Food Proficiency Testing Program Round 33 Skim Milk Powder

Size: px
Start display at page:

Download "Food Proficiency Testing Program Round 33 Skim Milk Powder"

Transcription

1 -- REPORT NO. 694 Food Proficiency Testing Program Round 33 Skim Milk Powder December 010 ACKNOWLEDGMENTS PTA wishes to gratefully acknowledge the technical assistance provided for this program by Dr M Buckley-Smith and Dr R Hutchinson, AsureQuality Limited (New Zealand). Thanks also to Mr M Withers and Mrs S Giannoulidis, AsureQuality Limited (Australia), who arranged for the supply of the samples and AsureQuality Limited (New Zealand) for the production of the samples. COPYRIGHT PROFICIENCY TESTING AUSTRALIA 010 PO Box 7507 Silverwater NSW 18 AUSTRALIA

2 -3- CONTENTS 1. FOREWORD 1. FEATURES OF THE PROGRAM 1 3. FORMAT OF THE APPENDICES 4. STATISTICAL DESIGN OF THE PROGRAM 5. EXTREME RESULTS Table A: Summary Statistics for All Tests 3 Table B: Summary of Statistical Outliers 3 6. PTA AND TECHNICAL ADVISERS' COMMENTS 4 Table C: Method of Measurement Uncertainty Estimation REFERENCES 15 APPENDICES APPENDIX A Summary of Results Moisture A1.1 - A1. Total Nitrogen A.1 - A. Fat A3.1 Ash A4.1 - A4. APPENDIX B Homogeneity and Stability Testing B1.1 APPENDIX C Instructions to Participants C1.1 - C1. Results Sheet C.1

3 -1-1. FOREWORD This report summarises the results of a proficiency testing program involving the analysis of skim milk powder samples. It constitutes the thirty-third round of an ongoing series of programs involving chemical analysis of foodstuffs. Proficiency Testing Australia (PTA) conducted the testing program in November 010. The program coordinator was Dr M Bunt. The aim of the program was to assess laboratories' ability to competently perform the nominated tests. This report was authorised by Ms F Ward, PTA Quality Business Development Manager.. FEATURES OF THE PROGRAM (a) A total of 14 laboratories participated in the program, all of which returned results for inclusion in the final report. Laboratories from the following states and countries participated: 4 VIC NSW QLD 1 TAS 1 WA MALAYSIA 1 THAILAND 1 HONG KONG To ensure confidential treatment of results, each laboratory was allocated a unique code number. All reference to participants is by allocated code numbers. (b) The results reported by participants are presented in Appendix A. (c) (d) Laboratories were provided with two samples of approximately 175 g of skim milk powder, labelled PTA 1 and PTA. Participants were requested to determine the levels of: Moisture; Total Nitrogen; Fat; and Ash. Laboratories were required to perform all tests using the routine test methods which would normally be used to test customer supplied samples. (e) Laboratories were requested to perform the tests according to the Instructions to Participants provided and to record the results, along with an estimate of their measurement uncertainty (MU) for each result, on the accompanying Results Sheet, which was distributed with the samples. Copies of these documents appear in Appendix C.

4 -- (f) Prior to sample distribution, ten randomly selected samples were analysed for homogeneity by AsureQuality Limited (New Zealand). An additional three randomly selected samples were analysed for stability by AsureQuality Limited (New Zealand). Based on the results of this testing, the homogeneity and stability of the samples was established (see Appendix B). 3. FORMAT OF THE APPENDICES (a) Appendix A is divided into four sections (A1 A4). These sections contain the analysis of results reported by laboratories for Moisture, Total Nitrogen, Fat and Ash. Each section contains, where applicable: i) a table of results reported by laboratories for each test, with estimates of their measurement uncertainties, calculated z-scores and methods used; ii) a listing of the summary statistics; iii) ordered z-score charts; iv) a Youden diagram of laboratories results for the sample pair. (b) (c) Appendix B contains details of the homogeneity and stability testing. Appendix C contains copies of the Instructions to Participants and Results Sheet. 4. STATISTICAL DESIGN OF THE PROGRAM A uniform pair statistical design was chosen for this program. Samples PTA 1 and PTA were identical for Moisture, Total Nitrogen, Fat and Ash. 5. EXTREME RESULTS Robust z-scores have been used to assess each laboratory s testing performance. When calculated from single results, z-scores are used to detect excessively large or excessively small results in comparison to the consensus value (the median). Any result with an absolute z-score greater than or equal to three (i.e. -3 or 3) is classified as an outlier. For further details on the calculation and interpretation of robust z-scores, please see the Guide to Proficiency Testing Australia (008).

5 -3- Table A: Summary Statistics for All Tests The following table summarises the results submitted by participants for the program. Test Summary Statistics PTA 1 PTA Moisture (% m/m) Total Nitrogen (% m/m) Fat (% m/m) Ash (% m/m) No. of Results Median Normalised IQR No. of Results Median Normalised IQR No. of Results 1 1 Median Normalised IQR No. of Results Median Normalised IQR Notes: 1. For each test, except Fat, the results for all test methods were pooled and the summary statistics, above, are for the pooled results.. Summary statistics for Fat were not calculated. Table B: Summary of Statistical Outliers The following table lists the laboratories (by code number) that obtained outliers for each test. Test Sample PTA 1 Sample PTA Moisture 14 4, 9, 1, 14 Total Nitrogen 3 3 Fat Ash 1 - Note: Z-scores for Fat were not calculated.

6 -4-6. PTA AND TECHNICAL ADVISERS COMMENTS The summary statistics and outliers identified for each of the tests are reported in Tables A and B on the previous page. Complete details of the statistical analyses appear in Appendix A. 6.1 Return rate All of the fourteen laboratories that participated in the program submitted results. Ten of these fourteen laboratories (71%) provided results for all four of the tests. The return rate for all tests is as follows: Moisture 13 out of 14 93% Total Nitrogen 13 out of 14 93% Fat 1 out of 14 86% Ash 13 out of 14 93% 6. Performance summary Samples PTA 1 and PTA were duplicate samples of the same batch of skim milk powder. One or more statistical outliers were reported by five of the fourteen laboratories (36%) that returned results in this round of the Food program. The last skim milk powder round of the Food program was Round 3 (see Report No 660). For comparison, 14% of the participants in Round 3 of the Food program reported statistical outliers. A total of 78 results were analysed in this round of the program. Of these results, eight (10%) were outlier results. In Round 3 of the Food program 3% of the total results reported were outlier results.

7 Moisture Of the thirteen laboratories that tested the samples for Moisture, four laboratories tested using the Australian Standard method, AS Two laboratories tested using AOAC Two laboratories tested using AOAC One laboratory tested using IDF 6A. Four laboratories tested using other methods. The temperatures used for moisture determination varied between 100 C and 130 C. The times used for moisture determination ranged between ten minutes and sixteen hours. The robust CVs of 6.6% and 3.3% for the two samples are lower than the values of 9.4% and 10.7% obtained in Round 3 of the Food program (see Report No 660). The exceptionally good CV for sample PTA was unexpected, considering both samples were duplicates from the same batch, so sample variability was unlikely to have been smaller for this sample. It is more likely that the small CV was due statistical chance from a small sample size (thirteen laboratories), and the improvement in laboratory testing variability lies somewhere between 3.3% - 6.6% CV. Laboratory 14 reported outliers for both samples, and laboratories 4, 9 and 1 obtained outliers for sample PTA, all requiring follow-up investigation. Laboratories and 9 may also wish to carry out an in-house investigation into their repeatability, as their test results for duplicate sample testing differed by more than twice the average difference between the samples. Moisture (% m/m) 1 10 Frequency Mettlter Toledo LP16 Manual In-house (Sirim) IDF 6A AS AOAC AOAC AOAC AACC 44-15A Result (% m/m) Figure 1a. Effect of analysis method on Moisture test results (median = 4.5 %m/m). Confidence in the median for testing these duplicate samples was calculated using the standard error ((SD/Sqrt(n))*1.77) where the standard deviation (SD) is approximated using the normalised interquartile range. Median S1 = 4.50 %m/m ± 0.15 %m/m. Median S = 4.50 %m/m ± 0.07 %m/m.

8 -6- Recording of drying conditions was valuable for understanding results and the outermost results matched with the most extreme drying conditions of temperature (130 ºC) and time (16 hours). The most popular drying condition of 10 ºC, originally from the British Standard, was intended to measure free moisture only, but was more difficult to obtain agreement of results between laboratories than some other methods. Moisture (% m/m) Temperature 1 10 Frequency Result (% m/m) Figure 1b. Effect of temperature on Moisture test results. Moisture (% m/m) Time 1 10 Frequency hours 06 hours 05 hours 04 hours 0 hours 01 hours *10 mins Result (% m/m) Figure 1c. Effect of time on Moisture test results.

9 -7- Variation between laboratories was considerably greater than within laboratory, with repeatability (r S1&S =0.3%) and Reproducibility (R S1 =0.83%, R S =0.415%) values similar to those published in IDF 6A, which is similar to most methods used here. One of the laboratories that reported results for Moisture did not provide an estimate of the MU for their results for either sample. Half of the laboratories (laboratories 1, 4, 10, 1, 13 and 14) who submitted MU information had at least one result further from the median than their stated MU. Also, the majority of stated MU values were less than the between laboratories variation (Reproducibility) mentioned previously. With the standard error of the median between %m/m, the remainder of the difference between each laboratory s result and the median is due to laboratory variability. This indicates that the use of in-house repeatability standard deviations as an approximation of MU may not be appropriate (i.e. MU < 0. %m/m), and adding reproducibility MU from repeated proficiency rounds or reference material analysis may be helpful. Moisture (% m/m) ± MU 8 7 R MU Frequency Mettlter Toledo LP16 Manual In-house (Sirim) IDF 6A AS AOAC AOAC AOAC AACC Measurement Uncertainty Figure 1d. Reported Measurement Uncertainty for Moisture Test.

10 Total Nitrogen One of the thirteen laboratories that tested the samples for Total Nitrogen reported using the Australian Standard method, AS One other laboratory reported using AS , but did not specify whether they used AS or AS Appendix A. One laboratory tested using AOAC Two laboratories tested using AOAC One laboratory tested using AOAC 930.9a. Seven laboratories used other methods for testing. The robust CVs of 1.5% and 1.6% for the two samples compare well with the values of 1.4% and 1.4% obtained in Round 3 of the Food program (see Report No 660). Laboratories 3 and 7 originally recorded Protein results instead of Total Nitrogen and had to re-submit their results. Laboratory 3 obtained outliers for both samples, requiring follow-up action. Laboratories 3, 4 and 11 may also wish to carry out an in-house investigation into their repeatability, as their test results for duplicate sample testing differed by more than twice the average difference between the samples. Total Nitrogen (% m/m) 14 Frequency Nitrogen analyser Modified from AOAC Kjeldahl method In-house (Tecator) AS AS AOAC 99.3 AOAC AOAC AOAC AOAC 930.9a AACC Result (% m/m) Figure a. Effect of analysis method on Total Nitrogen test results (median = 5.06 %m/m ± 0.04 %m/m). Due to the wide variety of methods used, submission of test conditions and standard methods claimed performance values (repeatability and Reproducibility) may give better insight in future rounds. However, results from this round indicate that combustion methods may be slightly higher. Variation between laboratories was moderately greater than within laboratory, with repeatability (r S1&S =0.13%) and Reproducibility (R S1 =0.1%, R S =0.3%) values being well within those inferred from IDF 9 (r CV = 0.5% and R CV =1%)

11 -9- and AOAC. This shows very good control of test conditions between methods and laboratories. Two of the laboratories that reported results for Total Nitrogen did not provide an estimate of the MU for their results for either sample. There were three out of eleven laboratories (laboratories 1, 3 and 4) which had at least one result further from the median than their stated MU. There were two distinctive groupings of stated MU, one group at the repeatability value and another at the reproducibility values stated above. With the standard error of the median between %m/m, the remainder of the difference between each laboratory s result and the median is due to laboratory variability. This indicates that the use of in-house repeatability standard deviations as an approximation of MU may not be sufficient (ie MU < 0.1 %m/m), and adding reproducibility MU, e.g. from repeated proficiency and method R and r values may be helpful. Total Nitrogen (% m/m) ± MU Frequency R MU Nitrogen analyser Modified from AOAC Kjeldahl method In-house (Tecator) AS AS AOAC 99.3 AOAC AOAC AOAC AOAC 930.9a AACC Measurement Uncertainty Figure b. Reported Measurement Uncertainty for Total Nitrogen Test.

12 Fat Twelve laboratories tested the samples for Fat. The Australian Standard method, AS , was used by five laboratories. One laboratory tested using AOAC Three laboratories tested using AOAC One laboratory tested using AOAC Two laboratories used other methods for testing. There was a noticeable difference between the Fat results submitted for the different testing methods. Therefore, the results could not be pooled for analysis. Unfortunately, there was an insufficient number of results for any testing method to calculate summary statistics or z-scores for any of the methods used. Fat (% 14 1 Frequency C1.07 AS AOAC AOAC AOAC Acid hydrolysis Result (% m/m) Figure 3a. Effect of analysis method on Fat test results (median = 1.0 %m/m). High values were obtained using the acid hydrolysis method, seen in figure 3a. The high carbohydrate content of the skim milk powder samples used in this round may be outside the scope of this method (refer IDF std 5b etc), and therefore not appropriate to use. High fat values for skim milk powder above 1% are uncommon because of the efficiency of dairy factory separators, therefore results in this round significantly above 1 %m/m should be viewed with caution and the laboratories in question should carry out an in-house assessment of appropriateness of methods used, depending on their circumstances and the fat content of their normal in-house test matrices. Variation between laboratories Reproducibility (R S1 =1.61%, R S =1.17%) was considerably greater than within laboratory repeatability (r S1&S =0.33%). The calculated Reproducibility was high compared with IDF 9C:1987 r = 0.1% and R = 0.%, which is similar to IDF 6A and most of the methods here. Two of the laboratories that reported results for Fat did not provide an estimate of the MU for their results for either sample. All ten laboratories who did submit MU information had at least one result further from the median than their stated MU. With the standard error of the median between %m/m, the

13 -11- remainder of the difference between each laboratory s result and the median is due to laboratory variability (see Reproducibility above). The under-estimation of MU may be due to the very low fat levels seen in this skim milk powder, which may have meant that in-house repeatability standard deviations calculated from higher fat milk powders would not be appropriate to extrapolate to this situation. This is a similar situation to that found in the previous round (Round 3). The reproducibility value for laboratories with results of <1% fat was R <1% =0.1 %m/m, which was closer to the IDF reproducibility and may be a more useful estimate of MU. Fat (% m/m) ± MU 7 6 R IDF MU Frequency C1.07 AS AOAC AOAC AOAC Acid hydrolysis Measurement Uncertainty Figure 3b. Reported Measurement Uncertainty for Fat Test.

14 Ash Five of the thirteen laboratories that submitted results for Ash used the Australian Standard method, AS One laboratory tested using AOAC Five laboratories tested using AOAC Two laboratories used other methods. Temperatures used for ashing ranged between 55 C and 600 C. Times of ashing varied between two hours and sixteen hours. The robust CVs of 1.% and 1.4% for the two samples compare well with the values of 0.9% and 1.0% obtained in Round 3 of the Food program (see Report No 660). Laboratory 1 reported an outlier for sample PTA 1, requiring follow-up action. Laboratories 3 and 1 may also wish to carry out an in-house investigation into their repeatability, as their test results for duplicate sample testing differed by more than twice the average difference between the samples. Ash (% m/m) Frequency In-house AS AOAC AOAC AACC Result (% m/m) Figure 4a. Effect of analysis method on Ash test results (median = %m/m ± %m/m). Variation between laboratories was similar to within laboratory, with repeatability (r S1&S =0.0%) and Reproducibility (R S1 =0.7%, R S =0.31%) values similar to those published in IDF 90 for casein (r =0.15% and R = 0.5%), which is similar to most methods used here. This reflects very good control of test conditions both between test methods and laboratories. Two of the laboratories that reported results for Ash did not provide an estimate of the MU for their results for either sample. Six out of the eleven laboratories (laboratories 1, 3, 4, 7, 10 and 1) had at least one result further from the median than their stated MU. Also, the majority of stated MU values were much less than the between laboratories variation (Reproducibility) mentioned previously. With the standard error of the median between %m/m, the remainder of the difference between each laboratory s result and the median is

15 -13- due to laboratory or method variability. Because of the similarity between repeatability and reproducibility in this round, it might have been expected that laboratory MU based on in-house repeatability standard deviations should have been a reasonable approximation of MU, however, a large number of laboratories underestimated their MU, and reproducibility values may prove more useful estimates. Ash (% m/m) ± MU R MU 1 Frequency In-house AS AOAC AOAC AACC Measurement Uncertainty Figure 4b. Reported Measurement Uncertainty for Ash Test.

16 Measurement Uncertainty For this program, laboratories were requested to report an estimate of MU for each test result. The proportion of MU estimates returned for each individual test is as follows: Moisture 1 out of 13 9% Total Nitrogen 11 out of 13 85% Fat 10 out of 1 83% Ash 11 out of 13 85% From the results reported, there were a wide range of uncertainties reported, as shown in the tables in Appendix A. Participants were also asked to describe the method used for estimating their MU. Eight laboratories provided this information, which can be found in Table C below. Table C: Method of Measurement Uncertainty Estimation Lab Code Method Proficiency trial data, in-house precision data. 3 Best guess. 5 In-house precision data. 6 In-house precision data. 7 In-house precision data. 11 Running standard deviation from control charts and sample homogeneity variant from long term duplicate data. 13 In-house precision data, in-house accuracy data. 14 In-house precision data with proficiency trial data. Given that so many laboratories reported using some variation of the top down approach, involving in-house precision data, much more consistency in the MU values reported by the laboratories would be expected. It is recommended that laboratories ensure that greater attention be given to the manner in which they estimate MU and that they ensure a consistent and defensible approach to reporting MU. Calculation from ongoing proficiency performance and using method R and r values may assist with this.

17 REFERENCES 1. Guide to Proficiency Testing Australia (008). (This document is located on the PTA website at under Programs / Documents).. AS Methods of chemical and physical testing for the dairying industry - General methods and principles - Determination of total solids and moisture. 3. AS Methods of chemical and physical testing for the dairying industry - General methods and principles - Determination of nitrogen - Reference Kjeldahl method. 4. AS Methods of chemical and physical testing for the dairying industry - General methods and principles - Determination of fat - Gravimetric method. 5. AS Methods of chemical and physical testing for the dairying industry - General methods and principles - Determination of ash. 6. IDF 9C (1987) Dried milk, dried whey, dried buttermilk and dried butter serum Determination of fat content (Röse-Gottlieb method). 7. IDF 0B (1993) Milk Determination of nitrogen content. 8. IDF 6A (1993) Dried milk and dried cream Determination of water content. 9. IDF 90 (1979) Rennet caseins and caseinates Determination of ash. 10. IDF 9 (1979) Caseins and caseinates Determination of protein content.

18 APPENDIX A Summary of Results

19 Section A1 Moisture

20 A1.1 Skim Milk Powder Moisture (% m/m) Samples PTA 1 & PTA Lab PTA 1 PTA Z-Scores Temp Code Average MU (±) Average MU (±) PTA 1 PTA ( o C) Time (hrs) Method Code min Statistic PTA 1 PTA Method Codes Number No. of Results = AS Median = AOAC Norm IQR = AOAC Robust CV 6.59% 3.9% 4 = IDF 6A 1 Minimum = Other 4 Maximum Range Notes: 1. denotes an outlier (i.e. z-score 3).. The Youden diagram on the following page is provided for information only.

21 A1. Moisture (% m/m) - Sample PTA Robust Z-Score Laboratory Code Moisture (% m/m) - Sample PTA Robust Z-Score Laboratory Code Moisture (% m/m) 9 Sample PTA Sample PTA 1

22 Section A Total Nitrogen

23 A.1 Skim Milk Powder Total Nitrogen (% m/m) Samples PTA 1 & PTA Lab PTA 1 PTA Z-Scores Method Code Average MU (±) Average MU (±) PTA 1 PTA Code Statistic PTA 1 PTA Method Codes Number No. of Results = AS Median = AS Appendix A 0 Norm IQR = AOAC Robust CV 1.47% 1.61% 9 = AOAC Minimum = AOAC Maximum = AOAC 930.9a 1 Range = IDF 0B 0 13 = Other 8 Notes: 1. denotes an outlier (i.e. z-score 3).. Laboratories 3 and 7 originally recorded Protein results instead of Total Nitrogen. 3. Laboratory 5 did not specify whether they used AS or AS Appendix A for Total Nitrogen. Their method has been recorded as "Other" (Method Code 13). 4. The Youden diagram on the following page is provided for information only.

24 A. Total Nitrogen (% m/m) - Sample PTA Robust Z-Score Laboratory Code Total Nitrogen (% m/m) - Sample PTA Robust Z-Score Laboratory Code Total Nitrogen (% m/m) Sample PTA Sample PTA 1

25 Section A3 Fat

26 A3.1 Skim Milk Powder Fat (% m/m) Samples PTA 1 & PTA Lab Code PTA 1 PTA Average MU (±) Average MU (±) Method Code Method Codes Number 14 = AS = AOAC = AOAC = AOAC = IDF 9C 0 19 = Other Notes: 1. There was a noticeable difference between the Fat results submitted for the different testing methods. Therefore, the results could not be pooled for analysis.. There was an insufficient number of results for any testing method to calculate summary statistics or z-scores.

27 Section A4 Ash

28 A4.1 Skim Milk Powder Ash (% m/m) Samples PTA 1 & PTA Lab PTA 1 PTA Z-Scores Temp Code Average MU (±) Average MU (±) PTA 1 PTA ( o C) Time (hrs) Method Code Statistic PTA 1 PTA Method Codes Number No. of Results = AS Median = AOAC Norm IQR = AOAC Robust CV 1.% 1.41% 3 = AOAC Minimum = Other Maximum Range Notes: 1. denotes an outlier (i.e. z-score 3).. The Youden diagram on the following page is provided for information only.

29 A4. Ash (% m/m) - Sample PTA Robust Z-Score Laboratory Code Ash (% m/m) - Sample PTA 3 1 Robust Z-Score Laboratory Code Ash (% m/m) Sample PTA Sample PTA 1

30 APPENDIX B Homogeneity and Stability Testing

31 B1.1 Homogeneity Testing Prior to distribution, ten samples of skim milk powder were selected at random and tested for homogeneity by AsureQuality Limited (New Zealand). Each sample was tested in duplicate for Total Nitrogen. The results of the homogeneity testing appear in the following table. Skim Milk Powder Total Nitrogen (% m/m) Sample No. Result A Result B A B D E F H I J L M Analysis of this data indicated that the samples were sufficiently homogeneous and, therefore, any participant results identified as extreme cannot be attributed to sample variability. Stability Testing Three samples were selected at random and tested for stability by AsureQuality Limited (New Zealand). The results, below, indicated that the samples were sufficiently stable for use in this program. Skim Milk Powder Total Nitrogen (% m/m) Sample No. Result A Result B C G K

32 APPENDIX C Instructions to Participants and Results Sheet

33 C1.1 PROFICIENCY TESTING AUSTRALIA Food Proficiency Testing Program Round 33, November 010 INSTRUCTIONS TO PARTICIPANTS To ensure that the results of this program can be analysed correctly, participants are asked to note carefully: 1) Two samples of skim milk powder (each approximately 175 g), labelled PTA 1 and PTA, have been provided for compositional analysis. These samples are provided in foil laminated sachets and should be stored below 30 C prior to testing. These samples may be tested for some, or all of the following tests, according to each laboratory s requirements. ) The tests to be performed in this program are: Moisture Total Nitrogen Fat Ash 3) The tests may commence as soon as samples are received. Analysts should be aware of analyte stability and perform tests in an appropriate order. 4) Tests are to be performed on each sample in duplicate and the average result reported on the Results Sheet. 5) Report results on the attached Results Sheet to the specified number of decimal places. Results should not be reported as greater than. or less than., as such data cannot be statistically analysed. 6) Please identify the methods used on the Results Sheet, using the Method Codes listed on Page of these instructions. Laboratories should use the routine test methods which would normally be used to test customer supplied samples. 7) Laboratories are also requested to calculate and report an estimate of measurement uncertainty (MU) for each reported measurement result. All estimates of measurement uncertainty must be given as a 95% confidence interval (coverage factor k ). 8) Return Results Sheets, either by mail, facsimile or to: Mark Bunt Proficiency Testing Australia PO Box 7507 Telephone: ( ) Silverwater NSW 18 Fax: AUSTRALIA 9) All results should arrive at the above address by no later than Wednesday 17 November 010. Results reported later than this date may not be analysed in the final report. Food, Round 33 November 010 Page 1 of 3

34 C1. PROFICIENCY TESTING AUSTRALIA Food Proficiency Testing Program Round 33, November 010 METHOD CODES Analysis Method Code Moisture (% m/m) Total Nitrogen (% m/m) Fat (% m/m) Ash (% m/m) AS AOAC AOAC IDF 6A Other (please specify) AS AS Appendix A AOAC 99.3 AOAC AOAC AOAC 930.9a IDF 0B Other (please specify) AS AOAC AOAC AOAC IDF 9C Other (please specify) AS AOAC AOAC AOAC Other (please specify) Food, Round 33 November 010 Page of 3

35 C.1 PROFICIENCY TESTING AUSTRALIA Food Proficiency Testing Program Round 33, November 010 RESULTS SHEET Laboratory Code: Date Samples Received: Temperature on Arrival: Test Report results Sample PTA 1 Sample PTA to nearest Result MU (±) Result MU (±) Date Tested Method Code Moisture* 0.1% m/m Total Nitrogen 0.01% m/m Fat (see Note) 0.05% m/m Ash** 0.01% m/m * Please specify the temperature/time of moisture determination: o C/ hours. ** Please specify the temperature/time of ashing: o C/ hours. Please state below the method used to determine the measurement uncertainty (e.g. GUM (bottom up), proficiency trial data, in-house precision data, Horwitz equation, best guess, etc.) Note. Report results as % fat in sample, not as fat in dry matter. Print Name: Signature & Date: Food, Round 33 November 010 Page 3 of 3

36 ----- End of report -----

American Association for Laboratory Accreditation

American Association for Laboratory Accreditation Page 1 of 12 The examples provided are intended to demonstrate ways to implement the A2LA policies for the estimation of measurement uncertainty for methods that use counting for determining the number

More information

PTA proficiency testing for metal testing laboratories

PTA proficiency testing for metal testing laboratories PTA proficiency testing for metal testing laboratories BRIGGS Philip (Proficiency Testing Australia PO Box 7507, Silverwater, Rhodes NSW 2128 Australia ) Abstract: Proficiency testing is used internationally

More information

Council of Ambulance Authorities

Council of Ambulance Authorities Council of Ambulance Authorities National Patient Satisfaction Survey 2015 Prepared for: Mojca Bizjak-Mikic Manager, Data & Research The Council of Ambulance Authorities Prepared by: Dr Svetlana Bogomolova

More information

Determination of Fat in Dried Milk Products Using Accelerated Solvent Extraction (ASE)

Determination of Fat in Dried Milk Products Using Accelerated Solvent Extraction (ASE) Application Note 340 Determination of Fat in Dried Milk Products INTRODUCTION Many extraction techniques for the determination of fat in food are labor-intensive or require long extraction times. The Roese-Gottlieb

More information

How to Verify Performance Specifications

How to Verify Performance Specifications How to Verify Performance Specifications VERIFICATION OF PERFORMANCE SPECIFICATIONS In 2003, the Centers for Medicare and Medicaid Services (CMS) updated the CLIA 88 regulations. As a result of the updated

More information

Validation and Calibration. Definitions and Terminology

Validation and Calibration. Definitions and Terminology Validation and Calibration Definitions and Terminology ACCEPTANCE CRITERIA: The specifications and acceptance/rejection criteria, such as acceptable quality level and unacceptable quality level, with an

More information

Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

More information

1. PURPOSE To provide a written procedure for laboratory proficiency testing requirements and reporting.

1. PURPOSE To provide a written procedure for laboratory proficiency testing requirements and reporting. Document #: FDPD-QMS.024.003 Page 1 of 12 Table of Contents 1. Purpose 2. Scope 3. Responsibility 4. References 5. Related Documents 6. Definitions 7. Safety 8. Equipment/Materials Needed 9. Process Description

More information

STANDARD OPERATING GUIDELINES: EVIDENTIAL BREATH ALCOHOL INSTRUMENT CALIBRATION

STANDARD OPERATING GUIDELINES: EVIDENTIAL BREATH ALCOHOL INSTRUMENT CALIBRATION Directive from the Scientific Director Page 1 of 16 STANDARD OPERATING GUIDELINES: EVIDENTIAL BREATH ALCOHOL INSTRUMENT CALIBRATION 1 Scope To describe the procedure for breath alcohol instrument calibration

More information

Control Charts and Trend Analysis for ISO 17025. Speakers: New York State Food Laboratory s Quality Assurance Team

Control Charts and Trend Analysis for ISO 17025. Speakers: New York State Food Laboratory s Quality Assurance Team Control Charts and Trend Analysis for ISO 17025 Speakers: New York State Food Laboratory s Quality Assurance Team 1 ISO 17025 Requirements, 5.9.1: The laboratory shall have quality control procedures for

More information

Council of Ambulance Authorities

Council of Ambulance Authorities Council of Ambulance Authorities Patient Satisfaction Survey 2013 Prepared for: Mojca Bizjak-Mikic Manager, Data & Research The Council of Ambulance Authorities Prepared by: Natasha Kapulski Research Associate

More information

Content Sheet 7-1: Overview of Quality Control for Quantitative Tests

Content Sheet 7-1: Overview of Quality Control for Quantitative Tests Content Sheet 7-1: Overview of Quality Control for Quantitative Tests Role in quality management system Quality Control (QC) is a component of process control, and is a major element of the quality management

More information

NATIONAL ASBESTOS PROGRAM

NATIONAL ASBESTOS PROGRAM The Fifth International Proficiency Testing Conference Timisoara, Romania (15) 16 th 18 th September, 2015 NATIONAL ASBESTOS PROGRAM Mr Philip Briggs General Manager, Proficiency Testing Australia PO Box

More information

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to

More information

FOOD FOR THOUGHT Topical Insights from our Subject Matter Experts UNDERSTANDING WHAT IS NEEDED TO PRODUCE QUALITY DATA

FOOD FOR THOUGHT Topical Insights from our Subject Matter Experts UNDERSTANDING WHAT IS NEEDED TO PRODUCE QUALITY DATA FOOD FOR THOUGHT Topical Insights from our Subject Matter Experts UNDERSTANDING WHAT IS NEEDED TO PRODUCE QUALITY DATA The NFL White Paper Series Volume 7, January 2013 Overview and a Scenario With so

More information

STANDARD OPERATING PROCEDURES FOR THE CAEAL PROFICIENCY TESTING PROGRAM. CAEAL Inc., 2001. All rights reserved.

STANDARD OPERATING PROCEDURES FOR THE CAEAL PROFICIENCY TESTING PROGRAM. CAEAL Inc., 2001. All rights reserved. CONTENTS STANDARD OPERATING PROCEDURES FOR THE CAEAL PROFICIENCY TESTING PROGRAM CAEAL Inc., 2001. All rights reserved. INTRODUCTION AND SCOPE DEFINITION OF PROFICIENCY TESTING (PT) PROFICIENCY TESTING

More information

PROCEDURES FOR HANDLING OOS RESULTS

PROCEDURES FOR HANDLING OOS RESULTS SOP # A-195--0100 STANDARD OPERATING PROCEDURES Page: 1 of 6. PROCEDURES FOR HANDLING OOS RESULTS 1. PURPOSE The purpose of this Standard Operation Procedure is to establish a procedure for the routine

More information

USE OF REFERENCE MATERIALS IN THE LABORATORY

USE OF REFERENCE MATERIALS IN THE LABORATORY USE OF REFERENCE MATERIALS IN THE LABORATORY What is a reference material? A general definition of a reference material is a material or substance one or more of whose property values are sufficiently

More information

ALACC Frequently Asked Questions (FAQs)

ALACC Frequently Asked Questions (FAQs) Updated October 17, 2012 ALACC Contents Web Introduction to FAQ... 2 FAQ #6... 3 ALACC Section: How to Meet ISO 17025 Requirements for Method Verification (Page 9)... 3 FAQ #13... 4 ALACC Section ALACC

More information

GUIDANCE DOCUMENT FOR COMPETENT AUTHORITIES FOR THE CONTROL OF COMPLIANCE WITH EU LEGISLATION ON:

GUIDANCE DOCUMENT FOR COMPETENT AUTHORITIES FOR THE CONTROL OF COMPLIANCE WITH EU LEGISLATION ON: EUROPEAN COMMISSION HEALTH AND CONSUMERS DIRECTORATE-GENERAL December 2012 GUIDANCE DOCUMENT FOR COMPETENT AUTHORITIES FOR THE CONTROL OF COMPLIANCE WITH EU LEGISLATION ON: Regulation (EU) No 1169/2011

More information

Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:

Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve

More information

Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion

Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research

More information

Analytical Test Method Validation Report Template

Analytical Test Method Validation Report Template Analytical Test Method Validation Report Template 1. Purpose The purpose of this Validation Summary Report is to summarize the finding of the validation of test method Determination of, following Validation

More information

General and statistical principles for certification of RM ISO Guide 35 and Guide 34

General and statistical principles for certification of RM ISO Guide 35 and Guide 34 General and statistical principles for certification of RM ISO Guide 35 and Guide 34 / REDELAC International Seminar on RM / PT 17 November 2010 Dan Tholen,, M.S. Topics Role of reference materials in

More information

Understanding Your Broadband Quality of Service

Understanding Your Broadband Quality of Service Understanding Your Broadband Quality of Service November 2004 PO Box 13112 Law Courts MELBOURNE VIC 8010 Telephone (03) 9963 6800 Facsimile (03) 9963 6899 TTY (03) 9963 6948 www.aca.gov.au ABN 78334953951

More information

1) What is the probability that the random variable has a value greater than 2? A) 0.750 B) 0.625 C) 0.875 D) 0.700

1) What is the probability that the random variable has a value greater than 2? A) 0.750 B) 0.625 C) 0.875 D) 0.700 Practice for Chapter 6 & 7 Math 227 This is merely an aid to help you study. The actual exam is not multiple choice nor is it limited to these types of questions. Using the following uniform density curve,

More information

Introduction to method validation

Introduction to method validation Introduction to method validation Introduction to method validation What is method validation? Method validation provides documented objective evidence that a method measures what it is intended to measure,

More information

Applying Statistics Recommended by Regulatory Documents

Applying Statistics Recommended by Regulatory Documents Applying Statistics Recommended by Regulatory Documents Steven Walfish President, Statistical Outsourcing Services steven@statisticaloutsourcingservices.com 301-325 325-31293129 About the Speaker Mr. Steven

More information

430 Statistics and Financial Mathematics for Business

430 Statistics and Financial Mathematics for Business Prescription: 430 Statistics and Financial Mathematics for Business Elective prescription Level 4 Credit 20 Version 2 Aim Students will be able to summarise, analyse, interpret and present data, make predictions

More information

Changes to UK NEQAS Leucocyte Immunophenotyping Chimerism Performance Monitoring Systems From April 2014. Uncontrolled Copy

Changes to UK NEQAS Leucocyte Immunophenotyping Chimerism Performance Monitoring Systems From April 2014. Uncontrolled Copy Changes to UK NEQAS Leucocyte Immunophenotyping Chimerism Performance Monitoring Systems From April 2014 Contents 1. The need for change 2. Current systems 3. Proposed z-score system 4. Comparison of z-score

More information

Medical Cannabis Laboratory Approval Program

Medical Cannabis Laboratory Approval Program Medical Cannabis Laboratory Approval Program Application Process and Required Documentation After the publication of the Medical Cannabis Laboratory Application, currently expected by February 16, 2015,

More information

Quality Assurance/Quality Control in Acid Deposition Monitoring

Quality Assurance/Quality Control in Acid Deposition Monitoring Quality Assurance/Quality Control in Acid Deposition Monitoring Acid Deposition and Oxidant Research Center (Network Center of EANET) Introduction Wet deposition data are used for -assessments of spatial

More information

Dairy Proteins. Table of Contents. Section Page. Cheese Milk Protein Review 2. Basic Flows and Definitions of Milk Products 4

Dairy Proteins. Table of Contents. Section Page. Cheese Milk Protein Review 2. Basic Flows and Definitions of Milk Products 4 Dairy Proteins This document, prepared by the Wisconsin Center for Dairy Research and the Wisconsin Milk Marketing Board, is intended to help clarify the present dairy protein issue. It can also be used

More information

Ch. 57 MILK AND DAIRY PRODUCTS 7 CHAPTER 57. MILK AND DAIRY PRODUCTS GENERAL PROVISIONS

Ch. 57 MILK AND DAIRY PRODUCTS 7 CHAPTER 57. MILK AND DAIRY PRODUCTS GENERAL PROVISIONS Ch. 57 MILK AND DAIRY PRODUCTS 7 CHAPTER 57. MILK AND DAIRY PRODUCTS GENERAL PROVISIONS Subchap. Sec. A. MILK AND DAIRY PRODUCTS DEFINITIONS AND STANDARDS... 57.1 B. LABELING... 57.41 C. OTHER DAIRY PRODUCTS...

More information

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different

More information

Northumberland Knowledge

Northumberland Knowledge Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about

More information

BMA SURVEY OF CONSULTANT WORKING PATTERNS AND ON CALL SERVICES

BMA SURVEY OF CONSULTANT WORKING PATTERNS AND ON CALL SERVICES BMA SURVEY OF CONSULTANT WORKING PATTERNS AND ON CALL SERVICES Health Policy and Economic Research Unit Report author: Duncan Bland Ocber 2014 bma.org.uk British Medical Association, 2014 Index Executive

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.

More information

2. DATA AND EXERCISES (Geos2911 students please read page 8)

2. DATA AND EXERCISES (Geos2911 students please read page 8) 2. DATA AND EXERCISES (Geos2911 students please read page 8) 2.1 Data set The data set available to you is an Excel spreadsheet file called cyclones.xls. The file consists of 3 sheets. Only the third is

More information

Proficiency testing schemes on determination of radioactivity in food and environmental samples organized by the NAEA, Poland

Proficiency testing schemes on determination of radioactivity in food and environmental samples organized by the NAEA, Poland NUKLEONIKA 2010;55(2):149 154 ORIGINAL PAPER Proficiency testing schemes on determination of radioactivity in food and environmental samples organized by the NAEA, Poland Halina Polkowska-Motrenko, Leon

More information

Confidence Intervals for Cpk

Confidence Intervals for Cpk Chapter 297 Confidence Intervals for Cpk Introduction This routine calculates the sample size needed to obtain a specified width of a Cpk confidence interval at a stated confidence level. Cpk is a process

More information

VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY Q2(R1)

VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY Q2(R1) INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE ICH HARMONISED TRIPARTITE GUIDELINE VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY

More information

Air Quality Performance Test Guidelines. Kansas Department of Health and Environment Bureau of Air and Radiation

Air Quality Performance Test Guidelines. Kansas Department of Health and Environment Bureau of Air and Radiation Air Quality Performance Test Guidelines Kansas Department of Health and Environment Bureau of Air and Radiation December 22, 2004 TABLE OF CONTENTS 1. INTRODUCTION 2. TEST PLANNING 2.1 EPA Test Methods

More information

Structure Fires in Laboratories. Marty Ahrens Fire Analysis and Research Division National Fire Protection Association

Structure Fires in Laboratories. Marty Ahrens Fire Analysis and Research Division National Fire Protection Association Structure Fires in Laboratories Marty Ahrens Fire Analysis and Research Division National Fire Protection Association February 2016 National Fire Protection Association, 1 Batterymarch Park, Quincy, MA

More information

ISO 13528 INTERNATIONAL STANDARD. Statistical methods for use in proficiency testing by interlaboratory comparisons

ISO 13528 INTERNATIONAL STANDARD. Statistical methods for use in proficiency testing by interlaboratory comparisons INTERNATIONAL STANDARD ISO 13528 First edition 2005-09-01 Statistical methods for use in proficiency testing by interlaboratory comparisons Méthodes statistiques utilisées dans les essais d'aptitude par

More information

Lifecycle Management of Analytical Procedures; What is it all about? Jane Weitzel Independent Consultant

Lifecycle Management of Analytical Procedures; What is it all about? Jane Weitzel Independent Consultant Lifecycle Management of Analytical Procedures; What is it all about? Jane Weitzel Independent Consultant 2 USP Stimuli Article Lifecycle Management of Analytical Procedures: Method Development, Procedure

More information

Assessment of Accuracy and Precision

Assessment of Accuracy and Precision 2 chapter Assessment of Accuracy and Precision S.S. Nielsen, Food Analysis Laboratory Manual, Food Science Texts Series, DOI 10.1007/978-1-4419-1463-7_2, Springer Science+Business Media, LLC 2010 9 Chapter

More information

Physically Crosslinked Foam Insulation

Physically Crosslinked Foam Insulation Physically Crosslinked Foam Insulation Thermobreak is the original All in One flexible thermal insulation made from physically crosslinked closed cell polyolefin foam, factory fused to a reinforced 9um

More information

A Dairy Supply Chain Model of the New Zealand Dairy Industry

A Dairy Supply Chain Model of the New Zealand Dairy Industry A Dairy Supply Chain Model of the New Zealand Dairy Industry O. Montes de Oca a, C.K.G Dake a, A. E. Dooley a and D. Clark b a AgResearch Ltd, Ruakura Research Centre, East Street, Private Bag 3123, Hamilton

More information

Null Hypothesis H 0. The null hypothesis (denoted by H 0

Null Hypothesis H 0. The null hypothesis (denoted by H 0 Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property

More information

AP Statistics 2011 Scoring Guidelines

AP Statistics 2011 Scoring Guidelines AP Statistics 2011 Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in

More information

THE CPA AUSTRALIA ASIA-PACIFIC SMALL BUSINESS SURVEY 2015 HONG KONG REPORT

THE CPA AUSTRALIA ASIA-PACIFIC SMALL BUSINESS SURVEY 2015 HONG KONG REPORT THE CPA AUSTRALIA ASIA-PACIFIC SMALL BUSINESS SURVEY 2015 HONG KONG REPORT 2 THE CPA AUSTRALIA ASIA-PACIFIC SMALL BUSINESS SURVEY 2015 HONG KONG REPORT LEGAL NOTICE CPA Australia Ltd ( CPA Australia )

More information

Week 4: Standard Error and Confidence Intervals

Week 4: Standard Error and Confidence Intervals Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.

More information

Design of Experiments for Analytical Method Development and Validation

Design of Experiments for Analytical Method Development and Validation Design of Experiments for Analytical Method Development and Validation Thomas A. Little Ph.D. 2/12/2014 President Thomas A. Little Consulting 12401 N Wildflower Lane Highland, UT 84003 1-925-285-1847 drlittle@dr-tom.com

More information

WEATHERING QUALITY INDEX OF COARSE AGGREGATE PROFICIENCY PROGRAMME

WEATHERING QUALITY INDEX OF COARSE AGGREGATE PROFICIENCY PROGRAMME TECHNICAL REPORT ON WEATHERING QUALITY INDEX OF COARSE AGGREGATE PROFICIENCY PROGRAMME CETANZ Technical Report TR 3 Author(s) Frank Hu, Downer NZ Ltd Report Date First Issue Oct 212 Report Revision Date

More information

Step-by-Step Analytical Methods Validation and Protocol in the Quality System Compliance Industry

Step-by-Step Analytical Methods Validation and Protocol in the Quality System Compliance Industry Step-by-Step Analytical Methods Validation and Protocol in the Quality System Compliance Industry BY GHULAM A. SHABIR Introduction Methods Validation: Establishing documented evidence that provides a high

More information

1.5 NUMERICAL REPRESENTATION OF DATA (Sample Statistics)

1.5 NUMERICAL REPRESENTATION OF DATA (Sample Statistics) 1.5 NUMERICAL REPRESENTATION OF DATA (Sample Statistics) As well as displaying data graphically we will often wish to summarise it numerically particularly if we wish to compare two or more data sets.

More information

APPENDIX N. Data Validation Using Data Descriptors

APPENDIX N. Data Validation Using Data Descriptors APPENDIX N Data Validation Using Data Descriptors Data validation is often defined by six data descriptors: 1) reports to decision maker 2) documentation 3) data sources 4) analytical method and detection

More information

Tariffs on U.S. Imports of Dairy Products: A Product Component Analysis. Isin Tellioglu, Kenneth W. Bailey, and David Blandford 1

Tariffs on U.S. Imports of Dairy Products: A Product Component Analysis. Isin Tellioglu, Kenneth W. Bailey, and David Blandford 1 Tariffs on U.S. Imports of Dairy Products: A Product Component Analysis Isin Tellioglu, Kenneth W. Bailey, and David Blandford 1 1 The authors are, respectively, graduate student, associate professor and

More information

THE LABORATORY NOTEBOOK

THE LABORATORY NOTEBOOK THE LABORATORY NOTEBOOK In scientific work keeping a permanent record of all raw data, observations, calculations, et cetera obtained during an experiment is important. Therefore, a student must become

More information

CERTIFICATE OF ANALYSIS FOR HEMATITE ORE REFERENCE MATERIAL OREAS 401

CERTIFICATE OF ANALYSIS FOR HEMATITE ORE REFERENCE MATERIAL OREAS 401 ORE RESEARCH & EXPLORATION P/L ABN 28 006 859 856 37A Hosie Street Bayswater North VIC 3153 AUSTRALIA 61 3 9729 0333 61 3 9761 7878 info@ore.com.au www.ore.com.au CERTIFICATE OF ANALYSIS FOR HEMATITE ORE

More information

Reference Materials for Environmental Performance Testing Dr Steve Wood Head of Regulatory and Legislative Services. ISPRA 25 June 2009

Reference Materials for Environmental Performance Testing Dr Steve Wood Head of Regulatory and Legislative Services. ISPRA 25 June 2009 Reference Materials for Environmental Performance Testing Dr Steve Wood Head of Regulatory and Legislative Services ISPRA 25 June 2009 Outline Background to LGC UK MCERTS scheme Reference materials production

More information

CHINHOYI UNIVERSITY OF TECHNOLOGY

CHINHOYI UNIVERSITY OF TECHNOLOGY CHINHOYI UNIVERSITY OF TECHNOLOGY SCHOOL OF NATURAL SCIENCES AND MATHEMATICS DEPARTMENT OF MATHEMATICS MEASURES OF CENTRAL TENDENCY AND DISPERSION INTRODUCTION From the previous unit, the Graphical displays

More information

OMCL Network of the Council of Europe QUALITY MANAGEMENT DOCUMENT

OMCL Network of the Council of Europe QUALITY MANAGEMENT DOCUMENT OMCL Network of the Council of Europe QUALITY MANAGEMENT DOCUMENT PA/PH/OMCL (12) 77 7R QUALIFICATION OF EQUIPMENT ANNEX 8: QUALIFICATION OF BALANCES Full document title and reference Document type Qualification

More information

Content Sheet 3-1: Equipment Management Overview

Content Sheet 3-1: Equipment Management Overview Content Sheet 3-1: Equipment Management Overview Role in quality management system Equipment management is one of the essential elements of a quality management system. Proper management of the equipment

More information

Measurement and Calibration

Measurement and Calibration Adapted from: H. A. Neidig and J. N. Spencer Modular Laboratory Program in Chemistry Thompson Learning;, University of Pittsburgh Chemistry 0110 Laboratory Manual, 1998. Purpose To gain an understanding

More information

Measurement with Ratios

Measurement with Ratios Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

More information

FederalDemocratic RepublicofEthiopia

FederalDemocratic RepublicofEthiopia FederalDemocratic RepublicofEthiopia EDICTOFGOVERNMENT± Inordertopromotepubliceducationandpublicsafety, equaljusticeforal,abeterinformedcitizenry,therule oflaw,worldtradeandworldpeace,thislegaldocumentis

More information

DECISION LIMITS FOR THE CONFIRMATORY QUANTIFICATION OF THRESHOLD SUBSTANCES

DECISION LIMITS FOR THE CONFIRMATORY QUANTIFICATION OF THRESHOLD SUBSTANCES DECISION LIMITS FOR THE CONFIRMATORY QUANTIFICATION OF THRESHOLD SUBSTANCES Introduction This Technical Document shall be applied to the quantitative determination of a Threshold Substance in a Sample

More information

ASSURING THE QUALITY OF TEST RESULTS

ASSURING THE QUALITY OF TEST RESULTS Page 1 of 12 Sections Included in this Document and Change History 1. Purpose 2. Scope 3. Responsibilities 4. Background 5. References 6. Procedure/(6. B changed Division of Field Science and DFS to Office

More information

For more information please contact your local UL field representative

For more information please contact your local UL field representative MARK INTEGRITY PROGRAM UL Calibration Requirements: Equipment Used for UL/C-UL/ULC Mark Follow-Up Services UL defines minimum requirements for calibration of inspection, measuring and test equipment (IMTE)

More information

GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS.

GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS. GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS October 2004 APVMA PO Box E240 KINGSTON 2604 AUSTRALIA http://www.apvma.gov.au

More information

LAB ID and/or LABORATORY NAME: ASSESSOR NAME: CONTINUOUS RADON MONITOR (CRM) by Proportional Counting. Method Number: ELAP method code 7037

LAB ID and/or LABORATORY NAME: ASSESSOR NAME: CONTINUOUS RADON MONITOR (CRM) by Proportional Counting. Method Number: ELAP method code 7037 LAB ID and/or LABORATORY NAME: ASSESSOR NAME: DATE: CONTINUOUS RADON MONITOR (CRM) by Proportional Counting Method Number: ELAP method code 7037 SOP Number: Revision Number: SOP Date: Personnel / Data

More information

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

More information

Shelf life testing. Use-by dates for food safety NSW/FA/FI065/1002

Shelf life testing. Use-by dates for food safety NSW/FA/FI065/1002 Shelf life testing Use-by dates for food safety NSW/FA/FI065/1002 Contents Contents... 2 Executive summary... 3 When is date marking required?... 4 How is shelf life determined?... 6 Product development...

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Final Exam Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A researcher for an airline interviews all of the passengers on five randomly

More information

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable

More information

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

More information

Certification Program Rates and National/State Overall Rates

Certification Program Rates and National/State Overall Rates Users Guide to CMIP Performance MeasureTrend Reports Health Care Staffing Services (HCSS) Certification Program Rates and National/State Overall Rates TABLE OF CONTENTS INTRODUCTION... 3 ACCESSING THE

More information

OMCL Network of the Council of Europe QUALITY MANAGEMENT DOCUMENT

OMCL Network of the Council of Europe QUALITY MANAGEMENT DOCUMENT OMCL Network of the Council of Europe QUALITY MANAGEMENT DOCUMENT PA/PH/OMCL (11) 204 3R HANDLING AND USE OF REFERENCE STANDARDS IN THE OMCL NETWORK Full document title and reference Document type Legislative

More information

ASSOCIATIONS SALARY SURVEY 2015

ASSOCIATIONS SALARY SURVEY 2015 ASSOCIATIONS SALARY SURVEY 2015 ASSOCIATIONS SALARY SURVEY 2015 Table of Contents Welcome 01 Part 1 Overview 02 1.1 Introduction 03 1.2 Aims of Salary Survey 03 1.3 Method 03 1.4 Survey Respondents 03

More information

Analyzing Research Data Using Excel

Analyzing Research Data Using Excel Analyzing Research Data Using Excel Fraser Health Authority, 2012 The Fraser Health Authority ( FH ) authorizes the use, reproduction and/or modification of this publication for purposes other than commercial

More information

DesCartes (Combined) Subject: Mathematics Goal: Statistics and Probability

DesCartes (Combined) Subject: Mathematics Goal: Statistics and Probability DesCartes (Combined) Subject: Mathematics Goal: Statistics and Probability RIT Score Range: Below 171 Below 171 Data Analysis and Statistics Solves simple problems based on data from tables* Compares

More information

1.0 XRF Analyses Performance Evaluation

1.0 XRF Analyses Performance Evaluation 1.1 Scope and Application 1.0 XRF Analyses Performance Evaluation Due to the time and monetary costs associated with conventional analytical methods for measuring the concentrations of inorganic elements

More information

Methods verification. Transfer of validated methods into laboratories working routine. Dr. Manuela Schulze 1

Methods verification. Transfer of validated methods into laboratories working routine. Dr. Manuela Schulze 1 Methods verification Transfer of validated methods into laboratories working routine Dr. Manuela Schulze 1 1. Introduction 2. Definitions and differences validation verification 3. How to perform verification

More information

User checks and maintenance of laboratory balances

User checks and maintenance of laboratory balances Technical Note 13 March 2014 Issued: July 1995 Amended and reissued: July 2005, July 2007, October 2007, May 2010, March 2013, March 2014 User checks and maintenance of laboratory balances Copyright National

More information

Standard Deviation Estimator

Standard Deviation Estimator CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of

More information

Final Exam Practice Problem Answers

Final Exam Practice Problem Answers Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

More information

Magruder Statistics & Data Analysis

Magruder Statistics & Data Analysis Magruder Statistics & Data Analysis Caution: There will be Equations! Based Closely On: Program Model The International Harmonized Protocol for the Proficiency Testing of Analytical Laboratories, 2006

More information

Guidance for Industry

Guidance for Industry Guidance for Industry Q2B Validation of Analytical Procedures: Methodology November 1996 ICH Guidance for Industry Q2B Validation of Analytical Procedures: Methodology Additional copies are available from:

More information

APPENDIX 7-B SUGGESTED OUTLINE OF A QUALITY ASSURANCE PROJECT PLAN

APPENDIX 7-B SUGGESTED OUTLINE OF A QUALITY ASSURANCE PROJECT PLAN APPENDIX 7-B SUGGESTED OUTLINE OF A QUALITY ASSURANCE PROJECT PLAN This outline is recommended for use by UST consultants/contractors in preparing a generic Quality Assurance Project Plan (QAPP) for use

More information

Assay Development and Method Validation Essentials

Assay Development and Method Validation Essentials Assay Development and Method Validation Essentials Thomas A. Little Ph.D. 10/13/2012 President Thomas A. Little Consulting 12401 N Wildflower Lane Highland, UT 84003 1-925-285-1847 drlittle@dr-tom.com

More information

Variables Control Charts

Variables Control Charts MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. Variables

More information

Schools Value-added Information System Technical Manual

Schools Value-added Information System Technical Manual Schools Value-added Information System Technical Manual Quality Assurance & School-based Support Division Education Bureau 2015 Contents Unit 1 Overview... 1 Unit 2 The Concept of VA... 2 Unit 3 Control

More information

Numerical Summarization of Data OPRE 6301

Numerical Summarization of Data OPRE 6301 Numerical Summarization of Data OPRE 6301 Motivation... In the previous session, we used graphical techniques to describe data. For example: While this histogram provides useful insight, other interesting

More information

QUALITY MANUAL GREAT LAKES INSTITUTE FOR ENVIRONMENTAL RESEARCH ANALYTICAL LABORATORIES. October 2008 Revision 08

QUALITY MANUAL GREAT LAKES INSTITUTE FOR ENVIRONMENTAL RESEARCH ANALYTICAL LABORATORIES. October 2008 Revision 08 QUALITY MANUAL GREAT LAKES INSTITUTE FOR ENVIRONMENTAL RESEARCH ANALYTICAL LABORATORIES October 2008 Revision 08 Great Lakes Institute for Environmental Research University of Windsor Windsor, Ontario

More information

AP Statistics 2002 Scoring Guidelines

AP Statistics 2002 Scoring Guidelines AP Statistics 2002 Scoring Guidelines The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought

More information

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name: Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

More information

Estimating Weighing Uncertainty From Balance Data Sheet Specifications

Estimating Weighing Uncertainty From Balance Data Sheet Specifications Estimating Weighing Uncertainty From Balance Data Sheet Specifications Sources Of Measurement Deviations And Uncertainties Determination Of The Combined Measurement Bias Estimation Of The Combined Measurement

More information