GENERAL BALA ALANCE EQUA UATION ACC = In Out t + Gen Con 6 Material and Energy Balances for Engineers and Environmentalists THE GENERAL BALANCE All material and energy (M&E) balance calculations
Rate of Reaction and the Collision Theory. Factors that Affect the Rate of a Chemical Reaction
Chemical Kinetics and Thermodynamics Chemical Kinetics- concerned with: 1. Rates of Chemical Reactions- # of moles of reactant used up or product formed Unit time Or 2. Reaction Mechanisms- Rate of Reaction
The Energy Balance for Chemical Reactors
The Energy Balance for Chemical Reactors Copyright c 2011 by Nob Hill Publishing, LLC To specify the rates of reactions in a nonisothermal reactor, we require a model to determine the temperature of the
Stoichiometric Analysis of Gasification Lecture-G-L6-2x
Stoichiometric Analysis of Gasification Lecture-G-L6-2x Marek Ściążko, Prof. Copyright-MS-2013 1 Introduction Gasification is a process in which a carbon containing feedstock is thermochemically converted
Introductory Chemistry (Allied Health Emphasis)- Chem 1406 Course Syllabus: Summer 2015
Introductory Chemistry (Allied Health Emphasis)- Chem 1406 Course Syllabus: Summer 2015 Northeast Texas Community College exists to provide responsible, exemplary learning opportunities. Bryan Trickey
Engineering Problem Solving as Model Building
Engineering Problem Solving as Model Building Part 1. How professors think about problem solving. Part 2. Mech2 and Brain-Full Crisis Part 1 How experts think about problem solving When we solve a problem
ECE 516: System Control Engineering
ECE 516: System Control Engineering This course focuses on the analysis and design of systems control. This course will introduce time-domain systems dynamic control fundamentals and their design issues
3A Energy. What is chemical energy?
3A Energy What is chemical energy? Chemical energy is a form of potential energy which is stored in chemical bonds. Chemical bonds are the attractive forces that bind atoms together. As a reaction takes
Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson
Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy
Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VI
Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VI Solving a System of Linear Algebraic Equations (last updated 5/19/05 by GGB) Objectives:
Chemical Equilibrium - Chapter 14
Chemical Equilibrium - Chapter 14 1. Dynamic Equilibrium a A + b B c C + d D At Equilibrium: Reaction is proceeding in both directions at the same rate. There is no net change in concentrations of reactants
Prerequisites: CHEM 1311 and CHEM 1111, or CHEM 1411 General Chemistry I (Lecture and Laboratory)
Course Syllabus CHEM 1412 General Chemistry II Revision Date: 8/21/2014 Catalog Description: Chemical equilibrium; phase diagrams and spectrometry; acid-base concepts; thermodynamics; kinetics; electrochemistry;
Conceptual Design. Davide Manca. Lesson 2 of Process Systems Engineering Master Degree in Chemical Engineering Politecnico di Milano
Conceptual Design Davide Manca Lesson 2 of Process Systems Engineering Master Degree in Chemical Engineering Politecnico di Milano Introduction The purpose of engineering is to create new material wealth.
Chemical Equilibrium-A Dynamic Equilibrium
Chemical Equilibrium-A Dynamic Equilibrium Page 1 When compounds react, they eventually form a mixture of products and (unreacted) reactants, in a dynamic equilibrium Much like water in a U-shape tube,
CHM 105. General organic and Biochemistry
Technical College of the Lowcountry Arts & Sciences Division 921 Ribaut Road Building 9, Room 102 Beaufort, SC 29901 843-525-8281 CHM 105 General organic and Biochemistry Course Description This course
Models for Nonideal Reactors
Models for Nonideal Reactors DVD 14 Success is a journey, not a destination. Ben Sweetland Use the RTD to evaluate parameters Overview Not all tank reactors are perfectly mixed nor do all tubular reactors
Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004
Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein
R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada
POWER PLANT COMBUSTION THEORY R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Combustion, Efficiency, Calorific Value, Combustion Products, Gas Analysis Contents
AP CHEMISTRY CHAPTER REVIEW CHAPTER 11: RATE OF REACTION
AP CHEMISTRY CHAPTER REVIEW CHAPTER 11: RATE OF REACTION You should understand the definition of reaction rate, as well as how rates might be measured in a laboratory setting. You should know the difference
The Second Law of Thermodynamics
The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction
DEPARTMENT OF PROCESS OPERATIONS TECHNOLOGY Part-Time - Bachelor Degree Plan
DEPARTMENT OF PROCESS OPERATIONS TECHNOLOGY Part-Time - Bachelor Degree Plan FIRST YEAR (S 1) (1 st Semester) Module Descriptive title Lec. Lab/Tut Credit TECHEM Engineering Chemistry 6 4 10 TMATH Technical
6.2 Determination of Heats of Reaction
162 6 Applications of Differential Scanning Calorimetry 6.2 Determination of Heats of Reaction The aim is to determine a thermodynamically well defined (temperature dependent) reaction enthalpy. If a subsequent
Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering
Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Intended Audience: Main Campus Students Distance (online students) Both Purpose:
CHM 111 - General Chemistry I Lecture Fall 2014
CHM 111 - General Chemistry I Lecture Fall 2014 Dr. Stuart T. Gentry Holroyd 329 215-951-1259 gentry@lasalle.edu Class Postings, Lecture Notes, and PowerPoint Slides Available on Canvas and at www.lasalle.edu/~gentry
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
Thermodynamics. Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life
Thermodynamics Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life Thermodynamics is the study of the transformation of energy into heat and for doing
Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all
Overview of Chemical Reaction Engineering Lecture G-L8-1
Overview of Chemical Reaction Engineering Lecture G-L8-1 Marek Ściążko, Prof. Based on: Octave Levenspiel, Chemical Reactio Engineering, Third Edition Copyright-MS-2013 1 Introduction Every industrial
K c = [C]c [D] d [A] a [B] b. k f [NO 2 ] = k r [N 2 O 4 ] = K eq = The Concept of Equilibrium. Chapter 15 Chemical Equilibrium
Chapter 15 Chemical Equilibrium Learning goals and key skills: Understand what is meant by chemical equilibrium and how it relates to reaction rates Write the equilibrium-constant expression for any reaction
MODELING, SIMULATION AND DESIGN OF CONTROL CIRCUIT FOR FLEXIBLE ENERGY SYSTEM IN MATLAB&SIMULINK
MODELING, SIMULATION AND DESIGN OF CONTROL CIRCUIT FOR FLEXIBLE ENERGY SYSTEM IN MATLAB&SIMULINK M. Pies, S. Ozana VSB-Technical University of Ostrava Faculty of Electrotechnical Engineering and Computer
GENERAL CHEMISTRY II Lecture & Recitation
Howard University Department of Chemistry Fall 2010 GENERAL CHEMISTRY II Lecture & Recitation Chem 004, Section 04, CRN 82454; Section 05, CRN 82456; Section 06, CRN 82458 4 Credit Hours Course Time &
FORM A is EXAM II, VERSION 1 (v1) Name
FORM A is EXAM II, VERSION 1 (v1) Name 1. DO NOT TURN THIS PAGE UNTIL DIRECTED TO DO SO. 2. These tests are machine graded; therefore, be sure to use a No. 1 or 2 pencil for marking the answer sheets.
DEPARTMENT: SCIENCE COURSE TITLE: CHEMISTRY HONORS COURSE NUMBER: 236 GRADE(S): 10-12
DEPARTMENT: SCIENCE COURSE TITLE: CHEMISTRY HONORS COURSE NUMBER: 236 GRADE(S): 10-12 PRE-REQUISITES (IF ANY): ALGEBRA 2 (HONORS LEVEL) Matter and Measurement UNIT LENGTH CONTENT SKILLS METHODS OF ASSESSMENT
REFERENCE DATA SHEET ON AIR POLLUTION CONTROL DEVICES By: Gary M. Hutter, Ph.D
May 1997 REFERENCE DATA SHEET ON AIR POLLUTION CONTROL DEVICES By: Gary M. Hutter, Ph.D With the passage of the 1971 Clean Air Act, American industry experienced a significantly increased need to reduce
Entropy in Chemistry
LECURE 5 Can we predict: If a reaction or process can occur? How will it proceed? How fast will it go? Entropy in Chemistry hermodynamics tells us nothing about rates tells everything about the rest So
Reaction Mechanisms. 1. Introduction. What is a reaction mechanism?
Reaction Mechanisms In chemistry, we sometimes find that looking at an overall reaction alone fails to tell us accurate information about the dynamics, an in particular the kinetics, of a reaction. Thus,
University of Maryland, College Park. SIE General Chemistry Syllabus. Chemistry 131, Section SES1 Chemistry Building (CHM), Room 1402, College Park
University of Maryland, College Park SIE General Chemistry Syllabus Chemistry 131, Section SES1 Chemistry Building (CHM), Room 1402, College Park Spring, 2011 Class Schedule: Lectures - Mondays 6:30 to
Physical Chemistry. Lecture 4 Introduction to chemical kinetics
Physical Chemistry Lecture 4 Introduction to chemical kinetics Thermodynamics and kinetics Thermodynamics Observe relative stability of states Energy differences Static comparisons of states Kinetics Observe
Exploring Creation With Chemistry Table of Contents
Exploring Creation With Chemistry Table of Contents MODULE #1: Measurement and Units...1 Introduction... 1 Experiment 1.1: Air Has Mass... 1 Experiment 1.2: Air Takes Up Space... 2 Units of Measurement...
Laws of Thermodynamics
Laws of Thermodynamics Thermodynamics Thermodynamics is the study of the effects of work, heat, and energy on a system Thermodynamics is only concerned with macroscopic (large-scale) changes and observations
A k 1. At equilibrium there is no net change in [A] or [B], namely d[a] dt
Chapter 15: Chemical Equilibrium Key topics: Equilibrium Constant Calculating Equilibrium Concentrations The Concept of Equilibrium Consider the reaction A k 1 k 1 B At equilibrium there is no net change
CaCO 3 (s) CaO(s) + CO 2 (g)
CaCO 3 (s) CaO(s) + CO 2 (g) When heated, calcium carbonate decomposes according to the equation above. In a study of the decomposition of calcium carbonate, a student added a 50.0 g sample of powdered
The Mole Concept. The Mole. Masses of molecules
The Mole Concept Ron Robertson r2 c:\files\courses\1110-20\2010 final slides for web\mole concept.docx The Mole The mole is a unit of measurement equal to 6.022 x 10 23 things (to 4 sf) just like there
MATERIAL BALANCE SO 4 PRODUCT WHICH IS TO BE MANUFACTURED IS ASSUMED TO HAVE STRENGTH OF 98% ACID.
MATERIAL BALANCE GIVEN: TO DESIGN A 1000TPD CAPACITY H 2 ACID PLANT BASIS: 1 HOUR OF OPERATION. PURITY: PRODUCT WHICH IS TO BE MANUFACTURED IS ASSUMED TO HAVE STRENGTH OF 98% ACID. 1000TPD implies that
IMPORTANT INFORMATION: S for liquid water is 4.184 J/g degree C
FORM A is EXAM II, VERSION 2 (v2) Name 1. DO NOT TURN THIS PAGE UNTIL DIRECTED TO DO SO. 2. These tests are machine graded; therefore, be sure to use a No. 1 or 2 pencil for marking the answer sheets.
Lecture 34 Kinetics Topics: Effect of Temperature, Collision Theory, Activated Complex Theory. Chapter
34.1 5.111 Lecture 34 Kinetics Topics: Effect of Temperature, Collision Theory, Activated Complex Theory. Chapter 13.11-13.13 Effect of Temperature on Reaction Rates Gas-Phase A qualitative observation
The referenced Texas Essential Knowledge and Skills (TEKS) are from TEA Chemistry and TEA Integrated Physics and Chemistry.
Texas University Interscholastic League Contest Event: Science (Chemistry) The contest challenges students to read widely in chemistry, to understand the significance of experiments rather than to recall
Advanced Chemistry: Structure and Properties
ILLLINOIS MATHEMATICS & SCIENCE ACADEMY Teacher: Dave DeVol Advanced Chemistry: Structure and Properties August 2013 Unit 1: Molecular Structure and Intermolecular Forces Theme: Relate structure and properties
Esystem = 0 = Ein Eout
AGENDA: I. Introduction to Thermodynamics II. First Law Efficiency III. Second Law Efficiency IV. Property Diagrams and Power Cycles V. Additional Material, Terms, and Variables VI. Practice Problems I.
INSTRUCTIONS FOR REGRADES:
Chemical Engineering 140 November 21, 2005 Midterm #3 INSTRUCTIONS FOR REGRADES: Requests for regrades must be submitted in writing to one of the GSI s by FRIDAY, DECEMBER 2. Please photocopy your exam
Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) R f = k f * C A (2) R b = k b * C B (3)
Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) 1. Background Consider the reaction given below: A B (1) If k f and k b are the rate constants of the forward
Introduction to Food Engineering Department of Agricultural, Food and Nutritional Science Winter Term 2016
NUFS 283 Introduction to Food Engineering Department of Agricultural, Food and Nutritional Science Winter Term 2016 Instructor: Dr. Marleny D.A. Saldaña Associate Professor in Food/Bio-Engineering Processing
Optional Homework 6 do not turn in!!
Name: Date: Optional Homework 6 do not turn in!! 1.) What is the first thing you must do to a reaction in order to write an accurate equilibrium (K) expression? Give a real example of a K expression: You
The Decomposition of Hydrogen Peroxide
E x p e r i m e n t The Decomposition of Hydrogen Peroxide Objectives To determine the general rate law of a reaction. To determine the rate constant for a reaction. To determine the activation of a reaction
(Refer Slide Time: 05:33)
Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras Sedimentation (Continued) Lecture # 9 Last class we were discussing about sedimentation.
Lecture 38: Industrial Furnaces
Lecture 38: Industrial Furnaces Contents: What is a furnace? Source of energy Types of furnaces How thermal energy is obtained from fossil fuel? Variables affecting heat utilization Heat Utilization: Concepts
RATE OF REACTION AND EQUILIBRIUM
Rate of Reaction and Equilibrium Seite 1 von 6 chemistry 3 rd Kanti study sheet for the test on the 11/15/2011 author: version: publish date: Linus Metzler 1.0b 11/12/2011 RATE OF REACTION AND EQUILIBRIUM
ENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work.
ENERGY Thermochemistry Energy is the capacity to do work. Chapter 6 Kinetic Energy thermal, mechanical, electrical, sound Potential Energy chemical, gravitational, electrostatic Heat Heat, or thermal energy,
Lecture 14. Introduction to the Sun
Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum