Hearing: Physiology and Psychoacoustics

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Hearing: Physiology and Psychoacoustics"

Transcription

1 9 Hearing: Physiology and Psychoacoustics 9 The Function of Hearing The Basics: Nature of sound Anatomy and physiology of the auditory system How we perceive loudness and pitch Impairments of hearing 9 What Is Sound? 9 Sound Wave and Air Pressure Sounds are created when objects vibrate Vibrations of object cause molecules in object s surrounding medium to vibrate as well, which causes pressure changes in medium Waves pressure changes Compression increased pressure Rarefaction decreased pressure 1

2 9 What Is Sound? (cont d) Sound waves travel at a particular speed Depends on medium Example: Speed of sound through air is about 340 meters/second Speed of sound through water is 1500 meters/second 9 What Is Sound? (cont d) Basic qualities of sound waves Frequency: For sound, the number of times per second that a pattern of pressure change repeats Amplitude: Magnitude of displacement of a sound pressure wave Waveform: The shape of the soundwave 9 What Is Sound? (cont d) 9 Frequency and Amplitude Frequency is associated with pitch Low-frequency sounds correspond to low pitches, (e.g., low notes played by a tuba) High-frequency sounds correspond to high pitches, (e.g., high notes from a piccolo) 2

3 9 Frequency One cycle: rarefaction and compression Frequency: # of cycles per unit time Distinction: Physical stimulus -- frequency Psychological experience -- pitch Unit: Herts (hz) #cycles / second 500 Hz cycles/second 2000 Hz cycles/second Human range: 20-20,000 hz 9 What Is Sound? (cont d) Human hearing uses a limited range of frequencies: From about 20 to 20,000 Hz 9 What Is Sound? (cont d) Humans can hear across a wide range of sound intensities Ratio of pressure changes between faintest and loudest sounds is more than one to one million Faintest:.0002 dynes/cm 2 High Risk: >200 dynes/cm 2 In order to describe differences in amplitude, sound levels are measured on a logarithmic scale, in units called decibels (db) Relatively small decibel changes can correspond to large physical changes (e.g., increase of 6 db corresponds to a doubling of the amount of pressure) 9 Decibels db = 20 log (p1/p0) P1 = pressure of interest P0 = standard pressure (threshold =.0002 dynes/cm 2 ) Absolute threshold example db = 20 log (.0002 /.0002) db = 20 log (1) db = 0 High Risk example db = 20 log (200 /.0002) db = 20 log (1,000,000) db = 120 3

4 9 Intensity of Environmental Sounds 9 What Is Sound? (cont d) One of simplest kinds of sounds: Sine wave, or pure tone Sine wave: Waveform for which variation as a function of time is a sine function 9 What Is Sound? (cont d) 9 Sine Sine waves: Not common everyday sounds because not many vibrations in the world are so pure Most sounds in world: Complex sounds, (e.g., human voices, birds, cars, etc.) 4

5 9 Example waveforms 9 Human speech (long e) 9 Complex Waveforms 9 Complex Sound Waves Sound waves -- pressure changes Will summate Point by point addition of pressure fluctuations Example Consequently Can think about assembling complex wave Can think about disassembling complex wave 5

6 9 What Is Sound? (cont d) 9 Wave Form and Spectrum (Part 1) Complex sounds can be described by Fourier analysis A mathematical theorem by which any sound can be divided into a set of sine waves. Combining these sine waves will reproduce the original sound Results can be summarized by a spectrum 9 What Is Sound? (cont d) 9 Harmonic Sounds with the Same Fundamental Harmonic spectra: Typically caused by simple vibrating source, (e.g., string of guitar, or reed of saxophone) Relative intensities of different frequency components Waveform of sound Timbre: Psychological sensation by which listener can judge that two sounds that have same loudness and pitch are dissimilar 6

7 9 Basic Structure of the Mammalian Auditory System (cont d) 9 Outer Ear Outer ear: Sounds are first collected from environment by the pinnae Sound waves are funneled by the pinnae into ear canal Length and shape of ear canal enhance sound frequencies Main purpose of canal is to insulate structure at its end: Tympanic membrane 9 Mammalian Pinnae 9 Basic Structure of the Mammalian Auditory System (cont d) Tympanic membrane: Eardrum; a thin sheet of skin at end of outer ear canal; it vibrates in response to sound Increased pressure moves in Decreased pressure moves out 7

8 9 Basic Structure of the Mammalian Auditory System (cont d) 9 Structure of the Human Ear (Part 1) Middle ear: Air Filled pocket behind tympanic membrane Three tiny bones: Ossicles Malleus, Incus, Stapes (aka: Hammer, Anvil, Stirrup) Role: Amplify sounds Stapes transmits vibrations of sound waves to oval window, another membrane which represents border between middle ear and inner ear 9 Basic Structure of the Mammalian Auditory System (cont d) Amplification provided by ossicles is essential to ability to hear faint sounds Inner ear is made up of collection of fluid-filled chambers Need to amplify pressure to create pressure waves in cochlear fluid Amplification (magnify pressure 30x) Lever principle Funnel energy from larger tympanic membrane to smaller foot plate of stapes 9 Basic Structure of the Mammalian Auditory System (cont d) Ossicles also important for loud sounds Middle ear: Two muscles-tensor tympani and stapedius Purpose: To tense when sounds are very loud, muffling pressure changes However, acoustic reflex follows onset of loud sounds by about one-fifth of second, so cannot protect against abrupt sounds, (e.g., gun shot) 8

9 9 Basic Structure of the Mammalian Auditory System (cont d) Inner ear: Changes in sound pressure are translated into neural signals Function is roughly analogous to that of retina 9 Basic Structure of the Mammalian Auditory System (cont d) Cochlear canals and membranes Cochlea: Spiral structure of the inner ear containing the organ of Corti Cochlea is filled with watery fluids in three parallel canals 9 The Cochlea (Part 1) 9 The Cochlea (Part 2) 9

10 9 The Cochlea (Part 3) 9 The Cochlea (Part 4) 9 Basic Structure of the Mammalian Auditory System (cont d) The three canals of the cochlea Tympanic canal Vestibular canal Middle canal 9 Basic Structure of the Mammalian Auditory System (cont d) Vibrations transmitted through tympanic membranes and middle-ear bones cause stapes to push and pull flexible oval window in and out of vestibular canal at base of cochlea If sounds are extremely intense, any remaining pressure is transmitted through helicotrema and back to cochlear base through tympanic canal, where it is absorbed by another membrane: Round window 10

11 9 Basic Structure of the Mammalian Auditory System (cont d) Organ of Corti Movements of cochlear partition are translated into neural signals by structures in the organ of Corti; extends along top of basilar membrane Made up of specialized neurons called hair cells, dendrites of auditory nerve fibers that terminate at base of hair cells, and scaffold of supporting cells 9 Basic Structure of the Mammalian Auditory System (cont d) Hair cells in each human ear: Arranged in four rows that run down length of basilar membrane 9 Vibration and the Tectorial Membrane Tectorial membrane: Extends atop organ of Corti ; gelatinous structure 9 Review of Neural Functioning - charge inside / + charge outside Negative membrane potential Ion channels -- change membrane potential Transduction -- modify ion channels Modify potential of neuron Neural signal 11

12 9 Hair cells -- resting potential (-50 to -70 mv) Movement of BM - movement of cilia (back and forth) Cilia movement One direction Opens ion channels Depolarize hair cell (more +) Increase release of NT to auditory nerve fibers Other direction Transduction in Audition Closes ion channels Hyperpolarize hair cell (more -) Decrease release of NT to auditory nerve fibers 9 Transduction 9 Auditory Nerve Fibers 12

Intro to Audition & Hearing

Intro to Audition & Hearing Intro to Audition & Hearing Lecture 16 Chapter 9, part II Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2015 1 Sine wave: one of the simplest kinds of sounds: sound for which pressure

More information

Physiology of Hearing Dr. Hesham Kozou Is hearing important? Communica i ti ttion Language Localization sound sources

Physiology of Hearing Dr. Hesham Kozou Is hearing important? Communica i ti ttion Language Localization sound sources Physiology of Hearing Dr. Hesham Kozou Undergraduate Round Courses 2008-2009 2009 Is hearing important? Communication Hearing is essential to Language Localization Determining the location of unseen sound

More information

Special Senses: Hearing and Balance (Equilibrium)

Special Senses: Hearing and Balance (Equilibrium) Crafton Hills - Human Anatomy & Physiology - ANAT 151 Special Senses: Hearing and Balance (Equilibrium) A. Anatomy of the Ear 1. General Characteristics a. Three parts of ear: Inner, outer, & middle b.

More information

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear Hearing Sound Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) December 1, 2015 Sound interpretation in the auditory system is done by 1.

More information

The Mechanics of Hearing

The Mechanics of Hearing The Mechanics of Hearing Dr Lim Kian Meng Mechanical Engineering Department, NUS Introduction We are constantly surrounded by sound that provides information about the objects around us. Determining the

More information

Auditory System. The physical stimulus

Auditory System. The physical stimulus Auditory System The physical stimulus - physical stimulus for audition is timevarying changes in air pressure that propagate through space in wave-like manner - e.g., pure tone played by speaker: sinusoidal

More information

Lecture 4: Jan 12, 2005

Lecture 4: Jan 12, 2005 EE516 Computer Speech Processing Winter 2005 Lecture 4: Jan 12, 2005 Lecturer: Prof: J. Bilmes University of Washington Dept. of Electrical Engineering Scribe: Scott Philips

More information

Outer and Middle Ears. Reading: Yost Ch. 6

Outer and Middle Ears. Reading: Yost Ch. 6 Outer and Middle Ears Reading: Yost Ch. 6 The Mammalian Ear 1 Subdivided into outer, middle, and inner ear. Outer ear Pinna External canal Middle ear tympanic membrane (ear drum) middle ear bones (ossicles)

More information

A diagram of the ear s structure. The outer ear includes the portion of the ear that we see the pinna/auricle and the ear canal.

A diagram of the ear s structure. The outer ear includes the portion of the ear that we see the pinna/auricle and the ear canal. A diagram of the ear s structure THE OUTER EAR The outer ear includes the portion of the ear that we see the pinna/auricle and the ear canal. The pinna or auricle is a concave cartilaginous structure,

More information

Lecture 15 Cochlea and Auditory Pathways

Lecture 15 Cochlea and Auditory Pathways Lecture 15 Cochlea and Auditory Pathways Anatomical Considerations External ear: The external auditory meatus (canal) is formed by auricular and annular cartilages, plus a short contribution from the temporal

More information

Hearing and Deafness 1. Anatomy & physiology

Hearing and Deafness 1. Anatomy & physiology Hearing and Deafness 1. Anatomy & physiology Chris Darwin Web site for lectures, lecture notes and filtering lab: http://www.lifesci.susx.ac.uk/home/chris_darwin/ safari 1 Outer, middle & inner ear Capture;

More information

AP Psychology ~ Ms. Justice

AP Psychology ~ Ms. Justice AP Psychology ~ Ms. Justice 8: What are the characteristics of air pressure waves that we hear as sound? Audition Audition, or hearing, is highly adaptive. We hear a wide range of sounds, but we hear best

More information

VESTIBULAR SYSTEM (Balance/Equilibrium) The vestibular stimulus is provided by Earth s gravity, and head/body movement. Located in the labyrinths of

VESTIBULAR SYSTEM (Balance/Equilibrium) The vestibular stimulus is provided by Earth s gravity, and head/body movement. Located in the labyrinths of VESTIBULAR SYSTEM (Balance/Equilibrium) The vestibular stimulus is provided by Earth s gravity, and head/body movement. Located in the labyrinths of the inner ear, in two components: 1. Vestibular sacs

More information

Ear anatomy Hearing tests Audiograms

Ear anatomy Hearing tests Audiograms Ear anatomy Hearing tests Audiograms For internal use only / Copyright Siemens AG 2006. All rights reserved. Introduction / Contents Basic Ear Anatomy Types of Hearing Loss Conductive vs. Sensorineural

More information

5-Minute Refresher: SOUND AND HEARING

5-Minute Refresher: SOUND AND HEARING 5-Minute Refresher: SOUND AND HEARING Sound Key Ideas Sound is a type of energy that involves the vibration of molecules in a medium, such as air or water. Sound is transmitted through a medium as a pressure

More information

Anatomy and Physiology of Hearing (added 09/06)

Anatomy and Physiology of Hearing (added 09/06) Anatomy and Physiology of Hearing (added 09/06) 1. Briefly review the anatomy of the cochlea. What is the cochlear blood supply? SW 2. Discuss the effects of the pinna, head and ear canal on the transmission

More information

Hearing. 1 Introduction. 1.1 Auditory system. 1.2 Psychoacoustics

Hearing. 1 Introduction. 1.1 Auditory system. 1.2 Psychoacoustics Hearing Sources: Rossing. (1990). The science of sound. Chapters 5 7. Karjalainen. (1999). Kommunikaatioakustiikka. Moore. (1997). An introduction to the psychology of hearing. Contents: 1. Introduction

More information

November 2, PSY Basic Hearing 1

November 2, PSY Basic Hearing 1 Basic Hearing - I Hearing is, like vision, a sensory system for remote sensing. In hearing, the proximal stimulus is sound, changes in air pressure over time. Pressure changes vary in their intensity (loudness)

More information

HEARING LOSS CONDUCTIVE HEARING LOSS. A conductive hearing loss is due to any dysfunction of the outer and/or middle

HEARING LOSS CONDUCTIVE HEARING LOSS. A conductive hearing loss is due to any dysfunction of the outer and/or middle HEARING LOSS CONDUCTIVE HEARING LOSS A conductive hearing loss is due to any dysfunction of the outer and/or middle ear. It may be congenital or acquired, and it if left untreated it may result in a reduction

More information

Lecture 3: The Ear. The ear is divided, semi-artificially, into three regions: The Outer Ear consists of. 1. the Pinna, or external ear,

Lecture 3: The Ear. The ear is divided, semi-artificially, into three regions: The Outer Ear consists of. 1. the Pinna, or external ear, Lecture 3: The Ear The ear is divided, semi-artificially, into three regions: 7 1 2 3 4 5 6 The Outer Ear consists of 1. the Pinna, or external ear, 2. the Meatus, or ear canal, and 3. the Tympanic membrane,

More information

The mechanics of hearing

The mechanics of hearing 1 The mechanics of hearing 1 Introduction When we think of the ears, we think of the flaps that stick out from either side of our head. However these are only part of a complex physiological apparatus

More information

LER 1904. Made of durable Soft Foam! Explore the mystery of hearing through hands-on investigation!

LER 1904. Made of durable Soft Foam! Explore the mystery of hearing through hands-on investigation! LER 1904 Made of durable Soft Foam! Explore the mystery of hearing through hands-on investigation! How an ear works Sound travels through the air by vibrations or sound waves that cause a difference in

More information

The Design and Implementation of Multimedia Software

The Design and Implementation of Multimedia Software Chapter 10 Auditory Content The Design and Implementation of Multimedia Software David Bernstein Jones and Bartlett Publishers www.jbpub.com David Bernstein (jbpub.com) Multimedia Software Jones and Bartlett

More information

THE HUMAN EAR 20 MAY 2015 Section A: Summary Content Notes

THE HUMAN EAR 20 MAY 2015 Section A: Summary Content Notes THE HUMAN EAR 20 MAY 2015 Section A: Summary Content Notes Structure of the Ear The ears are the sense organs for hearing and balance Hearing: mechanoreceptors in the cochlea of the ear are stimulated

More information

Sound Perception. Sensitivity to Sound. Sensitivity to Sound 1/9/11. Not physically sensitive to all possible sound frequencies Range

Sound Perception. Sensitivity to Sound. Sensitivity to Sound 1/9/11. Not physically sensitive to all possible sound frequencies Range Sound Perception Similarities between sound and light perception Characteristics of sound waves Wavelength = Pitch Purity = Timbre Amplitude = loudness Sensitivity to Sound Not physically sensitive to

More information

Your Hearing ILLUMINATED

Your Hearing ILLUMINATED Your Hearing ILLUMINATED INFORMATION FROM YOUR HEARING CARE PROFESSIONAL REDISCOVER your hearing and reconnect 1 with the important things you might have been missing. Your sense of hearing is a vital

More information

So, how do we hear? outer middle ear inner ear

So, how do we hear? outer middle ear inner ear The ability to hear is critical to understanding the world around us. The human ear is a fully developed part of our bodies at birth and responds to sounds that are very faint as well as sounds that are

More information

Hearing Loss. How does the hearing sense work? Test your hearing

Hearing Loss. How does the hearing sense work? Test your hearing Hearing Loss Five minute hearing test How does the hearing sense work? What can I do to improve my hearing? Tips to maintain hearing health You may have hearing loss, and not even be aware of it. People

More information

1 Cornea 6 Macula 2 Lens 7 Vitreous humor 3 Iris 8 Optic disc 4 Conjunctiva 9 Ciliary muscles 5 Sclera 10 Choroid

1 Cornea 6 Macula 2 Lens 7 Vitreous humor 3 Iris 8 Optic disc 4 Conjunctiva 9 Ciliary muscles 5 Sclera 10 Choroid Anatomy and Physiology Quiz 1 Sample Question Answers Use the following table to answer Questions 1 2. 1 Cornea 6 Macula 2 Lens 7 Vitreous humor 3 Iris 8 Optic disc 4 Conjunctiva 9 Ciliary muscles 5 Sclera

More information

Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine

Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine Physiological Basis of Hearing Tests By Dr. Abdel Aziz Hussein Lecturer of Physiology Mansoura Faculty of Medicine Introduction Def: Hearing is the ability to perceive certain pressure vibrations in the

More information

The Coding of Sound by a Cochlear Prosthesis. IEEE Real World Engineering Project Background Lecture

The Coding of Sound by a Cochlear Prosthesis. IEEE Real World Engineering Project Background Lecture The Coding of Sound by a Cochlear Prosthesis IEEE Real World Engineering Project Background Lecture 1 Topic Concepts Tasks/Challenge Course time Speech generation from a sound source Voltage representation

More information

Noise. CIH Review PDC March 2012

Noise. CIH Review PDC March 2012 Noise CIH Review PDC March 2012 Learning Objectives Understand the concept of the decibel, decibel determination, decibel addition, and weighting Know the characteristics of frequency that are relevant

More information

What are the causes of presbycusis? What can be done? How can I communicate with someone who has a hearing loss? How does hearing work?

What are the causes of presbycusis? What can be done? How can I communicate with someone who has a hearing loss? How does hearing work? This e-book will answer the following questions: What is presbycusis? What are the symptoms of presbycusis? What are the causes of presbycusis? What can be done? How can I communicate with someone who

More information

L2: Speech production and perception Anatomy of the speech organs Models of speech production Anatomy of the ear Auditory psychophysics

L2: Speech production and perception Anatomy of the speech organs Models of speech production Anatomy of the ear Auditory psychophysics L2: Speech production and perception Anatomy of the speech organs Models of speech production Anatomy of the ear Auditory psychophysics Introduction to Speech Processing Ricardo Gutierrez-Osuna CSE@TAMU

More information

Hearing Loss. How does the hearing sense work? Test your hearing

Hearing Loss. How does the hearing sense work? Test your hearing Hearing Loss Five minute hearing test How does the hearing sense work? What can I do to improve my hearing? Tips to maintain hearing health You may have hearing loss, and not even be aware of it. People

More information

a. Match the structures with the statements that follow. 1) Cerebral cortex 2) Nerve fiber 3) Receptor 1 Projects sensation back to region where

a. Match the structures with the statements that follow. 1) Cerebral cortex 2) Nerve fiber 3) Receptor 1 Projects sensation back to region where S T U D Y G U I D E 9 1. Sensations a. Match the structures with the statements that follow. 1) Cerebral cortex 2) Nerve fiber 3) Receptor 2 Carries impulses. 1 Projects sensation back to region where

More information

Sensory Organs ANS 215 Physiology and Anatomy of Domesticated Animals

Sensory Organs ANS 215 Physiology and Anatomy of Domesticated Animals Sensory Organs ANS 215 Physiology and Anatomy of Domesticated Animals Sensations Result from stimuli that initiate afferent impulses Eventually reach a conscious level in the cerebral cortex All sensations

More information

Sensation The process of detecting a physical stimulus, such as light, sound, heat, or pressure.

Sensation The process of detecting a physical stimulus, such as light, sound, heat, or pressure. 1 Psych 205 Notes, Chap 3 Sensation and Perception Instructor: F. Tuttle, Mendocino College Sensory and Perception What are Sensation and Perception? Key theme: Sensation is the result of neural impulses

More information

THE NERVOUS SYSTEM: SPECIAL SENSES

THE NERVOUS SYSTEM: SPECIAL SENSES THE NERVOUS SYSTEM: SPECIAL SENSES Special senses allow the human body to react to the environment. Eye (sight) Ear (hearing) Tongue (taste) Nose (smell) Skin (touch and general senses) Your sense of sight

More information

Lecture PowerPoints. Chapter 12 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 12 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 12 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Structure and Function of the Auditory System

Structure and Function of the Auditory System GRBQ364-3602G-C03[51-78].qxd 03/13/2008 05:31 Page 51 Aptara Inc. CHAPTER 3 Structure and Function of the Auditory System CHAPTER OBJECTIVES To be able to identify basic anatomical landmarks of the outer

More information

Surgery for Conductive Hearing Loss

Surgery for Conductive Hearing Loss Surgery for Conductive Hearing Loss What is conductive hearing loss Conductive hearing loss is a form of hearing loss due to abnormalities in mobile portions of the ear. Theses are the movable parts (including

More information

Auditory Physiology February 2013

Auditory Physiology February 2013 Auditory Physiology 1 Contents Auditory Physiology... 1 Introduction... 3 What is sound?... 3 The three parts of the ear... 3 The function of the middle ear... 4 Impedance matching:... 4 Gating:... 4 Conduction

More information

Sonic Spotlight. Frequency Transfer Providing Audibility For High-Frequency Losses

Sonic Spotlight. Frequency Transfer Providing Audibility For High-Frequency Losses Frequency Transfer 1 Sonic Spotlight Frequency Transfer Providing Audibility For High-Frequency Losses Through the years, hearing care professionals have become good prognosticators. With one look at the

More information

Crash course in acoustics

Crash course in acoustics Crash course in acoustics 1 Outline What is sound and how does it travel? Physical characteristics of simple sound waves Amplitude, period, frequency Complex periodic and aperiodic waves Source-filter

More information

Lecture 1-2: Sound Pressure Level Scale

Lecture 1-2: Sound Pressure Level Scale Lecture 1-2: Sound Pressure Level Scale Overview 1. Psychology of Sound. We can define sound objectively in terms of its physical form as pressure variations in a medium such as air, or we can define it

More information

THE ANATOMY AND PHYSIOLOGY OF THE EAR AND HEARING

THE ANATOMY AND PHYSIOLOGY OF THE EAR AND HEARING 2 THE ANATOMY AND PHYSIOLOGY OF THE EAR AND HEARING Peter W.Alberti Professor em. of Otolaryngology Visiting Professor University of Singapore University of Toronto Department of Otolaryngology Toronto

More information

Introduction 3. Hearing 4. Hearing Loss 9

Introduction 3. Hearing 4. Hearing Loss 9 H E A R I N G L O S S Introduction 3 Hearing 4 Sound 4 The Ear 4 Audiology 6 The Audiogram 6 Hearing Loss 9 Types of Hearing Loss 9 Degree of Hearing Loss 11 Deaf, Hard of Hearing, and Deafened 12 Effects

More information

Applications to Hearing

Applications to Hearing CHAPTER 12 Applications to Hearing So far we ve been considering LTI systems in a fairly abstract way, although using specific examples from speech and hearing to illustrate many of the ideas. In this

More information

Hearing Conservation Procedures

Hearing Conservation Procedures Hearing Conservation Procedures Purpose The University of Regina is committed to providing a safe and healthy work and educational environment for all members of the University community by ensuring that

More information

SEMI-IMPLANTABLE AND FULLY IMPLANTABLE MIDDLE EAR HEARING AIDS

SEMI-IMPLANTABLE AND FULLY IMPLANTABLE MIDDLE EAR HEARING AIDS Coverage for services, procedures, medical devices and drugs are dependent upon benefit eligibility as outlined in the member's specific benefit plan. This Medical Coverage Guideline must be read in its

More information

MTC191 / E.Walker Sound & Waveforms

MTC191 / E.Walker Sound & Waveforms MTC191 / E.Walker Sound & Waveforms Understanding how sound works will help us learn to manipulate it in the form of audio signals, such as an analog voltage or a digital signal that is stored and played

More information

Sensory Organs (Receptors) Sensory Physiology. Sensory Adaptation. Four Steps to Sensation. Types of Sensors Structural Design

Sensory Organs (Receptors) Sensory Physiology. Sensory Adaptation. Four Steps to Sensation. Types of Sensors Structural Design Sensory Organs (Receptors) Sensory Physiology Chapter 10 Monitor the internal and external environment Transmit peripheral signals to CNS for processing Critical for homeostasis Types of Sensors Structural

More information

Learners Who are Deaf or Hard of Hearing Kalie Carlisle, Lauren Nash, and Allison Gallahan

Learners Who are Deaf or Hard of Hearing Kalie Carlisle, Lauren Nash, and Allison Gallahan Learners Who are Deaf or Hard of Hearing Kalie Carlisle, Lauren Nash, and Allison Gallahan Definition Deaf A deaf person is one whose hearing disability precludes successful processing of linguistic information

More information

Introduction to acoustic phonetics

Introduction to acoustic phonetics Introduction to acoustic phonetics Dr. Christian DiCanio cdicanio@buffalo.edu University at Buffalo 10/8/15 DiCanio (UB) Acoustics 10/8/15 1 / 28 Pressure & Waves Waves Sound waves are fluctuations in

More information

A Guide to Otoacoustic Emissions (OAEs) for Physicians

A Guide to Otoacoustic Emissions (OAEs) for Physicians A Guide to Otoacoustic Emissions (OAEs) for Physicians Introduction Hearing loss is not uncommon in children and adults. According to recent estimates, 31.5 million people in the United States report difficulty

More information

Light wear for a powerful hearing. Bone Conduction Headset

Light wear for a powerful hearing. Bone Conduction Headset Light wear for a powerful hearing Bone Conduction Headset 2 Light wear for a powerful hearing Melody Flex, the new bone conduction headset is AUTEL s solution to improve hearing quality of those affected

More information

Nature of the Sound Stimulus. Sound is the rhythmic compression and decompression of the air around us caused by a vibrating object.

Nature of the Sound Stimulus. Sound is the rhythmic compression and decompression of the air around us caused by a vibrating object. Sound and Hearing Nature of the Sound Stimulus Sound is the rhythmic compression and decompression of the air around us caused by a vibrating object. Applet Applet2 Frequency measured in cycles/sec = Hertz

More information

Unit 4: Science and Materials in Construction and the Built Environment. Sound

Unit 4: Science and Materials in Construction and the Built Environment. Sound 8.1 Origin of Sound Sound Sound is a variation in the pressure of the air of a type which has an effect on our ears and brain. These pressure variations transfer energy from a source of vibration that

More information

Feedback Analysis in Bone Anchored Hearing Aid (BAHA) and Bone Conduction Implant (BCI)

Feedback Analysis in Bone Anchored Hearing Aid (BAHA) and Bone Conduction Implant (BCI) Om Feedback Analysis in Bone Anchored Hearing Aid (BAHA) and Bone Conduction Implant (BCI) Master of Science Thesis Shirin Sadat Akhshijan Department of Signal and System Division of Signal Processing

More information

Final - Physics 1240 Spring, 2010 version 1. Intensity ratio 1 db db db db db db db db db 7.

Final - Physics 1240 Spring, 2010 version 1. Intensity ratio 1 db db db db db db db db db 7. Final - Physics 1240 Spring, 2010 version 1 0001-1 SIL difference (in decibels) Intensity ratio 1 db 1.3 2 db 1.6 3 db 2.0 4 db 2.5 5 db 3.2 6 db 4.0 7 db 5.0 8 db 6.3 9 db 7.9 Bubble in questions 1-40

More information

Diagnosing Hearing Loss - Beyond the Audiogram

Diagnosing Hearing Loss - Beyond the Audiogram Diagnosing Hearing Loss - Beyond the Audiogram Professor Brian C J Moore, Ph.D, FMedSci, FRS. Auditory Perception Group, University of Cambridge Hearing loss is usually quantified by measuring the lowest

More information

Introduction to Psychology Sensation and Perception Quiz

Introduction to Psychology Sensation and Perception Quiz 1 ) Our initial experience of a stimulus is A) transduction. B) perception. C) photoreception. D) sensation. E) olfaction. 2 ) As a result of, Lori can see my face. As a result of, she knows that it is

More information

Waves. Wave: A traveling disturbance consisting of coordinated vibrations that transmit energy with no net movement of the matter.

Waves. Wave: A traveling disturbance consisting of coordinated vibrations that transmit energy with no net movement of the matter. Waves Wave: A traveling disturbance consisting of coordinated vibrations that transmit energy with no net movement of the matter. Source: some kind of disturbance from the state of equilibrium. Propagation:

More information

Presbycusis. What is presbycusis? What are the symptoms of presbycusis?

Presbycusis. What is presbycusis? What are the symptoms of presbycusis? Presbycusis What is presbycusis? Presbycusis is the loss of hearing that gradually occurs in most individuals as they grow older. Hearing loss is a common disorder associated with aging. About 30-35 percent

More information

Objectives. Standards (NGSS and Common Core) For state specific standards visit edu.zspace.com/activities. Differentiation

Objectives. Standards (NGSS and Common Core) For state specific standards visit edu.zspace.com/activities. Differentiation Human Ear and Ear Disorders Part 1 Lesson Overview In this lesson, students will learn about the parts of the human ear and their functions using Cyber Science 3D and other sources. Students will build

More information

16 - Sensory Receptors and the Special Senses. Taft College Human Physiology

16 - Sensory Receptors and the Special Senses. Taft College Human Physiology 16 - Sensory Receptors and the Special Senses Taft College Human Physiology The Function of Sensory Receptors Sensory receptors are of great survival value to the body. They allow us to monitor changes

More information

Help maintain homeostasis by capturing stimuli from the external environment and relaying them to the brain for processing.

Help maintain homeostasis by capturing stimuli from the external environment and relaying them to the brain for processing. The Sense Organs... (page 409) Help maintain homeostasis by capturing stimuli from the external environment and relaying them to the brain for processing. Ex. Eye structure - protected by bony ridges and

More information

LESSON SEVEN: MEASURING HEARING IMPAIRMENT

LESSON SEVEN: MEASURING HEARING IMPAIRMENT LESSON SEVEN: MEASURING HEARING IMPAIRMENT FOCUS: This lesson will teach students the basics about hearing testing. The activity gives students an opportunity to graph the audiograms of a younger person

More information

The Special Senses. Dr. Ali Ebneshahidi. Copyright 2006 Pearson Education, Inc., publishing as Benjamin Cummings

The Special Senses. Dr. Ali Ebneshahidi. Copyright 2006 Pearson Education, Inc., publishing as Benjamin Cummings The Special Senses Dr. Ali Ebneshahidi Sense of Vision a) accessory structures of the eye are those that are not directly related the sense of vision, but facilitate the physiology of the eyeballs. - eyebrows

More information

Pure Tone Hearing Screening in Schools: Revised Notes on Main Video. IMPORTANT: A hearing screening does not diagnose a hearing loss.

Pure Tone Hearing Screening in Schools: Revised Notes on Main Video. IMPORTANT: A hearing screening does not diagnose a hearing loss. Pure Tone Hearing Screening in Schools: Revised Notes on Main Video (Notes are also available for Video segments: Common Mistakes and FAQs) IMPORTANT: A hearing screening does not diagnose a hearing loss.

More information

1/28/2009. Motion that repeats itself over and over. Rotation and revolution of Earth Back and forth motion of a swing Turning bicycle wheel

1/28/2009. Motion that repeats itself over and over. Rotation and revolution of Earth Back and forth motion of a swing Turning bicycle wheel Physics: Waves and Sound Dr. Ed Brothers Chemistry and Physics for High School Students Texas A&M (Qatar) January 27, 2009 Harmonic Motion Motion that repeats itself over and over Examples of harmonic

More information

Chapter 10 - Somatic and Special Senses

Chapter 10 - Somatic and Special Senses Chapter 10 - Somatic and Special Senses 10.1 Introduction (p. 262) A. Sensory receptors detect changes in the environment and stimulate neurons to send nerve impulses to the brain. B. A sensation is formed

More information

Noise: Impact on Hearing; Regulation

Noise: Impact on Hearing; Regulation Noise: Impact on Hearing; Regulation EOH 466A Fall 2008 Mechanism of Hearing Sound waves collected, focused by the outer ear. Humans have little control over muscles in outer ear. Many animals have the

More information

Lecture 13: More on Perception of Loudness

Lecture 13: More on Perception of Loudness Lecture 13: More on Perception of Loudness We have now seen that perception of loudness is not linear in how loud a sound is, but scales roughly as a factor of 2 in perception for a factor of 10 in intensity.

More information

CHAPTER - 19 NEURAL CONTROL AND COORDINATION

CHAPTER - 19 NEURAL CONTROL AND COORDINATION CHAPTER - 19 NEURAL CONTROL AND COORDINATION 1. Action potential: A sudden change in the electrical charges in the plasma membrane of a nerve fibre. 2. Aqueous humour: The thin watery fluid that occupy

More information

T here are approximately 3 million people in the US with

T here are approximately 3 million people in the US with International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 1 Continuous Interleaved Sampled (CIS) Signal Processing Strategy for Cochlear Implants MATLAB Simulation Program

More information

Sound and Music Adams, W.K. & Clark, A.

Sound and Music Adams, W.K. & Clark, A. Acoustical Society of America Edited by: Kelseigh Schneider Reviewed by: American Association of Physics Teachers Physics Teacher Resource Agents ASA Activity Kit Committee Sound and Music Adams, W.K.

More information

On the Job Off the Job

On the Job Off the Job On the Job Off the Job Hearing Health Facts for Sound Professionals & Musicians Your Ears - Your Most Valuable Sound Equipment Your auditory system is one of the most complex systems in your body. Working

More information

Human Physiology Lab (Biol 236L) Sensory Physiology

Human Physiology Lab (Biol 236L) Sensory Physiology 1 Human Physiology Lab (Biol 236L) Sensory Physiology External sensory information is processed by several types of sensory receptors in the body. These receptors respond to external stimuli, and that

More information

10: FOURIER ANALYSIS OF COMPLEX SOUNDS

10: FOURIER ANALYSIS OF COMPLEX SOUNDS 10: FOURIER ANALYSIS OF COMPLEX SOUNDS Amplitude, loudness, and decibels Several weeks ago we found that we could synthesize complex sounds with a particular frequency, f, by adding together sine waves

More information

THE NEURO-COMPENSATOR TECHNOLOGY FOR HEARING AIDS. Philippe A. Pango, Ph.D 1

THE NEURO-COMPENSATOR TECHNOLOGY FOR HEARING AIDS. Philippe A. Pango, Ph.D 1 THE NEURO-COMPENSATOR TECHNOLOGY FOR HEARING AIDS Philippe A. Pango, Ph.D 1 Abstract A novel approach to hearing-aid signal processing is described, which attempts to reestablish a normal neural representation

More information

Sound Longitudinal Waves Interference Pressure Graphs Standing Waves in a String: Two fixed ends Speed of Sound Standing Waves in a Tube: Wavefronts

Sound Longitudinal Waves Interference Pressure Graphs Standing Waves in a String: Two fixed ends Speed of Sound Standing Waves in a Tube: Wavefronts Sound Longitudinal Waves Pressure Graphs Speed of Sound Wavefronts Frequency & Pitch (human range) The Human Ear Sonar & Echolocation Doppler Effect (and sonic booms) Interference Standing Waves in a String:

More information

As those working in the hearing healthcare field, it

As those working in the hearing healthcare field, it Common Clinical Encounters: Do We Really Know Them? By Ted Venema, PhD IHS offers a diversity of options for obtaining continuing education credit: seminars and classroom training, institutional courses,

More information

Rinne s & Weber s Tests. Clinical Skills. Rinne s and Weber s Tests. Dr Alan Stone (General Practitioner and Senior Clinical Tutor)

Rinne s & Weber s Tests. Clinical Skills. Rinne s and Weber s Tests. Dr Alan Stone (General Practitioner and Senior Clinical Tutor) Clinical Skills Rinne s and Weber s Tests Dr Alan Stone (General Practitioner and Senior Clinical Tutor) Aims and Objectives Aims and Outcomes The aim of this tutorial is to understand the purpose of Rinne

More information

Sensation and Perception. Worksheet Solutions

Sensation and Perception. Worksheet Solutions Sensation and Perception Worksheet Solutions Learning Goals What is the difference between sensation and perception? Sensation is the process of receiving information from the environment. Perception is

More information

Name Class Date. c. column of air at the mouthpiece 4. flute. longitudinal

Name Class Date. c. column of air at the mouthpiece 4. flute. longitudinal Exercises 26.1 The Origin of (page 515) Match each sound source with the part that vibrates. Source Vibrating Part a b d c 1. violin a. strings 2. your voice b. reed 3. saxophone c. column of air at the

More information

NVH caused by ABS and ESP in cold climates

NVH caused by ABS and ESP in cold climates Research report LTU 2009-01 NVH caused by ABS and ESP in cold climates Roger Johnsson Anders Ågren Bror Tingvall Luleå University of technology Division of Sound & vibration 1 INTRODUCTION To evaluate

More information

Hearing & Amplification

Hearing & Amplification Hearing & Amplification Glossary Have you ever felt that a doctor or another health professional was speaking a different language? As a parent of a baby who has been newly identified with hearing loss,

More information

Cochlear dead regions in children

Cochlear dead regions in children Cochlear dead regions in children Karolina Kluk-de Kort Audiology and Deafness Research Group School of Psychological Sciences University of Manchester Karolina.kluk@manchester.ac.uk OVERVIEW 1. Definition

More information

CONVENTIONAL AND DIGITAL HEARING AIDS

CONVENTIONAL AND DIGITAL HEARING AIDS CONVENTIONAL AND DIGITAL HEARING AIDS Coverage for services, procedures, medical devices and drugs are dependent upon benefit eligibility as outlined in the member's specific benefit plan. This Medical

More information

Sound Level Sensor DATA HARVEST. Product No Range: 40 to 110 dba Resolution: 0.1 dba Response time: 125 ms

Sound Level Sensor DATA HARVEST. Product No Range: 40 to 110 dba Resolution: 0.1 dba Response time: 125 ms Sound Level Sensor Product No. 3175 Range: 40 to 110 dba Resolution: 0.1 dba Response time: 125 ms Range: ±2000 mv Resolution: 1 mv Frequency response: 100 Hz - 7 khz DATA HARVEST Data Harvest Group Ltd

More information

Structure of the Ear

Structure of the Ear The Human Ear CEASAR GARDOSE, MD, FPSO-HNS West Visayas State University College of Medicine Dept. of EENT/ Section of Otolaryngology- Head and Neck Surgery Structure of the Ear Structures of the Ear

More information

Byron's Hudson Valley Hearing Aid Centers Kingston/Lake Katrine 845-336-0108 Poughkeepsie 845-485-0168 Your hearing Journey

Byron's Hudson Valley Hearing Aid Centers Kingston/Lake Katrine 845-336-0108 Poughkeepsie 845-485-0168 Your hearing Journey Your hearing Journey Don't miss out on the joys of life, your hearing is our concern. Trust our experts to enhance your quality of life. Ask Yourself: Do you have difficulty following a conversation in

More information

How Do We Hear, Speak, and Make Music?

How Do We Hear, Speak, and Make Music? CHAPTER 9 How Do We Hear, Speak, and Make Music? An Introduction to Sound The Basic Qualities of Sound Waves The Perception of Sound Language and Music as Sounds The Anatomy of the Auditory System The

More information

Audiology - Hearing Care Torbay and South Devon. Before you receive your hearing aid

Audiology - Hearing Care Torbay and South Devon. Before you receive your hearing aid Audiology - Hearing Care Torbay and South Devon Before you receive your hearing aid How our ears work Our ears are divided into three sections, the outer ear, middle ear and inner ear (see diagram opposite).

More information

Unit 6 Practice Test: Sound

Unit 6 Practice Test: Sound Unit 6 Practice Test: Sound Name: Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. A mass attached to a spring vibrates back and forth. At

More information

Check Your Hearing - http://www.youtube.com/watch?v=mmu6npeidoy

Check Your Hearing - http://www.youtube.com/watch?v=mmu6npeidoy The Science of Hearing The human hearing range is between 20 to 20,000 Hz. There is considerable variation in the hearing range between individuals. Most young people can hear up to 18,000 Hz. Our ability

More information

Basic Information on Hearing Health. Students

Basic Information on Hearing Health. Students + Basic Information on Hearing Health Students + Sources of Information on Hearing Health National Association of Schools of Music (NASM) Performing Arts Medicine Association (PAMA) American Academy of

More information

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.)

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) Sound Waves Test -- each multiple choice question is worth 3 points. 1. Sound waves are

More information