# A Short Course in Longitudinal Data Analysis

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 A Short Course in Longitudinal Data Analysis Peter J Diggle Nicola Reeve, Michelle Stanton (School of Health and Medicine, Lancaster University) Lancaster, June 2011

2 Timetable Day Registration 9.30 Lecture 1 Motivating examples, exploratory analysis BREAK Lab 1 Introduction to R LUNCH Lecture 2 Linear modelling of repeated measurements BREAK Lab 2 Exploring longitudunal data CLOSE

3 Day Lecture 3 Generalized linear models (GLM s) Lab 3 The nlme package BREAK Lecture 4 Joint modelling Lunch Lab 4 Marginal and random effects GLM s CLOSE

4 Lecture 1 examples scientific objectives why longitudinal data are correlated and why this matters balanced and unbalanced data tabular and graphical summaries exploring mean response profiles exploring correlation structure

7 Example 1. Reading ability and age reading ability reading ability reading ability age age age Longitudinal designs enable us to distinguish cross-sectional and longitudinal effects.

8 Example 2. CD4+ cell numbers Cohort of 369 HIV seroconverters, CD4+ cell-count measured at approximately six-month intervals, variable number of measurements per subject. square root CD time (weeks since seroconversion)

9 Example 2. CD4+ cell numbers Cohort of 369 HIV seroconverters, CD4+ cell-count measured at approximately six-month intervals, variable number of measurements per subject. square root CD time (weeks since seroconversion)

10 Example 3. Schizophrenia trial randomised clinical trial of drug therapies three treatments: haloperidol (standard) placebo risperidone (novel) dropout due to inadequate response to treatment Treatment Number of non-dropouts at week haloperidol placebo risperidone total

11 Schizophrenia trial data (PANSS) PANSS time (weeks since randomisation)

12 Scientific Objectives Pragmatic philosophy: method of analysis should take account of the scientific goals of the study. All models are wrong, but some models are useful G.E.P. Box scientific understanding or empirical description? individual-level or population-level focus? mean response or variation about the mean?

13 Example 5. Smoking and health public health perspective how would smoking reduction policies/programmes affect the health of the community? clinical perspective how would smoking reduction affect the health of my patient?

14 Correlation and why it matters different measurements on the same subject are typically correlated and this must be recognised in the inferential process.

15 Estimating the mean of a time series Y 1,Y 2,...,Y t,...,y n Y t N(µ,σ 2 ) Classical result from elementary statistical theory: Ȳ ± 2 σ 2 /n But if Y t is a time series: E[Ȳ ] = µ Var{Ȳ } = (σ 2 /n) {1 + n 1 u t Corr(Y t,y u )}

16 Correlation may or may not hurt you Y it = α + β(t t) + Z it i = 1,...,m t = 1,...,n response time

17 Correlation may or may not hurt you Y it = α + β(t t) + Z it i = 1,...,m t = 1,...,n response time

18 Correlation may or may not hurt you Y it = α + β(t t) + Z it i = 1,...,m t = 1,...,n response time

19 Correlation may or may not hurt you Y it = α + β(t t) + Z it i = 1,...,m t = 1,...,n Parameter estimates and standard errors: ignoring correlation recognising correlation estimate standard error estimate standard error α β

20 Balanced and unbalanced designs Y ij = j th measurement on i th subject t ij = time at which Y ij is measured balanced design: t ij = t j for all subjects i a balanced design may generate unbalanced data

21 Missing values dropout intermittent missing values loss-to-follow-up

22 Random sample of PANSS response profiles PANSS weeks

23 Tabular summary PANSS treatment group 1 (standard drug) Week Mean Variance Correlation

24 More than one treatment? separate tables for each treatment group look for similarities and differences Covariates? use residuals from working model fitted by ordinary least squares

25 Graphical summary spaghetti plots mean response profiles non-parametric smoothing pairwise scatterplots variograms

26 A spaghetti plot PANSS PANSS PANSS time (weeks) time (weeks) time (weeks since randomisation)

27 A slightly better spaghetti plot PANSS PANSS PANSS time (weeks) time (weeks) time (weeks since randomisation)

28 A set of mean response profiles PANSS time (weeks post randomisation)

29 Kernel smoothing useful for unbalanced data simplest version is mean response within a moving time-window ˆµ(t) = average(y ij : t ij t < h/2) more sophisticated version: kernel function k( ) (symmetric pdf) band-width h ˆµ(t) = y ij k{(t ij t)/h}/ k{(t ij t)/h}

30 Smoothing the CD4 data Data CD time (years since seroconversion)

31 Smoothing the CD4 data Data, uniform kernel CD time (years since seroconversion)

32 Smoothing the CD4 data Data, uniform and Gaussian kernels CD time (years since seroconversion)

33 Smoothing the CD4 data Data, Gaussian kernels with small and large band-widths CD time (years since seroconversion)

34 The variogram The variogram of a stochastic process Y (t) is V (u) = 1 Var{Y (t) Y (t u)} 2 well-defined for stationary and some non-stationary processes for stationary processes, V (u) = σ 2 {1 ρ(u)} easier to estimate V (u) than ρ(u) when data are unbalanced

35 Estimating the variogram r ij = residual from preliminary model for mean response Define v ijkl = 1 2 (r ij r kl ) 2 Estimate ˆV (u) = average of all quantities v ijil such that t ij t il u Estimate of process variance ˆσ 2 = average of all quantities v ijkl such that i k.

36 Example 2. Square-root CD4+ cell numbers V(u) Very large sampling fluctuations hide the information u

37 Smoothing the empirical variogram For irregularly spaced data: group time-differences u into bands take averages of corresponding v ijil For data from a balanced design, usually no need to average over bands of values for u

38 Example 2. CD4+ cell numbers V(u) u

39 Example 3. schizophrenia trial Variogram Lag

40 Sampling distribution of the empirical variogram Gaussian distribution balanced data s subjects in each of p experimental groups n measurement times per subject mean responses estimated by ordinary least squares from saturated treatments-by-times model

41 Properties of ˆV (u) Marginal distribution of empirical variogram ordinates is v ijil {(s 1)/s}V (u ijil )χ 2 1 {s/(s 1)}ˆV (u) is unbiased for V (u) expression available for covariance between any two quantities v ijil hence can compute variance of ˆV (u) typically, Var{ ˆV (u)} increases (sharply) as u increases

42 Where does the correlation come from? differences between subjects variation over time within subjects measurement error

43 data=read.table("cd4.data",header=t) data[1:3,] time=data\$time CD4=data\$CD4 plot(time,cd4,pch=19,cex=0.25) id=data\$id uid=unique(id) for (i in 1:10) { take=(id==uid[i]) lines(time[take],cd4[take],col=i,lwd=2) }

44 Lecture 2 The general linear model with correlated residuals parametric models for the covariance structure the clever ostrich (why ordinary least squares may not be a silly thing to do) weighted least squares as maximum likelihood under Gaussian assumptions missing values and dropouts

45 General linear model, correlated residuals E(Y ij ) = x ij1 β x ijp β p Y i = X i β + ǫ i Y = Xβ + ǫ measurements from different subjects independent measurements from same subject typically correlated.

46 Parametric models for covariance structure Three sources of random variation in a typical set of longitudinal data: Random effects (variation between subjects) characteristics of individual subjects for example, intrinsically high or low responders influence extends to all measurements on the subject in question.

47 Parametric models for covariance structure Three sources of random variation in a typical set of longitudinal data: Random effects Serial correlation (variation over time within subjects) measurements taken close together in time typically more strongly correlated than those taken further apart in time on a sufficiently small time-scale, this kind of structure is almost inevitable

48 Parametric models for covariance structure Three sources of random variation in a typical set of longitudinal data: Random effects Serial correlation Measurement error when measurements involve delicate determinations, duplicate measurements at same time on same subject may show substantial variation

49 Some simple models Compound symmetry U i N(0,ν 2 ) Z ij N(0,τ 2 ) Y ij µ ij = U i + Z ij Implies that Corr(Y ij,y ik ) = ν 2 /(ν 2 + τ 2 ), for all j k

50 Random intercept and slope (U i,w i ) BVN(0,Σ) Z ij N(0,τ 2 ) Y ij µ ij = U i + W i t ij + Z ij Often fits short sequences well, but extrapolation dubious, for example Var(Y ij ) quadratic in t ij

51 Autoregressive Y ij µ ij = α(y i,j 1 µ i,j 1 ) + Z ij Y i1 µ i1 N{0,τ 2 /(1 α 2 )} Z ij N(0,τ 2 ), j = 2,3,... Not a natural choice for underlying continuous-time processes

52 Stationary Gaussian process Y ij µ ij = W i (t ij ) W i (t) a continuous-time Gaussian process E[W(t)] = 0 Var{W(t)} = σ 2 Corr{W(t),W(t u)} = ρ(u) ρ(u) = exp( u/φ) gives continuous-time version of the autoregressive model

53 Time-varying random effects intercept and slope R(t) t

54 Time-varying random effects: continued stationary process R(t) t

55 A general model U i MVN(0,Σ) (random effects) Y ij µ ij = d ij U i + W i (t ij ) + Z ij d ij = vector of explanatory variables for random effects W i (t) = continuous-time Gaussian process (serial correlation) Z ij N(0,τ 2 ) (measurement errors) Even when all three components of variation are needed in principle, one or two may dominate in practice

56 The variogram of the general model Y ij µ ij = d ij U i + W i (t ij ) + Z ij V (u) = τ 2 + σ 2 {1 ρ(u)} Var(Y ij ) = ν 2 + σ 2 + τ 2 V(u) u

57 Fitting the model 1. A non-technical summary 2. The gory details

58 Fitting the model: non-technical summary Ad hoc methods won t do Likelihood-based inference is the statistical gold standard But be sure you know what you are estimating

59 Fitting the model: the gory details 1. The clever ostrich: robust version of ordinary least squares 2. The very clever ostrich: robust version of weighted least squares 3. Likelihood-based inference: ML and REML

60 The clever ostrich use ordinary least squares for exploratory analysis and point estimation (ostrich) use sample covariance matrix of residuals to give consistent estimates of standard errors (clever) Procedure as follows: y = Xβ + ǫ : V ar(ǫ) = V ˆβ = (X X) 1 X y Dy Var(ˆβ) = DV D DˆV D, ˆV = sample covariance matrix of OLS residuals ˆβ MV N(β,DˆVD )

61 Good points: technically simple often reasonably efficient, and efficiency can be improved by using plausible weighting matrix W to reflect likely covariance structure (see below) don t need to specify covariance structure. Bad points: sometimes very inefficient (recall linear regression example) accurate non-parametric estimation of V needs high replication (small n i, large m) assumes missingness completely at random (more on this later)

62 Weighted least squares estimation Weighted least squares estimate of β minimizes S(β) = (y Xβ) W(y Xβ) where W is a symmetric weight matrix Solution is β W = (X WX) 1 X Wy. unbiased : E( β W ) = β, for any choice of W, Var( β W ) = {(X WX) 1 X W}V {WX(X WX) 1 } = Σ Inference β W N(β,Σ)

63 Special cases 1. W = I: ordinary least squares β = (X X) 1 X y, Var( β) = (X X) 1 X V X(X X) W = V 1 : maximum likelihood under Gaussian assumptions with known V ˆβ = (X V 1 X) 1 X V 1 y, Var(ˆβ) = (X V 1 X) 1.

64 Maximum likelihood estimation (V 0 known) Log-likelihood for observed data y is L(β,σ 2,V 0 ) = 0.5{nmlogσ 2 + mlog V 0 +σ 2 (y Xβ) (I V 0 ) 1 (y Xβ)} (1) where I V 0 is block-diagonal matrix, non-zero blocks V 0 Given V 0, estimator for β is ˆβ(V 0 ) = (X (I V 0 ) 1 X) 1 X (I V 0 ) 1 y, (2) the weighted least squares estimates with W = (I V 0 ) 1. Explicit estimator for σ 2 also available as ˆσ 2 (V 0 ) = RSS(V 0 )/(nm) (3) RSS(V 0 ) = {y Xˆβ(V 0 )} (I V 0 ) 1 {y Xˆβ(V 0 )}.

65 Maximum likelihood estimation, V 0 unknown Substitute (2) and (3) into (1) to give reduced log-likelihood L(V 0 ) = 0.5m[nlog{RSS(V 0 )} + log V 0 ]. (4) Numerical maximization of (4) then gives ˆV 0, hence ˆβ ˆβ(ˆV 0 ) and ˆσ 2 ˆσ 2 (ˆV 0 ). Dimensionality of optimisation is 1 n(n + 1) 1 2 Each evaluation of L(V 0 ) requires inverse and determinant of an n by n matrix.

66 REML: what is it and why use it? design matrix X influences estimation of covariance structure, hence wrong X gives inconsistent estimates of σ 2 and V 0. remedy for designed experiments (n measurement times and g treatment groups) is to assume a saturated treatments-by-times model for estimation of σ 2 and V 0 but model for mean response then has ng parameters if ng is large, maximum likelihood estimates of σ 2 and V 0 may be seriously biased saturated model not well-defined for most observational studies

67 Restricted maximum likelihood (REML) REML is a generalisation of the unbiased sample variance estimator, n s 2 = (Y i Ȳ ) 2 i=1 Assume that Y follows a linear model as before, Y MV N{Xβ,σ 2 (I V 0 )}. transform data Y to Y = Ay, matrix A chosen to make distribution of Y independent of β. Example: transform to ordinary least squares residual space: β = (X X) 1 X y Y = Y X β = {I X(XX) 1 X }Y

68 REML calculations Y = Ay Y has singular multivariate Normal distribution, independent of β. Y MV N{0,σ 2 A(I V 0 )A } estimate σ 2 and V 0 by maximising likelihood based on the transformed data Y.

69 β(v 0 ) = (X (I V 0 ) 1 X) 1 X (I V 0 ) 1 Y σ 2 (V 0 ) = RSS(V 0 )/(N p) L (V 0 ) = 0.5m[nlog{RSS(V 0 )} + log V 0 ] 0.5log X (I V 0 ) 1 = L(V 0 ) 0.5log X (I V 0 ) 1 X Note that: different choices for A correspond to different rotations of coordinate axes within the residual space hence, REML estimates do not depend on A

70 fit1=lm(cd4~time) summary(fit1) library(nlme)?lme fit2=lme(cd4~time,random=~1 id) summary(fit2)

71 Lecture 3 Generalized linear models for longitudinal data marginal, transition and random effects models: why they address different scientific questions generalized estimating equations: what they can and cannot do

72 Analysing non-gaussian data The classical GLM unifies previously disparate methodologies for a wide range of problems, including : multiple regression/anova (Gaussian responses) probit and logit regression (binary responses) log-linear modelling (categorical responses) Poisson regression (counted responses) survival analysis (non-negative continuous responses). How should we extend the classical GLM to analyse longitudinal data?

73 Generalized linear models for independent responses Applicable to mutually independent responses Y i : i = 1,...,n. 1. E(Y i ) = µ i : h(µ i ) = x iβ, where h( ) is known link function, x i is vector of explanatory variables attached to i th response, Y i 2. Var(Y i ) = φv(µ i ) where v( ) is known variance function 3. pdf of Y i is f(y i ;µ i,φ)

74 Two examples of classical GLM s Example 1: simple linear regression Y i N(β 1 + β 2 d i,σ 2 ) x i = (1,d i ) h(µ) = µ v(µ) = 1, φ = σ 2 f(y i ;µ i,φ) = N(µ i,φ)

75 Example 2: Bernoulli logistic model (binary response) P(Y i = 1) = exp(β 1 + β 2 d i )/{1 + exp(β 1 + β 2 d i )} x i = (1,d i ) h(µ) = log{µ/(1 µ) v(µ) = µ(1 µ), φ = 1 f(y i ;µ i ) = Bernoulli

76 Three GLM constructions for longitudinal data random effects models transition models marginal models

77 Random effects GLM Responses Y i1,...,y ini on an individual subject conditionally independent, given unobserved vector of random effects U i, i = 1,...,m. U i g(θ) represents properties of individual subjects that vary randomly between subjects E(Y ij U i ) = µ ij : h(µ ij ) = x ij β + z ij U i Var(Y ij U i ) = φv(µ ij ) (Y i1,...,y ini ) are mutually independent conditional on U i. Likelihood inference requires evaluation of f(y) = m f(y i U i )g(u i )du i i=1

78 Transition GLM Conditional distribution of each Y ij modelled directly in terms of preceding Y i1,...,y ij 1. E(Y ij history) = µ ij h(µ ij ) = x ij β + Y (ij) α, where Y (ij) = (Y i1,...,y ij 1 ) Var(Y ij history) = φv(µ ij ) Construct likelihood as product of conditional distributions, usually assuming restricted form of dependence, for example: f k (y ij y i1,...,y ij 1 ) = f k (y ij y ij 1 ) and condition on y i1 as model does not directly specify f i1 (y i1 ).

79 Marginal GLM Let h( ) be a link function which operates component-wise, E(y ij ) = µ ij : h(µ ij ) = X ij β Var(y ij ) = φv(µ ij ) Corr(y ij ) = R(α) ij. Not a fully specified probability model May require constraints on variance function v( ) and correlation matrix R( ) for valid specification Inference for β uses method of generalized estimating equations (the clever ostrich revisited)

80 Indonesian children s health study ICHS - of interest is to investigate the association between risk of respiratory illness and vitamin A deficiency Over 3000 children medically examined quarterly for up to six visits to assess whether they suffered from respiratory illness (yes/no = 1/0) and xerophthalmia (an ocular manifestation of vitamin A deficiency) (yes/no = 1/0). Let Y ij be the binary random variable indicating whether child i suffers from respiratory illness at time t ij. Let x ij be the covariate indicating whether child i is vitamin A deficient at time t ij.

81 Marginal model for ICHS study E[Y ij ] = µ ij = PP(Y ij = 1) log( µ ij 1 µ ij ) = β 0 + β 1 x ij Var(Y ij ) = µ ij (1 µ ij ) Corr(Y ij,y ik ) = α.

82 Marginal model - interpretation of regression parameters exp(β 0 ) is the odds of infection for any child with replete vitamin A. exp(β 1 ) is the odds ratio for any child - i.e. the odds of infection among vitamin A deficient children divided by the odds of infection among children replete with vitamin A. exp(β 1 ) is a ratioof population frequencies-apopulationaveraged parameter. β 1 represents the effect of the explanatory variable (vitamin A status) on any child s chances of respiratory infection.

83 Random effects model for ICHS study E[Y ij U i ] = µ ij = P(Y ij = 1 U i ) log( µ ij 1 µ ij ) = β 0 + U i + β 1 x ij where U i N(0,γ 2 ) U i represents the i th child s propensity for infection attributed to unmeasured factors (which could be genetic, environmental...) Var(Y ij U i ) = µ ij (1 µ ij ) Y ij U i Y ik U i for j k.

84 Random effects model - interpretation of regression parameters exp(β0 ) is the odds of infection for a child with average propensity for infection and with replete vitamin A. exp(β1 ) is the odds ratio for a specific child - i.e. the odds of infection for a vitamin A deficient child divided by the odds of infection for the same child replete with vitamin A. β 1 represents the effect of the explanatory variable (vitamin A status) upon an individual child s chance of respiratory infection.

85 Estimating equations Estimating equations for β in a classical GLM: n S(β j ) = i=1 where v i = Var(Y i ). µ i β j v 1 i (Y i µ i ) = 0 : j = 1,...,p In vector-matrix notation: S(β) = D µβ V 1 (Y µ) = 0 D µβ is an n p matrix with ij th element µ i β j V is an n n diagonal matrix with non-zero elements proportional to Var(Y i ) Y and µ are n-element vectors with elements Y i and µ i

86 Generalized estimating equations (GEE) In longitudinal setting: in previous slide Y i and µ i were scalars. In the longitudinal setting they are replaced by n i -element vectors Y i and µ i, associated with i th subject corresponding matrices V i (α) = Var(Y i ) are no longer diagonal Estimating equations for complete set of data, Y = (Y 1,...,Y m ), S(β) = m {D µi β} {V i (α)} 1 (Y i µ i ) = 0 i=1

87 Large-sample properties of resulting estimates ˆβ (m)(ˆβ β) MV N(0,I 1 0 ) (5) where I 0 = m {D µi β} {V i (α)} 1 D µi β i=1 What to do when variance matrices V i (α) are unknown?

88 The working covariance matrix S(β) = m {D µi β} {V i (α)} 1 (Y i µ i ) = 0 i=1 V i ( ) is a guess at the covariance matrix of Y i, called the working covariance matrix Result (5) on distribution of ˆβ now modified to where and I 1 = (m)(ˆβ β) MV N(0,I 1 0 I 1I 1 0 ) (6) I 0 = m {D µi β} {V i (α)} 1 D µi β i=1 m {D µi β} {V i (α)} 1 Var(Y i ){V i (α)} 1 D µi β i=1

89 Properties: result (6) reduces to (5) if V i ( ) = V i( ) estimator ˆβ is consistent even if V i ( ) V i( ) to calculate an approximation to I 1, replace Var(Y i ) by where ˆµ i = µ i (ˆβ) (Y i ˆµ i )(Y i ˆµ i ) Gives a terrible estimator of Var(Y i ), but OK in practice provided: number of subjects, m, is large same model for µ i fitted to groups of subjects; observation times common to all subjects but a bad choice of V i ( ) does affect efficiency of ˆβ.

90 What are we estimating? in marginal modelling, β measures population-averaged effects of explanatory variables on mean response in transition or random effects modelling, β measures effects of explanatory variables on mean response of an individual subject, conditional on subject s measurement history (transition model) subject s own random characteristics U i (random effects model)

91 Example: Simulation of a logistic regression model, probability of positive response from subject i at time t is p i (t), logit{p i (t)} : α + βx(t)+γu i, x(t) is a continuous covariate and U i is a random effect P(y=1) x

92 Example: Effect of mother s smoking on probability of intra-uterine growth retardation (IUGR). Consider a binary response Y = 1/0 to indicate whether a baby experiences IUGR, and a covariate x to measure the mother s amount of smoking. Two relevant questions: 1. public health: by how much might population incidence of IUGR be reduced by a reduction in smoking? 2. clinical/biomedical: by how much is a baby s risk of IUGR reduced by a reduction in their mother s smoking? Question 1 is addressed by a marginal model, question 2 by a random effects model

93 set.seed(2346) x=rep(1:10,50) logit=0.1*(x-mean(x)) subject=rep(1:50,each=10) re=2*rnorm(50) re=rep(re,each=10) prob=exp(re+logit)/(1+exp(re+logit)) y=(runif(500)<prob) fit1=glm(y~x,family=binomial) summary(fit1) library(gee) fit2<-gee(y~x,id=subject,family=binomial) summary(fit2) library(glmmml) fit3<-glmmml(y~x,family=binomial,cluster=subject) summary(fit3)

94 Lecture 4. Dropouts classification of missing value mechanisms modelling the missing value process what are we estimating? Joint modelling what is it? why do it? random effects models transformation models

95 F=6.4 5<F<6 F> time outcome

96 Missing values and dropouts Issues concerning missing values in longitudinal data can be addressed at two different levels: technical: can the statistical method I am using cope with missing values? conceptual: why are the data missing? Does the fact that an observation is missing convey partial information about the value that would have been observed? These same questions also arise with cross-sectional data, but the correlation inherent to longitudinal data can sometimes be exploited to good effect.

97 Rubin s classification MCAR (completely at random): P(missing) depends neither on observed nor unobserved measurements MAR (at random): P(missing) depends on observed measurements, but not on unobserved measurements conditional on observed measurements MNAR (not at random): conditional on observed measurements, P(missing) depends on unobserved measurements.

98 Example : Longitudinal clinical trial completely at random: patient leaves the the study because they move house at random : patient leaves the study on their doctor s advice, based on observed measurement history not at random : patient misses their appointment because they are feeling unwell.

99 Intermittent missing values and dropouts dropouts: subjects leave study prematurely, and never come back intermittent missing values: everything else Sometimes reasonable to assume intermittent missing values are also missing completely at random Not so for dropouts It is always helpful to know why subjects drop out

100 Modelling the missing value process Y = (Y 1,...,Y n ), intended measurements on a single subject t = (t 1,...,t n ), intended measurement times M = (M 1,...,M n ), missingness indicators for dropout, M reduces to a single dropout time D, in which case: (Y 1,...,Y D 1 ) observed (Y D,...,Y n ) missing A model for data subject to missingness is just a specification of the joint distribution [Y,M]

101 Modelling the missing value process: three approaches Selection factorisation [Y,M] = [Y ][M Y] Pattern mixture factorisation Random effects [Y,M] = [M][Y M] [Y,M] = [Y U][M U][U]dU

102 Comparing the three approaches Pattern mixture factorisation has a natural data-analytic interpretation (sub-divide data into different dropout-cohorts) Selection factorisation may have a more natural mechanistic interpretation in the dropout setting (avoids conditioning on the future) Random effects conceptually appealing, especially for noisy measurements, but make stronger assumptions and usually need computationally intensive methods for likelihood inference

103 Fitting a model to data with dropouts MCAR 1. almost any method will give sensible point estimates of mean response profiles 2. almost any method which takes account of correlation amongst repeated measurements will give sensible point estimates and standard errors

104 MAR 1. likelihood-based inference implicitly assumes MAR 2. for inferences about a hypothetical dropout-free population, there is no need to model the dropout process explicitly 3. but be sure that a hypothetical dropout-free population is the required target for inference

105 MNAR 1. joint modelling of repeated measurements and dropout times is (more or less) essential 2. but inferences are likely to be sensitive to modelling assumptiuons that are difficult (or impossible) to verify empirically

106 Longitudinal data with dropouts: the gory details New notation for measurements on a single subject: Y = (Y1,...,Y n ) : complete intended sequence t = (t 1,...,t n ) : times of intended measurements Y = (Y 1,...,Y n ) : incomplete observed sequence H k = {Y 1,...,Y k 1 } : observed history up to time t k 1 Core assumption: Y k = { Y k : k = 1,2,...,D 1 0 : k D No a priori separation into sub-populations of potential dropouts and non-dropouts

107 The likelihood function Two basic ingredients of any model: 1. y f (y;β,α), 2. P(D = d history) = p d (H d,y d ;φ). β parameterises mean response profile for y α parameterises covariance structure of y φ parameterises dropout process. For inference, need the likelihood for the observed data, y, rather than for the intended data y

108 Let f k (y H k;β,α) denote conditional pdf of Y k given H k Model specifies f k ( ), we need f k( ). 1. P(Y k = 0 H k,y k 1 = 0) = 1 because dropouts never re-enter the study. 2. P(Y k = 0 H k 1,Y k 1 0) = p k (H k,y;φ)f k (y H k;β,α)dy 3. For Y k 0, f k (y H k ;β,α,φ) = {1 p k (H k,y;φ)}f k (y H k;β,α).

109 Multiply sequence of conditional distributions for Y k given H k to define joint distribution of Y, and hence likelihood function 1. for a complete sequence Y = (Y 1,...,Y n ): f(y) = f (y) n {1 p k (H k,y k )} k=2 2. for an incomplete sequence Y = (Y 1,...,Y d 1,0,...,0): d 1 f(y) = f d 1 (y) {1 p k (H k,y k )}P(Y d = 0 H d,y d 1 0) k=2 where fd 1 (y) denotes joint pdf of (Y1,...,Y d 1 ).

110 Now consider a set of data with m subjects. β and α parameterise measurement process y φ parameterises dropout process Hence, log-likelihood can be partitioned into three components: L(β,α,φ) = L 1 (β,α)+l 2 (φ) + L 3 (β,α,φ) L 1 (β,α) = m log{f d i 1 (y i)} L 2 (φ) = i=1 L 3 (β,α,φ) = i:d i n m i=1 d i 1 k=1 log{p(y idi = 0 H idi Y idi 1 0)}. log{1 p k (H ik,y ik )}

111 When is likelihood inference straightforward? L 3 (β,α,φ) = i:d i n log{p(y idi = 0 H idi Y idi 1 0). If L 3 ( ) only depends on φ, inference is straightforward, because we can then: absorb L 3 ( ) into L 2 ( ) maximise L 1 (β,α) and L 2 (φ) separately

112 L 3 (β,α,φ) = i:d i n log{p(y idi = 0 H idi Y idi 1 0). P(Y k = 0 H k 1,Y k 1 0) = p k (H k,y;φ)f k (y H k;β,α)dy MAR implies p k (H k,y;φ) = p k (H k ;φ) does not depend on y It follows that P(Y k = 0 H k 1,Y k 1 0) = p k (H k ;φ) f k (y H k;β,α)dy = p k (H k ;φ), since conditional pdf must integrate to one.

113 Key result: If dropouts are MAR, then L 3 (β,α,φ) = L 3 (φ) and parameter estimates for the model can be obtained by separate maximisation of: L 1 (β,α) L 2 (φ) L 2(φ) + L 3 (φ)

114 Is MAR ignorable? Conventional wisdom: if dropout is MAR and we only want estimates of β and α we can ignore the dropout process Two caveats: If MAR holds, but measurement and dropout models have parameters in common, ignoring dropouts is potentially inefficient More importantly, parameters of the measurement model may not be the most appropriate target for inference

115 Example: simulated MAR data Y -process: mean response µ(t) = 1, constant correlation ρ between any two measurements on same subject. dropout sub-model: logit(p ij ) = α + βy ij 1 simulated realisation for ρ = 0.9, α = 1 and β = 2 y time

### Overview. Longitudinal Data Variation and Correlation Different Approaches. Linear Mixed Models Generalized Linear Mixed Models

Overview 1 Introduction Longitudinal Data Variation and Correlation Different Approaches 2 Mixed Models Linear Mixed Models Generalized Linear Mixed Models 3 Marginal Models Linear Models Generalized Linear

### Introduction to mixed model and missing data issues in longitudinal studies

Introduction to mixed model and missing data issues in longitudinal studies Hélène Jacqmin-Gadda INSERM, U897, Bordeaux, France Inserm workshop, St Raphael Outline of the talk I Introduction Mixed models

### HANDLING DROPOUT AND WITHDRAWAL IN LONGITUDINAL CLINICAL TRIALS

HANDLING DROPOUT AND WITHDRAWAL IN LONGITUDINAL CLINICAL TRIALS Mike Kenward London School of Hygiene and Tropical Medicine Acknowledgements to James Carpenter (LSHTM) Geert Molenberghs (Universities of

### SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing lsun@smu.edu.sg

SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing lsun@smu.edu.sg IN SPSS SESSION 2, WE HAVE LEARNT: Elementary Data Analysis Group Comparison & One-way

### Statistics in Retail Finance. Chapter 6: Behavioural models

Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural

### Review of the Methods for Handling Missing Data in. Longitudinal Data Analysis

Int. Journal of Math. Analysis, Vol. 5, 2011, no. 1, 1-13 Review of the Methods for Handling Missing Data in Longitudinal Data Analysis Michikazu Nakai and Weiming Ke Department of Mathematics and Statistics

### A LONGITUDINAL AND SURVIVAL MODEL WITH HEALTH CARE USAGE FOR INSURED ELDERLY. Workshop

A LONGITUDINAL AND SURVIVAL MODEL WITH HEALTH CARE USAGE FOR INSURED ELDERLY Ramon Alemany Montserrat Guillén Xavier Piulachs Lozada Riskcenter - IREA Universitat de Barcelona http://www.ub.edu/riskcenter

### BayesX - Software for Bayesian Inference in Structured Additive Regression

BayesX - Software for Bayesian Inference in Structured Additive Regression Thomas Kneib Faculty of Mathematics and Economics, University of Ulm Department of Statistics, Ludwig-Maximilians-University Munich

### Analysis of Correlated Data. Patrick J. Heagerty PhD Department of Biostatistics University of Washington

Analysis of Correlated Data Patrick J Heagerty PhD Department of Biostatistics University of Washington Heagerty, 6 Course Outline Examples of longitudinal data Correlation and weighting Exploratory data

### PATTERN MIXTURE MODELS FOR MISSING DATA. Mike Kenward. London School of Hygiene and Tropical Medicine. Talk at the University of Turku,

PATTERN MIXTURE MODELS FOR MISSING DATA Mike Kenward London School of Hygiene and Tropical Medicine Talk at the University of Turku, April 10th 2012 1 / 90 CONTENTS 1 Examples 2 Modelling Incomplete Data

### Advanced Spatial Statistics Fall 2012 NCSU. Fuentes Lecture notes

Advanced Spatial Statistics Fall 2012 NCSU Fuentes Lecture notes Areal unit data 2 Areal Modelling Areal unit data Key Issues Is there spatial pattern? Spatial pattern implies that observations from units

### Handling attrition and non-response in longitudinal data

Longitudinal and Life Course Studies 2009 Volume 1 Issue 1 Pp 63-72 Handling attrition and non-response in longitudinal data Harvey Goldstein University of Bristol Correspondence. Professor H. Goldstein

### Longitudinal Data Analysis

Longitudinal Data Analysis Acknowledge: Professor Garrett Fitzmaurice INSTRUCTOR: Rino Bellocco Department of Statistics & Quantitative Methods University of Milano-Bicocca Department of Medical Epidemiology

### A Basic Introduction to Missing Data

John Fox Sociology 740 Winter 2014 Outline Why Missing Data Arise Why Missing Data Arise Global or unit non-response. In a survey, certain respondents may be unreachable or may refuse to participate. Item

### Problem of Missing Data

VASA Mission of VA Statisticians Association (VASA) Promote & disseminate statistical methodological research relevant to VA studies; Facilitate communication & collaboration among VA-affiliated statisticians;

### Department of Epidemiology and Public Health Miller School of Medicine University of Miami

Department of Epidemiology and Public Health Miller School of Medicine University of Miami BST 630 (3 Credit Hours) Longitudinal and Multilevel Data Wednesday-Friday 9:00 10:15PM Course Location: CRB 995

### Microeconometrics Blundell Lecture 1 Overview and Binary Response Models

Microeconometrics Blundell Lecture 1 Overview and Binary Response Models Richard Blundell http://www.ucl.ac.uk/~uctp39a/ University College London February-March 2016 Blundell (University College London)

### C: LEVEL 800 {MASTERS OF ECONOMICS( ECONOMETRICS)}

C: LEVEL 800 {MASTERS OF ECONOMICS( ECONOMETRICS)} 1. EES 800: Econometrics I Simple linear regression and correlation analysis. Specification and estimation of a regression model. Interpretation of regression

### Missing Data: Part 1 What to Do? Carol B. Thompson Johns Hopkins Biostatistics Center SON Brown Bag 3/20/13

Missing Data: Part 1 What to Do? Carol B. Thompson Johns Hopkins Biostatistics Center SON Brown Bag 3/20/13 Overview Missingness and impact on statistical analysis Missing data assumptions/mechanisms Conventional

### Econometric Analysis of Cross Section and Panel Data Second Edition. Jeffrey M. Wooldridge. The MIT Press Cambridge, Massachusetts London, England

Econometric Analysis of Cross Section and Panel Data Second Edition Jeffrey M. Wooldridge The MIT Press Cambridge, Massachusetts London, England Preface Acknowledgments xxi xxix I INTRODUCTION AND BACKGROUND

### MATH5885 LONGITUDINAL DATA ANALYSIS

MATH5885 LONGITUDINAL DATA ANALYSIS Semester 1, 2013 CRICOS Provider No: 00098G 2013, School of Mathematics and Statistics, UNSW MATH5885 Course Outline Information about the course Course Authority: William

### Tips for surviving the analysis of survival data. Philip Twumasi-Ankrah, PhD

Tips for surviving the analysis of survival data Philip Twumasi-Ankrah, PhD Big picture In medical research and many other areas of research, we often confront continuous, ordinal or dichotomous outcomes

### Statistical Analysis with Missing Data

Statistical Analysis with Missing Data Second Edition RODERICK J. A. LITTLE DONALD B. RUBIN WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface PARTI OVERVIEW AND BASIC APPROACHES

### An extension of the factoring likelihood approach for non-monotone missing data

An extension of the factoring likelihood approach for non-monotone missing data Jae Kwang Kim Dong Wan Shin January 14, 2010 ABSTRACT We address the problem of parameter estimation in multivariate distributions

### SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

### A Mixed Model Approach for Intent-to-Treat Analysis in Longitudinal Clinical Trials with Missing Values

Methods Report A Mixed Model Approach for Intent-to-Treat Analysis in Longitudinal Clinical Trials with Missing Values Hrishikesh Chakraborty and Hong Gu March 9 RTI Press About the Author Hrishikesh Chakraborty,

### Bayesian Approaches to Handling Missing Data

Bayesian Approaches to Handling Missing Data Nicky Best and Alexina Mason BIAS Short Course, Jan 30, 2012 Lecture 1. Introduction to Missing Data Bayesian Missing Data Course (Lecture 1) Introduction to

### A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution

A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 4: September

Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.

### A short course in Longitudinal Data Analysis ESRC Research Methods and Short Course Material for Practicals with the joiner package.

A short course in Longitudinal Data Analysis ESRC Research Methods and Short Course Material for Practicals with the joiner package. Lab 2 - June, 2008 1 jointdata objects To analyse longitudinal data

### Weighted Least Squares

Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

### MISSING DATA TECHNIQUES WITH SAS. IDRE Statistical Consulting Group

MISSING DATA TECHNIQUES WITH SAS IDRE Statistical Consulting Group ROAD MAP FOR TODAY To discuss: 1. Commonly used techniques for handling missing data, focusing on multiple imputation 2. Issues that could

### Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus

Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives

### Study Design and Statistical Analysis

Study Design and Statistical Analysis Anny H Xiang, PhD Department of Preventive Medicine University of Southern California Outline Designing Clinical Research Studies Statistical Data Analysis Designing

### Linear Threshold Units

Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

### SPPH 501 Analysis of Longitudinal & Correlated Data September, 2012

SPPH 501 Analysis of Longitudinal & Correlated Data September, 2012 TIME & PLACE: Term 1, Tuesday, 1:30-4:30 P.M. LOCATION: INSTRUCTOR: OFFICE: SPPH, Room B104 Dr. Ying MacNab SPPH, Room 134B TELEPHONE:

### Chapter 1. Longitudinal Data Analysis. 1.1 Introduction

Chapter 1 Longitudinal Data Analysis 1.1 Introduction One of the most common medical research designs is a pre-post study in which a single baseline health status measurement is obtained, an intervention

### CHAPTER 12 EXAMPLES: MONTE CARLO SIMULATION STUDIES

Examples: Monte Carlo Simulation Studies CHAPTER 12 EXAMPLES: MONTE CARLO SIMULATION STUDIES Monte Carlo simulation studies are often used for methodological investigations of the performance of statistical

### Logistic Regression (1/24/13)

STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used

### Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

### Regression Modeling Strategies

Frank E. Harrell, Jr. Regression Modeling Strategies With Applications to Linear Models, Logistic Regression, and Survival Analysis With 141 Figures Springer Contents Preface Typographical Conventions

### Linear Classification. Volker Tresp Summer 2015

Linear Classification Volker Tresp Summer 2015 1 Classification Classification is the central task of pattern recognition Sensors supply information about an object: to which class do the object belong

### Hypothesis Testing in the Classical Regression Model

LECTURE 5 Hypothesis Testing in the Classical Regression Model The Normal Distribution and the Sampling Distributions It is often appropriate to assume that the elements of the disturbance vector ε within

### Introduction to Longitudinal Data Analysis

Introduction to Longitudinal Data Analysis Longitudinal Data Analysis Workshop Section 1 University of Georgia: Institute for Interdisciplinary Research in Education and Human Development Section 1: Introduction

### Introduction to Analysis Methods for Longitudinal/Clustered Data, Part 3: Generalized Estimating Equations

Introduction to Analysis Methods for Longitudinal/Clustered Data, Part 3: Generalized Estimating Equations Mark A. Weaver, PhD Family Health International Office of AIDS Research, NIH ICSSC, FHI Goa, India,

### CHAPTER 6 EXAMPLES: GROWTH MODELING AND SURVIVAL ANALYSIS

Examples: Growth Modeling And Survival Analysis CHAPTER 6 EXAMPLES: GROWTH MODELING AND SURVIVAL ANALYSIS Growth models examine the development of individuals on one or more outcome variables over time.

### Challenges in Longitudinal Data Analysis: Baseline Adjustment, Missing Data, and Drop-out

Challenges in Longitudinal Data Analysis: Baseline Adjustment, Missing Data, and Drop-out Sandra Taylor, Ph.D. IDDRC BBRD Core 23 April 2014 Objectives Baseline Adjustment Introduce approaches Guidance

### Statistical Machine Learning

Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

### Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

### Statistical modelling with missing data using multiple imputation. Session 4: Sensitivity Analysis after Multiple Imputation

Statistical modelling with missing data using multiple imputation Session 4: Sensitivity Analysis after Multiple Imputation James Carpenter London School of Hygiene & Tropical Medicine Email: james.carpenter@lshtm.ac.uk

### BIO 226: APPLIED LONGITUDINAL ANALYSIS LECTURE 13. Linear Mixed Effects Model and Prediction

BIO 226: APPLIED LONGITUDINAL ANALYSIS LECTURE 13 Linear Mixed Effects Model and Prediction 1 Linear Mixed Effects Model and Prediction Recall that in the linear mixed effects model, Y ij = X ijβ + Z ijb

### Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

### Publication List. Chen Zehua Department of Statistics & Applied Probability National University of Singapore

Publication List Chen Zehua Department of Statistics & Applied Probability National University of Singapore Publications Journal Papers 1. Y. He and Z. Chen (2014). A sequential procedure for feature selection

### Handling missing data in Stata a whirlwind tour

Handling missing data in Stata a whirlwind tour 2012 Italian Stata Users Group Meeting Jonathan Bartlett www.missingdata.org.uk 20th September 2012 1/55 Outline The problem of missing data and a principled

### Missing data and net survival analysis Bernard Rachet

Workshop on Flexible Models for Longitudinal and Survival Data with Applications in Biostatistics Warwick, 27-29 July 2015 Missing data and net survival analysis Bernard Rachet General context Population-based,

### Introduction to latent variable models

Introduction to latent variable models lecture 1 Francesco Bartolucci Department of Economics, Finance and Statistics University of Perugia, IT bart@stat.unipg.it Outline [2/24] Latent variables and their

### Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

### Guideline on missing data in confirmatory clinical trials

2 July 2010 EMA/CPMP/EWP/1776/99 Rev. 1 Committee for Medicinal Products for Human Use (CHMP) Guideline on missing data in confirmatory clinical trials Discussion in the Efficacy Working Party June 1999/

### APPLIED MISSING DATA ANALYSIS

APPLIED MISSING DATA ANALYSIS Craig K. Enders Series Editor's Note by Todd D. little THE GUILFORD PRESS New York London Contents 1 An Introduction to Missing Data 1 1.1 Introduction 1 1.2 Chapter Overview

### Semester 1 Statistics Short courses

Semester 1 Statistics Short courses Course: STAA0001 Basic Statistics Blackboard Site: STAA0001 Dates: Sat. March 12 th and Sat. April 30 th (9 am 5 pm) Assumed Knowledge: None Course Description Statistical

### An Application of the G-formula to Asbestos and Lung Cancer. Stephen R. Cole. Epidemiology, UNC Chapel Hill. Slides: www.unc.

An Application of the G-formula to Asbestos and Lung Cancer Stephen R. Cole Epidemiology, UNC Chapel Hill Slides: www.unc.edu/~colesr/ 1 Acknowledgements Collaboration with David B. Richardson, Haitao

### Multivariate Normal Distribution

Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

### Missing Data. A Typology Of Missing Data. Missing At Random Or Not Missing At Random

[Leeuw, Edith D. de, and Joop Hox. (2008). Missing Data. Encyclopedia of Survey Research Methods. Retrieved from http://sage-ereference.com/survey/article_n298.html] Missing Data An important indicator

### PS 271B: Quantitative Methods II. Lecture Notes

PS 271B: Quantitative Methods II Lecture Notes Langche Zeng zeng@ucsd.edu The Empirical Research Process; Fundamental Methodological Issues 2 Theory; Data; Models/model selection; Estimation; Inference.

### GLM I An Introduction to Generalized Linear Models

GLM I An Introduction to Generalized Linear Models CAS Ratemaking and Product Management Seminar March 2009 Presented by: Tanya D. Havlicek, Actuarial Assistant 0 ANTITRUST Notice The Casualty Actuarial

### Multiple Imputation for Missing Data: A Cautionary Tale

Multiple Imputation for Missing Data: A Cautionary Tale Paul D. Allison University of Pennsylvania Address correspondence to Paul D. Allison, Sociology Department, University of Pennsylvania, 3718 Locust

### Lecture 15 Introduction to Survival Analysis

Lecture 15 Introduction to Survival Analysis BIOST 515 February 26, 2004 BIOST 515, Lecture 15 Background In logistic regression, we were interested in studying how risk factors were associated with presence

### A REVIEW OF CURRENT SOFTWARE FOR HANDLING MISSING DATA

123 Kwantitatieve Methoden (1999), 62, 123-138. A REVIEW OF CURRENT SOFTWARE FOR HANDLING MISSING DATA Joop J. Hox 1 ABSTRACT. When we deal with a large data set with missing data, we have to undertake

### State Space Time Series Analysis

State Space Time Series Analysis p. 1 State Space Time Series Analysis Siem Jan Koopman http://staff.feweb.vu.nl/koopman Department of Econometrics VU University Amsterdam Tinbergen Institute 2011 State

### Analysis of Longitudinal Data with Missing Values.

Analysis of Longitudinal Data with Missing Values. Methods and Applications in Medical Statistics. Ingrid Garli Dragset Master of Science in Physics and Mathematics Submission date: June 2009 Supervisor:

### I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Beckman HLM Reading Group: Questions, Answers and Examples Carolyn J. Anderson Department of Educational Psychology I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Linear Algebra Slide 1 of

### Life Table Analysis using Weighted Survey Data

Life Table Analysis using Weighted Survey Data James G. Booth and Thomas A. Hirschl June 2005 Abstract Formulas for constructing valid pointwise confidence bands for survival distributions, estimated using

### ˆx wi k = i ) x jk e x j β. c i. c i {x ik x wi k}, (1)

Residuals Schoenfeld Residuals Assume p covariates and n independent observations of time, covariates, and censoring, which are represented as (t i, x i, c i ), where i = 1, 2,..., n, and c i = 1 for uncensored

### Marketing Mix Modelling and Big Data P. M Cain

1) Introduction Marketing Mix Modelling and Big Data P. M Cain Big data is generally defined in terms of the volume and variety of structured and unstructured information. Whereas structured data is stored

### Statistics in Geophysics: Linear Regression II

Statistics in Geophysics: Linear Regression II Steffen Unkel Department of Statistics Ludwig-Maximilians-University Munich, Germany Winter Term 2013/14 1/28 Model definition Suppose we have the following

### Applied Missing Data Analysis in the Health Sciences. Statistics in Practice

Brochure More information from http://www.researchandmarkets.com/reports/2741464/ Applied Missing Data Analysis in the Health Sciences. Statistics in Practice Description: A modern and practical guide

### Spatial Statistics Chapter 3 Basics of areal data and areal data modeling

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Recall areal data also known as lattice data are data Y (s), s D where D is a discrete index set. This usually corresponds to data

### Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.

Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are

### Overview Classes. 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7)

Overview Classes 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7) 2-4 Loglinear models (8) 5-4 15-17 hrs; 5B02 Building and

### Analyzing Structural Equation Models With Missing Data

Analyzing Structural Equation Models With Missing Data Craig Enders* Arizona State University cenders@asu.edu based on Enders, C. K. (006). Analyzing structural equation models with missing data. In G.

### Missing Data in Longitudinal Studies: Dropout, Causal Inference, and Sensitivity Analysis

Missing Data in Longitudinal Studies: Dropout, Causal Inference, and Sensitivity Analysis Michael J. Daniels University of Florida Joseph W. Hogan Brown University Contents I Regression and Inference

### A Bayesian hierarchical surrogate outcome model for multiple sclerosis

A Bayesian hierarchical surrogate outcome model for multiple sclerosis 3 rd Annual ASA New Jersey Chapter / Bayer Statistics Workshop David Ohlssen (Novartis), Luca Pozzi and Heinz Schmidli (Novartis)

### 15.062 Data Mining: Algorithms and Applications Matrix Math Review

.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

### Adequacy of Biomath. Models. Empirical Modeling Tools. Bayesian Modeling. Model Uncertainty / Selection

Directions in Statistical Methodology for Multivariable Predictive Modeling Frank E Harrell Jr University of Virginia Seattle WA 19May98 Overview of Modeling Process Model selection Regression shape Diagnostics

### CHAPTER 9 EXAMPLES: MULTILEVEL MODELING WITH COMPLEX SURVEY DATA

Examples: Multilevel Modeling With Complex Survey Data CHAPTER 9 EXAMPLES: MULTILEVEL MODELING WITH COMPLEX SURVEY DATA Complex survey data refers to data obtained by stratification, cluster sampling and/or

### The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series.

Cointegration The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series. Economic theory, however, often implies equilibrium

### FIXED EFFECTS AND RELATED ESTIMATORS FOR CORRELATED RANDOM COEFFICIENT AND TREATMENT EFFECT PANEL DATA MODELS

FIXED EFFECTS AND RELATED ESTIMATORS FOR CORRELATED RANDOM COEFFICIENT AND TREATMENT EFFECT PANEL DATA MODELS Jeffrey M. Wooldridge Department of Economics Michigan State University East Lansing, MI 48824-1038

### STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

### Models of binary outcomes with 3-level data: A comparison of some options within SAS. CAPS Methods Core Seminar April 19, 2013.

Models of binary outcomes with 3-level data: A comparison of some options within SAS CAPS Methods Core Seminar April 19, 2013 Steve Gregorich SEGregorich 1 April 19, 2013 Designs I. Cluster Randomized

### Dealing with Missing Data

Dealing with Missing Data Roch Giorgi email: roch.giorgi@univ-amu.fr UMR 912 SESSTIM, Aix Marseille Université / INSERM / IRD, Marseille, France BioSTIC, APHM, Hôpital Timone, Marseille, France January

### Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood

Regression Estimation - Least Squares and Maximum Likelihood Dr. Frank Wood Least Squares Max(min)imization Function to minimize w.r.t. b 0, b 1 Q = n (Y i (b 0 + b 1 X i )) 2 i=1 Minimize this by maximizing

### A crash course in probability and Naïve Bayes classification

Probability theory A crash course in probability and Naïve Bayes classification Chapter 9 Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s

### Reject Inference in Credit Scoring. Jie-Men Mok

Reject Inference in Credit Scoring Jie-Men Mok BMI paper January 2009 ii Preface In the Master programme of Business Mathematics and Informatics (BMI), it is required to perform research on a business

### Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences

Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences Third Edition Jacob Cohen (deceased) New York University Patricia Cohen New York State Psychiatric Institute and Columbia University

### SUMAN DUVVURU STAT 567 PROJECT REPORT

SUMAN DUVVURU STAT 567 PROJECT REPORT SURVIVAL ANALYSIS OF HEROIN ADDICTS Background and introduction: Current illicit drug use among teens is continuing to increase in many countries around the world.

### How to choose an analysis to handle missing data in longitudinal observational studies

How to choose an analysis to handle missing data in longitudinal observational studies ICH, 25 th February 2015 Ian White MRC Biostatistics Unit, Cambridge, UK Plan Why are missing data a problem? Methods:

### SVM-Based Approaches for Predictive Modeling of Survival Data

SVM-Based Approaches for Predictive Modeling of Survival Data Han-Tai Shiao and Vladimir Cherkassky Department of Electrical and Computer Engineering University of Minnesota, Twin Cities Minneapolis, Minnesota