Lecture 3: Data Mining.

Size: px
Start display at page:

Download "Lecture 3: Data Mining."

Transcription

1 Lecture 3: Data Mining 1 1

2 Roadmap What is data mining? Data Mining Tasks Classification/Decision Tree Clustering Association Mining Data Mining Algorithms Decision Tree Construction Frequent 2-itemsets Frequent Itemsets (Apriori) Clustering/Collaborative Filtering 2 2

3 What is Data Mining? Discovery of useful, possibly unexpected, patterns in data. Subsidiary issues: Data cleansing: detection of bogus data. E.g., age = 150. Visualization: something better than megabyte files of output. Warehousing of data (for retrieval). 3 3

4 Typical Kinds of Patterns 1. Decision trees: succinct ways to classify by testing properties. 2. Clusters: another succinct classification by similarity of properties. 3. Bayes, hidden-markov, and other statistical models, frequent-itemsets: expose important associations within data. 4 4

5 Example: Clusters x x x x x x x x x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x 5 5

6 Applications (Among Many) Intelligence-gathering. Total Information Awareness. Web Analysis. PageRank. Marketing. Run a sale on diapers; raise the price of beer. Detective? 6 6

7 Cultures Databases: concentrate on large-scale (non-mainmemory) data. AI (machine-learning): concentrate on complex methods, small data. Statistics: concentrate on inferring models. 7 7

8 Models vs. Analytic Processing To a database person, data-mining is a powerful form of analytic processing --- queries that examine large amounts of data. Result is the data that answers the query. To a statistician, data-mining is the inference of models. Result is the parameters of the model. 8 8

9 Meaningfulness of Answers A big risk when data mining is that you will discover patterns that are meaningless. Statisticians call it Bonferroni s principle: (roughly) if you look in more places for interesting patterns than your amount of data will support, you are bound to find crap. 9 9

10 Examples A big objection to TIA was that it was looking for so many vague connections that it was sure to find things that were bogus and thus violate innocents privacy. The Rhine Paradox: a great example of how not to conduct scientific research

11 Rhine Paradox --- (1) David Rhine was a parapsychologist in the 1950 s who hypothesized that some people had Extra-Sensory Perception. He devised an experiment where subjects were asked to guess 10 hidden cards --- red or blue. He discovered that almost 1 in 1000 had ESP --- they were able to get all 10 right! 11 11

12 Rhine Paradox --- (2) He told these people they had ESP and called them in for another test of the same type. Alas, he discovered that almost all of them had lost their ESP. What did he conclude? Answer on next slide

13 Rhine Paradox --- (3) He concluded that you shouldn t tell people they have ESP; it causes them to lose it

14 A Concrete Example This example illustrates a problem with intelligencegathering. Suppose we believe that certain groups of evil-doers are meeting occasionally in hotels to plot doing evil. We want to find people who at least twice have stayed at the same hotel on the same day

15 10 9 people being tracked days. The Details Each person stays in a hotel 1% of the time (10 days out of 1000). Hotels hold 100 people (so 10 5 hotels). If everyone behaves randomly (I.e., no evil-doers) will the data mining detect anything suspicious? 15 15

16 Calculations --- (1) Probability that persons p and q will be at the same hotel on day d : 1/100 * 1/100 * 10-5 = Probability that p and q will be at the same hotel on two given days: 10-9 * 10-9 = Pairs of days: 5*

17 Calculations --- (2) Probability that p and q will be at the same hotel on some two days: 5*10 5 * = 5* Pairs of people: 5* Expected number of suspicious pairs of people: 5*10 17 * 5*10-13 = 250,

18 Conclusion Suppose there are (say) 10 pairs of evil-doers who definitely stayed at the same hotel twice. Analysts have to sift through 250,010 candidates to find the 10 real cases. Not gonna happen. But how can we improve the scheme? 18 18

19 Data Mining Tasks Data mining is the process of semi-automatically analyzing large databases to find useful patterns Prediction based on past history Predict if a credit card applicant poses a good credit risk, based on some attributes (income, job type, age,..) and past history Predict if a pattern of phone calling card usage is likely to be fraudulent Some examples of prediction mechanisms: Classification Given a new item whose class is unknown, predict to which class it belongs Regression formulae Given a set of mappings for an unknown function, predict the function result for a new parameter value 19 19

20 Data Mining (Cont.) Descriptive Patterns Associations Find books that are often bought by similar customers. If a new such customer buys one such book, suggest the others too. Associations may be used as a first step in detecting causation E.g. association between exposure to chemical X and cancer, Clusters E.g. typhoid cases were clustered in an area surrounding a contaminated well Detection of clusters remains important in detecting epidemics 20 20

21 Decision Trees Example: Conducted survey to see what customers were interested in new model car Want to select customers for advertising campaign sale custid car age city newcar c1 taurus 27 sf yes c2 van 35 la yes c3 van 40 sf yes c4 taurus 22 sf yes c5 merc 50 la no c6 taurus 25 la no training set 21 21

22 One Possibility Y age<30 N sale custid car age city newcar c1 taurus 27 sf yes c2 van 35 la yes c3 van 40 sf yes c4 taurus 22 sf yes c5 merc 50 la no c6 taurus 25 la no city=sf Y N likely unlikely car=van Y N likely unlikely 22 22

23 Another Possibility Y car=taurus N sale custid car age city newcar c1 taurus 27 sf yes c2 van 35 la yes c3 van 40 sf yes c4 taurus 22 sf yes c5 merc 50 la no c6 taurus 25 la no city=sf Y N likely unlikely age<45 Y N likely unlikely 23 23

24 Issues Decision tree cannot be too deep would not have statistically significant amounts of data for lower decisions Need to select tree that most reliably predicts outcomes 24 24

25 Clustering income education age 25 25

26 Another Example: Text Each document is a vector e.g., < > contains words 1,4,5,... Clusters contain similar documents Useful for understanding, searching documents international news business sports 26 26

27 Issues Given desired number of clusters? Finding best clusters Are clusters semantically meaningful? 27 27

28 Association Rule Mining sales records: transaction id customer id tran1 cust33 p2, p5, p8 tran2 cust45 p5, p8, p11 tran3 cust12 p1, p9 tran4 cust40 p5, p8, p11 tran5 cust12 p2, p9 tran6 cust12 p9 products bought market-basket data Trend: Products p5, p8 often bough together Trend: Customer 12 likes product p

29 Association Rule Rule: {p 1, p 3, p 8 } Support: number of baskets where these products appear High-support set: support threshold s Problem: find all high support sets 29 29

30 Finding High-Support Pairs Baskets(basket, item) SELECT I.item, J.item, COUNT(I.basket) FROM Baskets I, Baskets J WHERE I.basket = J.basket AND I.item < J.item GROUP BY I.item, J.item HAVING COUNT(I.basket) >= s; 30 30

31 Example basket item t1 p2 t1 p5 t1 p8 t2 p5 t2 p8 t2 p basket item1 item2 t1 p2 p5 t1 p2 p8 t1 p5 p8 t2 p5 p8 t2 p5 p11 t2 p8 p check if count s 31 31

32 Issues Performance for size 2 rules big basket item t1 p2 t1 p5 t1 p8 t2 p5 t2 p8 t2 p basket item1 item2 t1 p2 p5 t1 p2 p8 t1 p5 p8 t2 p5 p8 t2 p5 p11 t2 p8 p even bigger! Performance for size k rules 32 32

33 Roadmap What is data mining? Data Mining Tasks Classification/Decision Tree Clustering Association Mining Data Mining Algorithms Decision Tree Construction Frequent 2-itemsets Frequent Itemsets (Apriori) Clustering/Collaborative Filtering 33 33

34 Classification Rules Classification rules help assign new objects to classes. E.g., given a new automobile insurance applicant, should he or she be classified as low risk, medium risk or high risk? Classification rules for above example could use a variety of data, such as educational level, salary, age, etc. person P, P.degree = masters and P.income > 75,000 P.credit = excellent person P, P.degree = bachelors and (P.income 25,000 and P.income 75,000) P.credit = good Rules are not necessarily exact: there may be some misclassifications Classification rules can be shown compactly as a decision tree

35 Decision Tree 35 35

36 Decision Tree Construction NAME Balance Employed Age Default Matt 23,000 No 30 yes Ben 51,100 No 48 yes Chris 68,000 Yes 55 no Jim 74,000 No 40 no David 23,000 No 47 yes John 100,000 Yes 49 no Employed Yes Class=Not Default <50K No Balance Root >=50K Node Leaf Class=Yes Default <45 Age >=45 Class=Not Default Class=Yes Default 36 36

37 Construction of Decision Trees Training set: a data sample in which the classification is already known. Greedy top down generation of decision trees. Each internal node of the tree partitions the data into groups based on a partitioning attribute, and a partitioning condition for the node Leaf node: all (or most) of the items at the node belong to the same class, or all attributes have been considered, and no further partitioning is possible

38 Finding the Best Split Point for Numerical Attributes Complete Class Histograms Counts class-2 class-1 The data comes from a IBM Quest synthetic dataset for function 0 Age Gain Function Best Split Point gain gain function In-core algorithms, such as C4.5, will just online sort the numerical attributes! Age 38 38

39 Best Splits Pick best attributes and conditions on which to partition The purity of a set S of training instances can be measured quantitatively in several ways. Notation: number of classes = k, number of instances = S, fraction of instances in class i = p i. The Gini measure of purity is defined as [ k Gini (S) = 1 - i- - 1 p 2 i When all instances are in a single class, the Gini value is 0 It reaches its maximum (of 1 1 /k) if each class the same number of instances

40 Best Splits (Cont.) Another measure of purity is the entropy measure, which is defined as entropy (S) = p i- 1 ilog 2 p i k i- When a set S is split into multiple sets Si, I=1, 2,, r, we can measure the purity of the resultant set of sets as: purity(s 1, S 2,.., S r ) = r i= = 1 S i S purity (S i ) The information gain due to particular split of S into S i, i = 1, 2,., r Information-gain (S, {S 1, S 2,., S r ) = purity(s ) purity (S 1, S 2, S r ) 40 40

41 Finding Best Splits Categorical attributes (with no meaningful order): Multi-way split, one child for each value Binary split: try all possible breakup of values into two sets, and pick the best Continuous-valued attributes (can be sorted in a meaningful order) Binary split: Sort values, try each as a split point E.g. if values are 1, 10, 15, 25, split at 1, 10, 15 Pick the value that gives best split Multi-way split: A series of binary splits on the same attribute has roughly equivalent effect 41 41

42 Decision-Tree Construction Algorithm Procedure GrowTree (S ) Partition (S ); Procedure Partition (S) if ( purity (S ) > δ p or S < δ s ) then return; for each attribute A evaluate splits on attribute A; Use best split found (across all attributes) to partition S into S 1, S 2,., S r, for i = 1, 2,.., r Partition (S i ); 42 42

43 Finding Association Rules We are generally only interested in association rules with reasonably high support (e.g. support of 2% or greater) Naïve algorithm 1. Consider all possible sets of relevant items. 2. For each set find its support (i.e. count how many transactions purchase all items in the set). Large itemsets: sets with sufficiently high support 43 43

44 Example: Association Rules How do we perform rule mining efficiently? Observation: If set X has support t, then each X subset must have at least support t For 2-sets: if we need support s for {i, j} then each i, j must appear in at least s baskets 44 44

45 Algorithm for 2-Sets (1) Find OK products those appearing in s or more baskets (2) Find high-support pairs using only OK products 45 45

46 Algorithm for 2-Sets INSERT INTO okbaskets(basket, item) SELECT basket, item FROM Baskets GROUP BY item HAVING COUNT(basket) >= s; Perform mining on okbaskets SELECT I.item, J.item, COUNT(I.basket) FROM okbaskets I, okbaskets J WHERE I.basket = J.basket AND I.item < J.item GROUP BY I.item, J.item HAVING COUNT(I.basket) >= s; 46 46

47 Counting Efficiently One way: threshold = 3 basket I.item J.item t1 p5 p8 t2 p5 p8 t2 p8 p11 t3 p2 p3 t3 p5 p8 t3 p2 p sort basket I.item J.item t3 p2 p3 t3 p2 p8 t1 p5 p8 t2 p5 p8 t3 p5 p8 t2 p8 p count & remove count I.item J.item 3 p5 p8 5 p12 p

48 Counting Efficiently Another way: threshold = 3 basket I.item J.item t1 p5 p8 t2 p5 p8 t2 p8 p11 t3 p2 p3 t3 p5 p8 t3 p2 p scan & count count I.item J.item 1 p2 p3 2 p2 p8 3 p5 p8 5 p12 p18 1 p21 p22 2 p21 p remove count I.item J.item 3 p5 p8 5 p12 p keep counter array in memory 48 48

49 Yet Another Way basket I.item J.item t1 p5 p8 t2 p5 p8 t2 p8 p11 t3 p2 p3 t3 p5 p8 t3 p2 p (2) scan & remove false positive (1) scan & hash & count count bucket 1 A 5 B 2 C 1 D 8 E 1 F basket I.item J.item t1 p5 p8 t2 p5 p8 t2 p8 p11 t3 p5 p8 t5 p12 p18 t8 p12 p in-memory hash table threshold = 3 in-memory counters count count I.item J.item 3 p5 p8 1 p8 p11 5 p12 p (3) scan& count I.item J.item 3 p5 p8 5 p12 p (4) remove 49

50 Discussion Hashing scheme: 2 (or 3) scans of data Sorting scheme: requires a sort! Hashing works well if few high-support pairs and many lowsupport ones frequency iceberg queries threshold item-pairs ranked by frequency 50 50

51 Review (1) What s classification problem? What s decision tree? How to build it? What frequent itemset mining problem? How to use SQL to express finding frequent pairs problem? What s the alternatives to find such pairs? 51 51

52 Review (2) Decision Tree Construction NAME Balance Employed Age Default Matt 23,000 No 30 yes Ben 51,100 No 48 yes Chris 68,000 Yes 55 no Jim 74,000 No 40 no David 23,000 No 47 yes John 100,000 Yes 49 no Recursively construct the decision tree Best test condition for a node Categorical attributes, best subset test Numerical attributes, best split point Partition the dataset Leaf Employed Yes Class=Not Default <50K No Class=Yes Default Balance <45 >=50K Age Root Node >=45 Class=Not Default Class=Yes Default 52 52

53 Review (3) Finding High-Support Pairs Baskets(basket, item) SELECT I.item, J.item, COUNT(I.basket) FROM Baskets I, Baskets J WHERE I.basket = J.basket AND I.item < J.item GROUP BY I.item, J.item HAVING COUNT(I.basket) >= s; 53 53

54 Frequent Itemsets Mining TID Transactions Desired frequency 50% (support level) { A, B, E } { B, D } { A, B, E } { A, C } { B, C } { A, C } { A, B } { A, B, C, E } { A, B, C } { A, C, E } {A},{B},{C},{A,B}, {A,C} Down-closure (apriori) property If an itemset is frequent, all of its subset must also be frequent 54 54

55 Lattice for Enumerating Frequent Itemsets null A B C D E AB AC AD AE BC BD BE CD CE DE Found to be Infrequent ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ABCD ABCE ABDE ACDE BCDE Pruned supersets 55 ABCDE 55

56 Apriori L 0 = C 1 = { 1-item subsets of all the transactions } For ( k=1; C k 0; k++ ) { * support counting * } for all transactions t D for all k-subsets s of t if k C k s.count++ { * candidates generation * } L k = { c C k c.count>= min sup } C k+1 = apriori_gen( L k ) Answer = U k L k 56 56

57 Clustering Clustering: Intuitively, finding clusters of points in the given data such that similar points lie in the same cluster Can be formalized using distance metrics in several ways Group points into k sets (for a given k) such that the average distance of points from the centroid of their assigned group is minimized Centroid: point defined by taking average of coordinates in each dimension. Another metric: minimize average distance between every pair of points in a cluster Has been studied extensively in statistics, but on small data sets Data mining systems aim at clustering techniques that can handle very large data sets E.g. the Birch clustering algorithm! 57 57

58 K-Means Clustering 58 58

59 Hierarchical Clustering Example from biological classification (the word classification here does not mean a prediction mechanism) chordata mammalia reptilia leopards humans snakes crocodiles Other examples: Internet directory systems (e.g. Yahoo!) Agglomerative clustering algorithms Build small clusters, then cluster small clusters into bigger clusters, and so on Divisive clustering algorithms Start with all items in a single cluster, repeatedly refine (break) clusters into smaller ones 59 59

60 Collaborative Filtering Goal: predict what movies/books/ a person may be interested in, on the basis of Past preferences of the person Other people with similar past preferences The preferences of such people for a new movie/book/ One approach based on repeated clustering Cluster people on the basis of preferences for movies Then cluster movies on the basis of being liked by the same clusters of people Again cluster people based on their preferences for (the newly created clusters of) movies Repeat above till equilibrium Above problem is an instance of collaborative filtering, where users collaborate in the task of filtering information to find information of interest 60 60

61 Other Types of Mining Text mining: application of data mining to textual documents cluster Web pages to find related pages cluster pages a user has visited to organize their visit history classify Web pages automatically into a Web directory Data visualization systems help users examine large volumes of data and detect patterns visually Can visually encode large amounts of information on a single screen Humans are very good a detecting visual patterns 61 61

62 Data Streams What are Data Streams? Continuous streams Huge, Fast, and Changing Why Data Streams? The arriving speed of streams and the huge amount of data are beyond our capability to store them. Real-time processing Window Models Landscape window (Entire Data Stream) Sliding Window Damped Window Mining Data Stream 62 62

63 A Simple Problem Finding frequent items Given a sequence (x 1, x N ) where x i [1,m], and a real number θbetween zero and one. Looking for x i whose frequency > θ Naïve Algorithm (m counters) The number of frequent items 1/ θ Problem: N>>m>>1/θ P (Nθ) N 63 63

64 KRP algorithm Karp, et. al (TODS 03) m=12 N=30 Θ=0.35 1/θ = 3 N/ ( 1/θ ) Nθ 64 64

65 Enhance the Accuracy m=12 Θ=0.35 1/θ = 3 Deletion/Reducing = 9 N=30 NΘ>10 ε=0.5 Θ(1- ε )= /(θ ε) = 6 (ε*θ)n (Θ-(ε*Θ))N

66 Frequent Items for Transactions with Fixed Length Each transaction has 2 items Θ=0.60 1/θ 2=

Chapter 20: Data Analysis

Chapter 20: Data Analysis Chapter 20: Data Analysis Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 20: Data Analysis Decision Support Systems Data Warehousing Data Mining Classification

More information

Big Data Analytics. Genoveva Vargas-Solar http://www.vargas-solar.com/big-data-analytics French Council of Scientific Research, LIG & LAFMIA Labs

Big Data Analytics. Genoveva Vargas-Solar http://www.vargas-solar.com/big-data-analytics French Council of Scientific Research, LIG & LAFMIA Labs 1 Big Data Analytics Genoveva Vargas-Solar http://www.vargas-solar.com/big-data-analytics French Council of Scientific Research, LIG & LAFMIA Labs Montevideo, 22 nd November 4 th December, 2015 INFORMATIQUE

More information

Data Mining Apriori Algorithm

Data Mining Apriori Algorithm 10 Data Mining Apriori Algorithm Apriori principle Frequent itemsets generation Association rules generation Section 6 of course book TNM033: Introduction to Data Mining 1 Association Rule Mining (ARM)

More information

COMP3420: Advanced Databases and Data Mining. Classification and prediction: Introduction and Decision Tree Induction

COMP3420: Advanced Databases and Data Mining. Classification and prediction: Introduction and Decision Tree Induction COMP3420: Advanced Databases and Data Mining Classification and prediction: Introduction and Decision Tree Induction Lecture outline Classification versus prediction Classification A two step process Supervised

More information

Unique column combinations

Unique column combinations Unique column combinations Arvid Heise Guest lecture in Data Profiling and Data Cleansing Prof. Dr. Felix Naumann Agenda 2 Introduction and problem statement Unique column combinations Exponential search

More information

Data Mining: Partially from: Introduction to Data Mining by Tan, Steinbach, Kumar

Data Mining: Partially from: Introduction to Data Mining by Tan, Steinbach, Kumar Data Mining: Association Analysis Partially from: Introduction to Data Mining by Tan, Steinbach, Kumar Association Rule Mining Given a set of transactions, find rules that will predict the occurrence of

More information

Classification and Prediction

Classification and Prediction Classification and Prediction Slides for Data Mining: Concepts and Techniques Chapter 7 Jiawei Han and Micheline Kamber Intelligent Database Systems Research Lab School of Computing Science Simon Fraser

More information

Data Mining: Foundation, Techniques and Applications

Data Mining: Foundation, Techniques and Applications Data Mining: Foundation, Techniques and Applications Lesson 1b :A Quick Overview of Data Mining Li Cuiping( 李 翠 平 ) School of Information Renmin University of China Anthony Tung( 鄧 锦 浩 ) School of Computing

More information

Data Mining: An Overview. David Madigan http://www.stat.columbia.edu/~madigan

Data Mining: An Overview. David Madigan http://www.stat.columbia.edu/~madigan Data Mining: An Overview David Madigan http://www.stat.columbia.edu/~madigan Overview Brief Introduction to Data Mining Data Mining Algorithms Specific Eamples Algorithms: Disease Clusters Algorithms:

More information

Data Mining for Knowledge Management. Classification

Data Mining for Knowledge Management. Classification 1 Data Mining for Knowledge Management Classification Themis Palpanas University of Trento http://disi.unitn.eu/~themis Data Mining for Knowledge Management 1 Thanks for slides to: Jiawei Han Eamonn Keogh

More information

Gerry Hobbs, Department of Statistics, West Virginia University

Gerry Hobbs, Department of Statistics, West Virginia University Decision Trees as a Predictive Modeling Method Gerry Hobbs, Department of Statistics, West Virginia University Abstract Predictive modeling has become an important area of interest in tasks such as credit

More information

Benchmark Databases for Testing Big-Data Analytics In Cloud Environments

Benchmark Databases for Testing Big-Data Analytics In Cloud Environments North Carolina State University Graduate Program in Operations Research Benchmark Databases for Testing Big-Data Analytics In Cloud Environments Rong Huang Rada Chirkova Yahya Fathi ICA CON 2012 April

More information

Association Analysis: Basic Concepts and Algorithms

Association Analysis: Basic Concepts and Algorithms 6 Association Analysis: Basic Concepts and Algorithms Many business enterprises accumulate large quantities of data from their dayto-day operations. For example, huge amounts of customer purchase data

More information

Chapter 22: Advanced Querying and Information Retrieval. Decision Support Systems

Chapter 22: Advanced Querying and Information Retrieval. Decision Support Systems Chapter 22: Advanced Querying and Information Retrieval! Decision-Support Systems " Data Analysis # OLAP # Extended aggregation features in SQL Windowing and ranking " Data Mining " Data Warehousing! Information-Retrieval

More information

Part 2: Community Detection

Part 2: Community Detection Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection - Social networks -

More information

Data Mining Algorithms Part 1. Dejan Sarka

Data Mining Algorithms Part 1. Dejan Sarka Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka (dsarka@solidq.com) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses

More information

Outline. What is Big data and where they come from? How we deal with Big data?

Outline. What is Big data and where they come from? How we deal with Big data? What is Big Data Outline What is Big data and where they come from? How we deal with Big data? Big Data Everywhere! As a human, we generate a lot of data during our everyday activity. When you buy something,

More information

131-1. Adding New Level in KDD to Make the Web Usage Mining More Efficient. Abstract. 1. Introduction [1]. 1/10

131-1. Adding New Level in KDD to Make the Web Usage Mining More Efficient. Abstract. 1. Introduction [1]. 1/10 1/10 131-1 Adding New Level in KDD to Make the Web Usage Mining More Efficient Mohammad Ala a AL_Hamami PHD Student, Lecturer m_ah_1@yahoocom Soukaena Hassan Hashem PHD Student, Lecturer soukaena_hassan@yahoocom

More information

The Data Mining Process

The Data Mining Process Sequence for Determining Necessary Data. Wrong: Catalog everything you have, and decide what data is important. Right: Work backward from the solution, define the problem explicitly, and map out the data

More information

Data Mining Association Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 6. Introduction to Data Mining

Data Mining Association Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 6. Introduction to Data Mining Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/8/24

More information

Analytics on Big Data

Analytics on Big Data Analytics on Big Data Riccardo Torlone Università Roma Tre Credits: Mohamed Eltabakh (WPI) Analytics The discovery and communication of meaningful patterns in data (Wikipedia) It relies on data analysis

More information

Decision Trees from large Databases: SLIQ

Decision Trees from large Databases: SLIQ Decision Trees from large Databases: SLIQ C4.5 often iterates over the training set How often? If the training set does not fit into main memory, swapping makes C4.5 unpractical! SLIQ: Sort the values

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:

More information

Association Rule Mining

Association Rule Mining Association Rule Mining Association Rules and Frequent Patterns Frequent Pattern Mining Algorithms Apriori FP-growth Correlation Analysis Constraint-based Mining Using Frequent Patterns for Classification

More information

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal Learning Example Chapter 18: Learning from Examples 22c:145 An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients. A decision is needed: whether

More information

Lecture Notes on Database Normalization

Lecture Notes on Database Normalization Lecture Notes on Database Normalization Chengkai Li Department of Computer Science and Engineering The University of Texas at Arlington April 15, 2012 I decided to write this document, because many students

More information

Social Media Mining. Data Mining Essentials

Social Media Mining. Data Mining Essentials Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

More information

Machine Learning using MapReduce

Machine Learning using MapReduce Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous

More information

Professor Anita Wasilewska. Classification Lecture Notes

Professor Anita Wasilewska. Classification Lecture Notes Professor Anita Wasilewska Classification Lecture Notes Classification (Data Mining Book Chapters 5 and 7) PART ONE: Supervised learning and Classification Data format: training and test data Concept,

More information

Data Mining Classification: Decision Trees

Data Mining Classification: Decision Trees Data Mining Classification: Decision Trees Classification Decision Trees: what they are and how they work Hunt s (TDIDT) algorithm How to select the best split How to handle Inconsistent data Continuous

More information

Data Mining and Exploration. Data Mining and Exploration: Introduction. Relationships between courses. Overview. Course Introduction

Data Mining and Exploration. Data Mining and Exploration: Introduction. Relationships between courses. Overview. Course Introduction Data Mining and Exploration Data Mining and Exploration: Introduction Amos Storkey, School of Informatics January 10, 2006 http://www.inf.ed.ac.uk/teaching/courses/dme/ Course Introduction Welcome Administration

More information

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition

More information

Data Mining and Knowledge Discovery in Databases (KDD) State of the Art. Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland

Data Mining and Knowledge Discovery in Databases (KDD) State of the Art. Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland Data Mining and Knowledge Discovery in Databases (KDD) State of the Art Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland 1 Conference overview 1. Overview of KDD and data mining 2. Data

More information

Data Mining Techniques

Data Mining Techniques 15.564 Information Technology I Business Intelligence Outline Operational vs. Decision Support Systems What is Data Mining? Overview of Data Mining Techniques Overview of Data Mining Process Data Warehouses

More information

Finding Frequent Patterns Based On Quantitative Binary Attributes Using FP-Growth Algorithm

Finding Frequent Patterns Based On Quantitative Binary Attributes Using FP-Growth Algorithm R. Sridevi et al Int. Journal of Engineering Research and Applications RESEARCH ARTICLE OPEN ACCESS Finding Frequent Patterns Based On Quantitative Binary Attributes Using FP-Growth Algorithm R. Sridevi,*

More information

Foundations of Artificial Intelligence. Introduction to Data Mining

Foundations of Artificial Intelligence. Introduction to Data Mining Foundations of Artificial Intelligence Introduction to Data Mining Objectives Data Mining Introduce a range of data mining techniques used in AI systems including : Neural networks Decision trees Present

More information

An Overview of Knowledge Discovery Database and Data mining Techniques

An Overview of Knowledge Discovery Database and Data mining Techniques An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,

More information

Chapter 4 Data Mining A Short Introduction. 2006/7, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis Data Mining - 1

Chapter 4 Data Mining A Short Introduction. 2006/7, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis Data Mining - 1 Chapter 4 Data Mining A Short Introduction 2006/7, Karl Aberer, EPFL-IC, Laboratoire de systèmes d'informations répartis Data Mining - 1 1 Today's Question 1. Data Mining Overview 2. Association Rule Mining

More information

MAXIMAL FREQUENT ITEMSET GENERATION USING SEGMENTATION APPROACH

MAXIMAL FREQUENT ITEMSET GENERATION USING SEGMENTATION APPROACH MAXIMAL FREQUENT ITEMSET GENERATION USING SEGMENTATION APPROACH M.Rajalakshmi 1, Dr.T.Purusothaman 2, Dr.R.Nedunchezhian 3 1 Assistant Professor (SG), Coimbatore Institute of Technology, India, rajalakshmi@cit.edu.in

More information

Information Management course

Information Management course Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli (alberto.ceselli@unimi.it)

More information

Clustering. Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016

Clustering. Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016 Clustering Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016 1 Supervised learning vs. unsupervised learning Supervised learning: discover patterns in the data that relate data attributes with

More information

Recognition. Sanja Fidler CSC420: Intro to Image Understanding 1 / 28

Recognition. Sanja Fidler CSC420: Intro to Image Understanding 1 / 28 Recognition Topics that we will try to cover: Indexing for fast retrieval (we still owe this one) History of recognition techniques Object classification Bag-of-words Spatial pyramids Neural Networks Object

More information

Lecture 10: Regression Trees

Lecture 10: Regression Trees Lecture 10: Regression Trees 36-350: Data Mining October 11, 2006 Reading: Textbook, sections 5.2 and 10.5. The next three lectures are going to be about a particular kind of nonlinear predictive model,

More information

Clustering. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca

Clustering. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca Clustering Adrian Groza Department of Computer Science Technical University of Cluj-Napoca Outline 1 Cluster Analysis What is Datamining? Cluster Analysis 2 K-means 3 Hierarchical Clustering What is Datamining?

More information

Fuzzy Association Rules

Fuzzy Association Rules Vienna University of Economics and Business Administration Fuzzy Association Rules An Implementation in R Master Thesis Vienna University of Economics and Business Administration Author Bakk. Lukas Helm

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team

CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team Lecture Summary In this lecture, we learned about the ADT Priority Queue. A

More information

Using Data Mining and Machine Learning in Retail

Using Data Mining and Machine Learning in Retail Using Data Mining and Machine Learning in Retail Omeid Seide Senior Manager, Big Data Solutions Sears Holdings Bharat Prasad Big Data Solution Architect Sears Holdings Over a Century of Innovation A Fortune

More information

STATISTICA. Clustering Techniques. Case Study: Defining Clusters of Shopping Center Patrons. and

STATISTICA. Clustering Techniques. Case Study: Defining Clusters of Shopping Center Patrons. and Clustering Techniques and STATISTICA Case Study: Defining Clusters of Shopping Center Patrons STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table

More information

Static Data Mining Algorithm with Progressive Approach for Mining Knowledge

Static Data Mining Algorithm with Progressive Approach for Mining Knowledge Global Journal of Business Management and Information Technology. Volume 1, Number 2 (2011), pp. 85-93 Research India Publications http://www.ripublication.com Static Data Mining Algorithm with Progressive

More information

Data Mining. Concepts, Models, Methods, and Algorithms. 2nd Edition

Data Mining. Concepts, Models, Methods, and Algorithms. 2nd Edition Brochure More information from http://www.researchandmarkets.com/reports/2171322/ Data Mining. Concepts, Models, Methods, and Algorithms. 2nd Edition Description: This book reviews state-of-the-art methodologies

More information

Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1

Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1 Data Mining 1 Introduction 2 Data Mining methods Alfred Holl Data Mining 1 1 Introduction 1.1 Motivation 1.2 Goals and problems 1.3 Definitions 1.4 Roots 1.5 Data Mining process 1.6 Epistemological constraints

More information

DEVELOPMENT OF HASH TABLE BASED WEB-READY DATA MINING ENGINE

DEVELOPMENT OF HASH TABLE BASED WEB-READY DATA MINING ENGINE DEVELOPMENT OF HASH TABLE BASED WEB-READY DATA MINING ENGINE SK MD OBAIDULLAH Department of Computer Science & Engineering, Aliah University, Saltlake, Sector-V, Kol-900091, West Bengal, India sk.obaidullah@gmail.com

More information

Clustering through Decision Tree Construction in Geology

Clustering through Decision Tree Construction in Geology Nonlinear Analysis: Modelling and Control, 2001, v. 6, No. 2, 29-41 Clustering through Decision Tree Construction in Geology Received: 22.10.2001 Accepted: 31.10.2001 A. Juozapavičius, V. Rapševičius Faculty

More information

Decision Support Optimization through Predictive Analytics - Leuven Statistical Day 2010

Decision Support Optimization through Predictive Analytics - Leuven Statistical Day 2010 Decision Support Optimization through Predictive Analytics - Leuven Statistical Day 2010 Ernst van Waning Senior Sales Engineer May 28, 2010 Agenda SPSS, an IBM Company SPSS Statistics User-driven product

More information

Principles of Data Mining by Hand&Mannila&Smyth

Principles of Data Mining by Hand&Mannila&Smyth Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences

More information

Protein Protein Interaction Networks

Protein Protein Interaction Networks Functional Pattern Mining from Genome Scale Protein Protein Interaction Networks Young-Rae Cho, Ph.D. Assistant Professor Department of Computer Science Baylor University it My Definition of Bioinformatics

More information

Introduction to Learning & Decision Trees

Introduction to Learning & Decision Trees Artificial Intelligence: Representation and Problem Solving 5-38 April 0, 2007 Introduction to Learning & Decision Trees Learning and Decision Trees to learning What is learning? - more than just memorizing

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification

More information

Chapter 6: Episode discovery process

Chapter 6: Episode discovery process Chapter 6: Episode discovery process Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process 1 6. Episode discovery process The knowledge discovery process KDD process of analyzing

More information

Business Problems and Data Science Solutions

Business Problems and Data Science Solutions CSCI E-84 A Practical Approach to Data Science Ramon A. Mata-Toledo, Ph.D. Professor of Computer Science Harvard Extension School Unit 1 - Lecture 2 February, Wednesday 3, 2016 Business Problems and Data

More information

Methods for Interaction Detection in Predictive Modeling Using SAS Doug Thompson, PhD, Blue Cross Blue Shield of IL, NM, OK & TX, Chicago, IL

Methods for Interaction Detection in Predictive Modeling Using SAS Doug Thompson, PhD, Blue Cross Blue Shield of IL, NM, OK & TX, Chicago, IL Paper SA01-2012 Methods for Interaction Detection in Predictive Modeling Using SAS Doug Thompson, PhD, Blue Cross Blue Shield of IL, NM, OK & TX, Chicago, IL ABSTRACT Analysts typically consider combinations

More information

Frequent item set mining

Frequent item set mining Frequent item set mining Christian Borgelt Frequent item set mining is one of the best known and most popular data mining methods. Originally developed for market basket analysis, it is used nowadays for

More information

SPATIAL DATA CLASSIFICATION AND DATA MINING

SPATIAL DATA CLASSIFICATION AND DATA MINING , pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal

More information

Data Mining Techniques and its Applications in Banking Sector

Data Mining Techniques and its Applications in Banking Sector Data Mining Techniques and its Applications in Banking Sector Dr. K. Chitra 1, B. Subashini 2 1 Assistant Professor, Department of Computer Science, Government Arts College, Melur, Madurai. 2 Assistant

More information

Extend Table Lens for High-Dimensional Data Visualization and Classification Mining

Extend Table Lens for High-Dimensional Data Visualization and Classification Mining Extend Table Lens for High-Dimensional Data Visualization and Classification Mining CPSC 533c, Information Visualization Course Project, Term 2 2003 Fengdong Du fdu@cs.ubc.ca University of British Columbia

More information

DHL Data Mining Project. Customer Segmentation with Clustering

DHL Data Mining Project. Customer Segmentation with Clustering DHL Data Mining Project Customer Segmentation with Clustering Timothy TAN Chee Yong Aditya Hridaya MISRA Jeffery JI Jun Yao 3/30/2010 DHL Data Mining Project Table of Contents Introduction to DHL and the

More information

Data Mining for Business Analytics

Data Mining for Business Analytics Data Mining for Business Analytics Lecture 2: Introduction to Predictive Modeling Stern School of Business New York University Spring 2014 MegaTelCo: Predicting Customer Churn You just landed a great analytical

More information

Data Mining Techniques Chapter 6: Decision Trees

Data Mining Techniques Chapter 6: Decision Trees Data Mining Techniques Chapter 6: Decision Trees What is a classification decision tree?.......................................... 2 Visualizing decision trees...................................................

More information

Mining Association Rules. Mining Association Rules. What Is Association Rule Mining? What Is Association Rule Mining? What is Association rule mining

Mining Association Rules. Mining Association Rules. What Is Association Rule Mining? What Is Association Rule Mining? What is Association rule mining Mining Association Rules What is Association rule mining Mining Association Rules Apriori Algorithm Additional Measures of rule interestingness Advanced Techniques 1 2 What Is Association Rule Mining?

More information

Practical Applications of DATA MINING. Sang C Suh Texas A&M University Commerce JONES & BARTLETT LEARNING

Practical Applications of DATA MINING. Sang C Suh Texas A&M University Commerce JONES & BARTLETT LEARNING Practical Applications of DATA MINING Sang C Suh Texas A&M University Commerce r 3 JONES & BARTLETT LEARNING Contents Preface xi Foreword by Murat M.Tanik xvii Foreword by John Kocur xix Chapter 1 Introduction

More information

Distributed Apriori in Hadoop MapReduce Framework

Distributed Apriori in Hadoop MapReduce Framework Distributed Apriori in Hadoop MapReduce Framework By Shulei Zhao (sz2352) and Rongxin Du (rd2537) Individual Contribution: Shulei Zhao: Implements centralized Apriori algorithm and input preprocessing

More information

Data Mining Solutions for the Business Environment

Data Mining Solutions for the Business Environment Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania ruxandra_stefania.petre@yahoo.com Over

More information

Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr

Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr WEKA Gallirallus Zeland) australis : Endemic bird (New Characteristics Waikato university Weka is a collection

More information

Transforming the Telecoms Business using Big Data and Analytics

Transforming the Telecoms Business using Big Data and Analytics Transforming the Telecoms Business using Big Data and Analytics Event: ICT Forum for HR Professionals Venue: Meikles Hotel, Harare, Zimbabwe Date: 19 th 21 st August 2015 AFRALTI 1 Objectives Describe

More information

HOW TO USE MINITAB: DESIGN OF EXPERIMENTS. Noelle M. Richard 08/27/14

HOW TO USE MINITAB: DESIGN OF EXPERIMENTS. Noelle M. Richard 08/27/14 HOW TO USE MINITAB: DESIGN OF EXPERIMENTS 1 Noelle M. Richard 08/27/14 CONTENTS 1. Terminology 2. Factorial Designs When to Use? (preliminary experiments) Full Factorial Design General Full Factorial Design

More information

Mining Sequence Data. JERZY STEFANOWSKI Inst. Informatyki PP Wersja dla TPD 2009 Zaawansowana eksploracja danych

Mining Sequence Data. JERZY STEFANOWSKI Inst. Informatyki PP Wersja dla TPD 2009 Zaawansowana eksploracja danych Mining Sequence Data JERZY STEFANOWSKI Inst. Informatyki PP Wersja dla TPD 2009 Zaawansowana eksploracja danych Outline of the presentation 1. Realtionships to mining frequent items 2. Motivations for

More information

BIRCH: An Efficient Data Clustering Method For Very Large Databases

BIRCH: An Efficient Data Clustering Method For Very Large Databases BIRCH: An Efficient Data Clustering Method For Very Large Databases Tian Zhang, Raghu Ramakrishnan, Miron Livny CPSC 504 Presenter: Discussion Leader: Sophia (Xueyao) Liang HelenJr, Birches. Online Image.

More information

Big Data & Scripting Part II Streaming Algorithms

Big Data & Scripting Part II Streaming Algorithms Big Data & Scripting Part II Streaming Algorithms 1, 2, a note on sampling and filtering sampling: (randomly) choose a representative subset filtering: given some criterion (e.g. membership in a set),

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association

More information

Building A Smart Academic Advising System Using Association Rule Mining

Building A Smart Academic Advising System Using Association Rule Mining Building A Smart Academic Advising System Using Association Rule Mining Raed Shatnawi +962795285056 raedamin@just.edu.jo Qutaibah Althebyan +962796536277 qaalthebyan@just.edu.jo Baraq Ghalib & Mohammed

More information

Introduction. A. Bellaachia Page: 1

Introduction. A. Bellaachia Page: 1 Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.

More information

A Study of Detecting Credit Card Delinquencies with Data Mining using Decision Tree Model

A Study of Detecting Credit Card Delinquencies with Data Mining using Decision Tree Model A Study of Detecting Credit Card Delinquencies with Data Mining using Decision Tree Model ABSTRACT Mrs. Arpana Bharani* Mrs. Mohini Rao** Consumer credit is one of the necessary processes but lending bears

More information

Data Warehousing and Data Mining. A.A. 04-05 Datawarehousing & Datamining 1

Data Warehousing and Data Mining. A.A. 04-05 Datawarehousing & Datamining 1 Data Warehousing and Data Mining A.A. 04-05 Datawarehousing & Datamining 1 Outline 1. Introduction and Terminology 2. Data Warehousing 3. Data Mining Association rules Sequential patterns Classification

More information

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015 An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content

More information

Azure Machine Learning, SQL Data Mining and R

Azure Machine Learning, SQL Data Mining and R Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:

More information

Classification On The Clouds Using MapReduce

Classification On The Clouds Using MapReduce Classification On The Clouds Using MapReduce Simão Martins Instituto Superior Técnico Lisbon, Portugal simao.martins@tecnico.ulisboa.pt Cláudia Antunes Instituto Superior Técnico Lisbon, Portugal claudia.antunes@tecnico.ulisboa.pt

More information

How To Cluster

How To Cluster Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms k-means Hierarchical Main

More information

A COGNITIVE APPROACH IN PATTERN ANALYSIS TOOLS AND TECHNIQUES USING WEB USAGE MINING

A COGNITIVE APPROACH IN PATTERN ANALYSIS TOOLS AND TECHNIQUES USING WEB USAGE MINING A COGNITIVE APPROACH IN PATTERN ANALYSIS TOOLS AND TECHNIQUES USING WEB USAGE MINING M.Gnanavel 1 & Dr.E.R.Naganathan 2 1. Research Scholar, SCSVMV University, Kanchipuram,Tamil Nadu,India. 2. Professor

More information

UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS

UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS Dwijesh C. Mishra I.A.S.R.I., Library Avenue, New Delhi-110 012 dcmishra@iasri.res.in What is Learning? "Learning denotes changes in a system that enable

More information

A Data Mining Tutorial

A Data Mining Tutorial A Data Mining Tutorial Presented at the Second IASTED International Conference on Parallel and Distributed Computing and Networks (PDCN 98) 14 December 1998 Graham Williams, Markus Hegland and Stephen

More information

Overview. Background. Data Mining Analytics for Business Intelligence and Decision Support

Overview. Background. Data Mining Analytics for Business Intelligence and Decision Support Mining Analytics for Business Intelligence and Decision Support Chid Apte, PhD Manager, Abstraction Research Group IBM TJ Watson Research Center apte@us.ibm.com http://www.research.ibm.com/dar Overview

More information

CHAPTER-12. Analytical Characterization : Analysis of Attribute Relevance

CHAPTER-12. Analytical Characterization : Analysis of Attribute Relevance CHAPTER-12 Analytical Characterization : Analysis of Attribute Relevance 12.1 Introduction 12.2 Methods of Attribute Relevance Analysis 12.3 Review Questions 12.4 References 12. Analytical Characterization

More information

Effective Pruning for the Discovery of Conditional Functional Dependencies

Effective Pruning for the Discovery of Conditional Functional Dependencies Effective Pruning for the Discovery of Conditional Functional Dependencies Jiuyong Li 1, Jiuxue Liu 1, Hannu Toivonen 2, Jianming Yong 3 1 School of Computer and Information Science, University of South

More information

Data Mining with SQL Server Data Tools

Data Mining with SQL Server Data Tools Data Mining with SQL Server Data Tools Data mining tasks include classification (directed/supervised) models as well as (undirected/unsupervised) models of association analysis and clustering. 1 Data Mining

More information

White Paper. Redefine Your Analytics Journey With Self-Service Data Discovery and Interactive Predictive Analytics

White Paper. Redefine Your Analytics Journey With Self-Service Data Discovery and Interactive Predictive Analytics White Paper Redefine Your Analytics Journey With Self-Service Data Discovery and Interactive Predictive Analytics Contents Self-service data discovery and interactive predictive analytics... 1 What does

More information

!"!!"#$$%&'()*+$(,%!"#$%$&'()*""%(+,'-*&./#-$&'(-&(0*".$#-$1"(2&."3$'45"

!!!#$$%&'()*+$(,%!#$%$&'()*%(+,'-*&./#-$&'(-&(0*.$#-$1(2&.3$'45 !"!!"#$$%&'()*+$(,%!"#$%$&'()*""%(+,'-*&./#-$&'(-&(0*".$#-$1"(2&."3$'45"!"#"$%&#'()*+',$$-.&#',/"-0%.12'32./4'5,5'6/%&)$).2&'7./&)8'5,5'9/2%.%3%&8':")08';:

More information

Data Mining: Concepts and Techniques. Jiawei Han. Micheline Kamber. Simon Fräser University К MORGAN KAUFMANN PUBLISHERS. AN IMPRINT OF Elsevier

Data Mining: Concepts and Techniques. Jiawei Han. Micheline Kamber. Simon Fräser University К MORGAN KAUFMANN PUBLISHERS. AN IMPRINT OF Elsevier Data Mining: Concepts and Techniques Jiawei Han Micheline Kamber Simon Fräser University К MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF Elsevier Contents Foreword Preface xix vii Chapter I Introduction I I.

More information

Summary Data Mining & Process Mining (1BM46) Content. Made by S.P.T. Ariesen

Summary Data Mining & Process Mining (1BM46) Content. Made by S.P.T. Ariesen Summary Data Mining & Process Mining (1BM46) Made by S.P.T. Ariesen Content Data Mining part... 2 Lecture 1... 2 Lecture 2:... 4 Lecture 3... 7 Lecture 4... 9 Process mining part... 13 Lecture 5... 13

More information

Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus

Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus 1. Introduction Facebook is a social networking website with an open platform that enables developers to extract and utilize user information

More information