Synthesis of Benzyl Acetate from Acetic Anhydride

Size: px
Start display at page:

Download "Synthesis of Benzyl Acetate from Acetic Anhydride"

Transcription

1 Exp t 83 Synthesis of Benzyl Acetate from Acetic Anhydride from K. L. Williamson, Macroscale and Microscale rganic Experiments, 2nd Ed. 1994, Houghton Mifflin, Boston p385; revised 10/14/00 Prelab Exercise: Give the detailed mechanism for the acid-catalyzed hydrolysis of benzyl acetate. Introduction: The ester group is an important functional group that can be synthesized in a number of different ways. The low-molecular-weight esters have very pleasant odors and indeed are the major components of the flavor and odor aspects of a number of fruits. Although the natural flavor may contain nearly a hundred different compounds, single esters approximate the natural odors and are often used in the food industry for artificial flavors and fragrances. Esters can be prepared by the reaction of a carboxylic acid with an alcohol in the presence of a catalyst such as concentrated sulfuric acid, hydrogen chloride, p-toluenesulfonic acid, or the acid form of an ion exchange resin: H 3 C C H H H H 3 C H 2 This Fischer esterification reaction reaches equilibrium after a few hours of refluxing. The position of the equilibrium can be shifted by adding more of the acid or of the alcohol, depending on cost or availability. The mechanism of the reaction involves initial protonation of the carboxyl group, attack by the nucleophilic hydroxyl, a proton transfer, and loss of water followed by loss of the catalyzing proton to give the ester. Because each of these

2 steps is completely reversible, this process is also, in reverse, the mechanism for the hydrolysis of an ester: ther methods are available for the synthesis of esters, most of them more expensive but readily carried out on a small scale. For example alcohols react with acid anhydrides to form esters and this is the method used in this experiment: H 3 C C C H 3 C CH 2 CH3CH2H CH3CH Ethanol Acetic anhydride Ethyl acetate Acetic acid Acid chlorides form esters by reaction with alcohols. CH C C 3 CH 2 CH 2 H H 3 C Cl H 3 C CH 2CH 2 HCl 1-Propanol Acetyl chloride n-propyl acetate In the latter reaction, an organic base such as pyridine is usually added to react with the hydrogen chloride. A number of other methods can be used to synthesize the ester group. Among these are the addition of 2-methylpropene to an acid to form t-butyl esters, the addition of ketene to make CH 2 C Ketene CH 2 C H Propionic Acid CH 2 HCH 2 C 2-Methylpropene (isobutylene) Benzyl alcohol H CH 2 C C t-butyl propionate C CH 2 Benzyl Acetate CH Ag 3 C - Silver acetate BrCH 2 CH 2 CH 1-Bromo-3-methylbutane C acetates, and the reaction of a silver salt with an alkyl halide. CH 2 CH 2 CH Isoamyl acetate As noted above, Fischer esterification is an equilibrium process. Consider the reaction of acetic acid with 1-butanol to give n-butyl acetate: H 3 C C H Acetic acid HCH 2 CH 2 CH 2 n-butanol The equilibrium expression for this reaction is shown below. H C CH 2 CH 2 CH 2 H 3 C n-butylacetate H2

3 Keq= H 3 C C CH 2CH 2 CH 2 [H2] [HCH2CH2CH2CH3] H 3 C C H For primary alcohols reacting with unhindered carboxylic acids, Keq ~4. If equal quantities of 1-butanol and acetic acid are allowed to react, at equilibrium the theoretical yield of ester is only 67%. To upset the equilibrium we can, by Le Chatelier's principle, increase the concentration of either the alcohol or acid, as noted above. If either one is doubled, the theoretical yield increases to 85%. When one is tripled, it goes to 90%. But note that in the example cited the boiling point of the relatively nonpolar ester is only about 8 C higher than the boiling points of the polar acetic acid and 1-butanol, so a difficult separation problem exists if either starting material is increased in concentration and the product is isolated by distillation. Another way to upset the equilibrium is to remove water. This can be done by adding to the reaction mixture molecular sieves, an artificial zeolite, which preferentially adsorb water. Most other drying agents, such as anhydrous sodium sulfate or calcium chloride, will not remove water at the temperatures used to make esters. A third way to upset the equilibrium is to preferentially remove the water as an azeotrope. The information in the table below can be found in any chemistry handbook table of ternary (three-component) azeotropes. The Ternary Azeotrope of Boiling Point 90.7 C Percentage Composition of Azeotrope Compound Boiling Point of Pure Compound ( C) Vapor Phase Upper Layer Lower Layer l-butanol n-butyl acetate Water These data tell us that the vapor that distills from a mixture of 1-butanol, n-butyl acetate, and water will boil at 90.7 C and the vapor contains 8% alcohol, 63% ester, and 29% water. The vapor is homogeneous, but when it condenses, it separates into two layers. The upper layer is composed of 11% alcohol, 86% ester, and 3% water, but the lower layer consists of 97% water with only traces of alcohol and ester. If some ingenious way to remove the lower layer from the condensate and still return the upper layer to the reaction mixture can be devised, then the equilibrium can be upset and nearly 100% of the ester can be produced in the reaction flask. The Dean Stark Apparatus shown below is one such solution.

4 Dean-Stark trap for removing water through azeotropic distillation. 3-way connector The apparatus shown, modeled after that of Dean and Stark, achieves the desired separation of the two layers. The mixture of equimolar quantities of 1-butanol and acetic acid is placed in the flask along with an acid catalyst. Stirring reduces bumping. The vapor, the temperature of which is 90.7 C, condenses and runs down to the sidearm, which is closed with a cork. The layers separate, with the denser water layer remaining in the sidearm while the lighter ester plus alcohol layer runs down into the reaction flask. As soon as the theoretical quantity of water has collected, the reaction is over and the product in the flask should be ester of high purity. Esterfication using a carboxylic acid and an alcohol requires an acid catalyst. ften, the acid form of an ionexchange resin is used. This resin, in the form of small beads, is a cross-linked polystyrene that bears sulfonic acid groups on some of the phenyl groups. Essentially it is an immobilized form of p-toluenesulfonic acid, an organicsubstituted sulfuric acid. This catalyst has the distinct advantage that at the end of the reaction it can be removed simply by filtration. Immobilized catalysts of this type are becoming more and more common in organic synthesis. Synthesis of Benzyl Acetate C C CH3 CH 2 H H CH 2 C Acetic anhydride MW bp 139 C, den n D Benzyl Alcohol MW bp 205 C, den n D Benzyl Acetate MW bp 206 C, den n D To a reaction tube add 540 mg of benzyl alcohol and 510 mg of acetic anhydride and a boiling chip. Attach the empty distilling column as an air condenser. Reflux the resulting mixture for 1 h or more, then cool it to room temperature. Add 1 ml of ether (use the wet ether found in a supply bottle in each hood) and 1 ml of water, separate the organic layer. Wash the aqueous with 1 ml of ether. Collect the ether layers, wash with sodium bicarbonate) (2 X 1 ml), water (2 x 1 ml), and sat'd sodium chloride solution (1 ml). Dry the ether layer with anhydrous sodium sulfate, remove the organic layer into a vial and evaporate the ether by blowing it off in a stream of N 2. Isolation and Purification n a larger scale, the product would probably be isolated and purified by vacuum distillation, but this is difficult to do on a microscale without severe losses of material and thus poor yields. Therefore, chromatography is used here for purification. Assemble a microscale chromatography column (see Lab Guide for review), being sure it is clamped in a vertical position. Close the valve, and fill the column with dichloromethane to the bottom of the funnel. Prepare a slurry of 1 g of silica gel in 4 ml of dichloromethane in a small beaker. Stir the slurry gently to get rid of air bubbles, and gently swirl, pour, and scrape the slurry into the funnel, which has a capacity of 10 ml. After some of the silica gel has been added to the column, open the stopcock and allow solvent to drain slowly into an Erlenmeyer flask. Use this dichloromethane to rinse the beaker containing the silica gel. As the silica gel is being added, tap the column with a glass rod or pencil so the adsorbent will pack tightly into the column. Continue to tap the column while cycling the dichloromethane through the column once more. Next, drain the solvent just to the surface of the silica. Add a 10 drops of CH 2 Cl 2 to the product mixture and using a Pasteur pipet, add this solution to the column, letting it run into the adsorbent and stopping when the

5 solution reaches the top of the silica. The product vial is rinsed twice with 0.5-mL portions of dichloromethane that are run into the column, with the eluent being collected in a tared reaction tube. The elution is completed with a few more ml s of dichloromethane. You will need to collect several 1 ml fractions. Analyze these by TLC using 50:50 hexane:ch 2 Cl 2 spotting starting benzyl alcohol as a standard. Evaporate the dichloromethane under a stream of nitrogen in the hood, and remove the last traces by connecting the reaction tube to the vacuum. Since the dichloromethane boils at 40 C and the product at 206 C, separation of the two is easily accomplished. Determine the weight of the produc, and calculate the yield. The ester should be a perfectly clear, homogeneous liquid. Analyze your product by the method listed on your assignment slip, preparing the sample according to the instructions in the Lab Guide. Cleaning Up: After drying, place the used silica gel in the solid waste bin. Any dichloromethane should be placed in the halogenated organic waste container. Post Lab Question 1. Write the reaction for the synthesis of benzyl acetate from a silver salt and an bromo compound. 2. Write the reaction for the synthesis of benzyl acetate from an alcohol and an acid chloride.

6 Synthetic Experiment PreLab Grading Sheet Name(s): TA: Date: PreLab For Exp't #: 83 Title: Synthesis of Benzyl Acetate from Acetic Anhydride Date, Name, Desk #, Experiment # & Title(abbreviated after 1 st pg), Section & TA Name Possible 4 Missed Summary 10 Goals 8 Reactions, structures, diagrams 14 Completeness of Chemical Data Table(s) 14 PreLab Exercise 14 Chromatographic Behavior Comparison 12 Spectral Features Comparison (IR, NMR) 12 Work-up - Explanation of the product isolation and purification process 12 TTAL FR PRELAB 100 Date Handed in: General Comments: Total :

7 Synthetic Experiment Final Report Grading Sheet Name: TA: Date: Final Report For Exp't #: 83 Title: Synthesis of Benzyl Acetate from Acetic Anhydride Name, Date, Experiment Title (abbreviated after 1st page) and every page numbered Possible 4 Missed BSERVATIN and DATA - verall organization, readability, completeness 8 Data: Weighing data, molecular weights, moles, densities, volumes, distillation temperatures, analysis conditions. (NMR: solvent and amounts. RI: temperature of measurement. IR method and/or weights, GC Conditions Sheet) Yield: Show % yield calculations with limiting reagent clearly stated. Purity: Give odor, boiling point, color, TLC or other indicators of purity RESULTS AND DISCUSSIN - verall organization, readability, completeness 8 Results; Achievement of goals 16 Product Analysis Data: Quality and Interpretation Structure(s) drawn on the spectrum or chromatogram or purity as indicated by RI analysis. (Literature value for refractive index. ) 24 Interpret all NMR peaks in terms of chemical shift, splitting patterns, (and coupling constants if measureable). Identify all gas chromatographic peaks with structures. Assign major IR absorptions and explain how they prove that the correct product was formed. See Lab Guide Chapter 3, Section 3.4 for guidelines in annotating spectra and Ch 11 for help with interpretation. PSTLAB QUESTINS 16 TTAL PINTS 100 Date Handed in: General Comments: Total :

Synthesis of Isobutyl Propionate via Esterification

Synthesis of Isobutyl Propionate via Esterification Exp t 82 Synthesis of Isobutyl Propionate via Esterification from K. L. Williamson, Macroscale and Microscale rganic Experiments, 2nd Ed. 1994, Houghton Mifflin, Boston p385; revised3/19/02 Prelab Exercise:

More information

Synthesis of n-butyl acetate via Esterification

Synthesis of n-butyl acetate via Esterification Exp t 81 Synthesis of n-butyl acetate via Esterification from K. L. Williamson, Macroscale and Microscale rganic Experiments, 2nd Ed. 1994, Houghton Mifflin, Boston. p385 Rev2/5/02 Prelab Exercise: Give

More information

ESTERIFICATION: PREPARATION OF BENZYL ACETATE MICROSCALE EXPERIMENT IV R C O R'

ESTERIFICATION: PREPARATION OF BENZYL ACETATE MICROSCALE EXPERIMENT IV R C O R' ESTERIFICATIN: PREPARATIN F BENZYL ACETATE MICRSCALE EXPERIMENT IV 39 R C R' The ester group is an important functional group that can be synthesized in a number of different ways. The low molecular-weight

More information

1,4-Di-t-butylbenzene via Friedel-Crafts Alkylation

1,4-Di-t-butylbenzene via Friedel-Crafts Alkylation Exp t 61 1,4-Di-t-butylbenzene via Friedel-Crafts Alkylation from K. L. Williamson, Macroscale and Microscale Organic Experiments, 2nd Ed. 1994, Houghton Mifflin, Boston. p435; revised2/28/02 Prelab Exercise:

More information

Synthesis of Isopentyl Acetate

Synthesis of Isopentyl Acetate Experiment 8 Synthesis of Isopentyl Acetate Objectives To prepare isopentyl acetate from isopentyl alcohol and acetic acid by the Fischer esterification reaction. Introduction Esters are derivatives of

More information

CH243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification

CH243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification H243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification PURPSE: To prepare esters by reaction of carboxylic acids and alcohols. To modify a known procedure to prepare an unknown. DISUSSIN:

More information

SYNTHESIS OF ESTERS USING ACETIC ANHYDRIDE 1

SYNTHESIS OF ESTERS USING ACETIC ANHYDRIDE 1 EXPERIMENT 7 SYNTHESIS OF ESTERS USING ACETIC ANHYDRIDE 1 Materials Needed 2.0 ml of an alcohol to be chosen from the following: 1-propanol (n-propyl alcohol), 3-methyl-1-butanol (isoamyl alcohol, isopentyl

More information

Experiment #7: Esterification

Experiment #7: Esterification Experiment #7: Esterification Pre-lab: 1. Choose an ester to synthesize. Determine which alcohol and which carboxylic acid you will need to synthesize your ester. Write out the reaction for your specific

More information

Synthesis, Isolation, and Purification of an Ester

Synthesis, Isolation, and Purification of an Ester Synthesis, Isolation, and Purification of an Ester AP Chemistry Laboratory Introduction An ester is a chemical compound that is formed when an organic acid reacts with an alcohol. Esters frequently have

More information

EXPERIMENT 9 (Organic Chemistry II) Pahlavan - Cherif Synthesis of Aspirin - Esterification

EXPERIMENT 9 (Organic Chemistry II) Pahlavan - Cherif Synthesis of Aspirin - Esterification EXPERIMENT 9 (rganic hemistry II) Pahlavan - herif Materials Hot plate 125-mL Erlenmeyer flask Melting point capillaries Melting point apparatus Büchner funnel 400-mL beaker Stirring rod hemicals Salicylic

More information

Experiment 7 Preparation of 1-Bromobutane

Experiment 7 Preparation of 1-Bromobutane Experiment 7 Preparation of 1-Bromobutane In this experiment you will prepare 1-bromobutane (n-butyl bromide) from n-butanol (1-butanol) using a substitution reaction under acidic conditions. This is an

More information

EXPERIMENT 5: Electrophilic Aromatic Substitution A Friedel-Crafts Acylation Reaction

EXPERIMENT 5: Electrophilic Aromatic Substitution A Friedel-Crafts Acylation Reaction XPRIMNT 5: lectrophilic Aromatic Substitution A Friedel-Crafts Acylation Reaction Relevant Sections in the text (Wade, 7 th ed.) 17.1-17.2 (p. 751-755) lectrophilic aromatic substitution 17.6-17.8 (p.

More information

Experiment 5 Preparation of Cyclohexene

Experiment 5 Preparation of Cyclohexene Experiment 5 Preparation of yclohexene In this experiment we will prepare cyclohexene from cyclohexanol using an acid catalyzed dehydration reaction. We will use the cyclohexanol that we purified in our

More information

Exp t 12. Exp't 12. Thiamine Catalyzed Benzoin Condensation. Introduction

Exp t 12. Exp't 12. Thiamine Catalyzed Benzoin Condensation. Introduction Exp't 12 Exp t 12 Adapted by Jon Landis and R. Minard (Penn State Univ.) from K. L. Williamson, Macroscale and Microscale Organic Experiments, 2nd Ed. 1994, Houghton Mifflin, Boston. Revised 2/22/02 Prelaboratory

More information

Synthesize t-butyl (or t-pentyl) Chloride

Synthesize t-butyl (or t-pentyl) Chloride Synthesize t-butyl (or t-pentyl) Chloride Note: This experiment may utilize either t-butyl Alcohol (m.p. 25.7 o C) or t-pentyl Alcohol (m.p. -9.5 o C) as one of the starting reactants Text References Slayden

More information

Friedel-Crafts Acylaton of Ferrocene

Friedel-Crafts Acylaton of Ferrocene Friedel-Crafts Acylaton of Ferrocene Introduction In this reaction, a compound containing two aromatic rings will undergo Friedel-Crafts acylation. Since it has two rings, it can either react once or twice,

More information

H 2 SO 4 heat + H 3 O +

H 2 SO 4 heat + H 3 O + Dehydration of Cyclohexanol DISCUSSION OF TE EXPERIMENT In this experiment, cyclohexanol is dehydrated by aqueous sulfuric acid to produce cyclohexene as the sole product, and carbocation rearrangement

More information

Experiment 5: Column Chromatography

Experiment 5: Column Chromatography Experiment 5: Column Chromatography Separation of Ferrocene & Acetylferrocene by Column Chromatography Reading: Mohrig, Hammond & Schatz Ch. 18 pgs 235-253 watch the technique video on the course website!

More information

8. Column Chromatography

8. Column Chromatography 8. Column Chromatography This is the last technique experiment in the Introductory Organic Lab. More importantly it is the first synthetic experiment in the course and therefore the PreLab, InLab and PostLab

More information

Acid-Base Extraction.

Acid-Base Extraction. Acid-Base Extraction. Extraction involves dissolving a compound or compounds either (1) from a solid into a solvent or (2) from a solution into another solvent. A familiar example of the first case is

More information

8.9 - Flash Column Chromatography Guide

8.9 - Flash Column Chromatography Guide 8.9 - Flash Column Chromatography Guide Overview: Flash column chromatography is a quick and (usually) easy way to separate complex mixtures of compounds. We will be performing relatively large scale separations

More information

GRIGNARD REACTION: PREPARATION OF TRIPHENYLMETHANOL (12/22/2009)

GRIGNARD REACTION: PREPARATION OF TRIPHENYLMETHANOL (12/22/2009) GRIGNARD REACTIN: PREPARATIN F TRIPHENYLMETHANL (12/22/2009) Grignard reagents are among the most versatile organometallic reagents, and they are the easiest organometallic reagent to prepare. Grignard

More information

EXPERIMENT 1: MELTING POINTS

EXPERIMENT 1: MELTING POINTS EXPERIMENT 1: MELTING POINTS 1. Prepare a known sample of urea and determine its melting point. (Use a well packed capillary with ~1-2 mm of sample, with a rise in temperature of ~ 1-2 o C per min near

More information

Organic Chemistry Laboratory 2230 Final Exam Study Guide

Organic Chemistry Laboratory 2230 Final Exam Study Guide Organic Chemistry Laboratory 2230 Final Exam Study Guide Many students do not adequately prepare for the final exam in 2230L.The average grade is typically in the mid to upper 60 s. Each semester, some

More information

Preparation of DEET. Purpose: To prepare N,N-diethyl-m-toluamide (DEET) and characterize it by IR and proton NMR

Preparation of DEET. Purpose: To prepare N,N-diethyl-m-toluamide (DEET) and characterize it by IR and proton NMR 14 Preparation of Eim A. Chemist Purpose: To prepare N,N-diethyl-m-toluamide () and characterize it by IR and proton NMR Reaction: Physical Data and Safety: Reagent Structure/Formula Mol. Wt. Mp Bp Density

More information

Distillation Experiment

Distillation Experiment Distillation Experiment CHM226 Background The distillation process is a very important technique used to separate compounds based on their boiling points. A substance will boil only when the vapor pressure

More information

CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon*

CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon* CHM220 Nucleophilic Substitution Lab Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon* Purpose: To convert a primary alcohol to an alkyl bromide using an S N 2 reaction

More information

Professor Kathleen V. Kilway and Robert Clevenger, Department of Chemistry, University of Missouri Kansas City, 2006

Professor Kathleen V. Kilway and Robert Clevenger, Department of Chemistry, University of Missouri Kansas City, 2006 Professor Kathleen V. Kilway and Robert Clevenger, Department of Chemistry, University of Missouri Kansas City, 2006 3. Extraction J.R. Mohrig, C.N. Hammond, and P.F. Schatz: Chapters 11 (extraction) and

More information

Isolation of Caffeine from Tea

Isolation of Caffeine from Tea Isolation of Caffeine from Tea Introduction A number of interesting, biologically active compounds have been isolated from plants. Isolating some of these natural products, as they are called, can require

More information

Separation by Solvent Extraction

Separation by Solvent Extraction Experiment 3 Separation by Solvent Extraction Objectives To separate a mixture consisting of a carboxylic acid and a neutral compound by using solvent extraction techniques. Introduction Frequently, organic

More information

R-C-OH + HO-R Æ R-C-O-R + H 2 O carboxylic acid alcohol ester water

R-C-OH + HO-R Æ R-C-O-R + H 2 O carboxylic acid alcohol ester water ESTERS: THE PREPARATIN AND IDENTIFICATIN F AN ARTIFICIAL FD FLAVR 2000 by David A. Katz. All rights reserved. Reproduction permitted for educational use as long as original copyright is included. INTRDUCTIN

More information

EXPERIMENT Aspirin: Synthesis and NMR Analysis

EXPERIMENT Aspirin: Synthesis and NMR Analysis EXPERIMENT Aspirin: Synthesis and NMR Analysis Introduction: When salicylic acid reacts with acetic anhydride in the presence of an acid catalyst, acetylsalicylic acid, or aspirin, is produced according

More information

Table 1. Common esters used for flavors and fragrances

Table 1. Common esters used for flavors and fragrances ESTERS An Introduction to rganic hemistry Reactions 2012, 2006, 1990, 1982 by David A. Katz. All rights reserved. Reproduction permitted for educationa use provided original copyright is included. In contrast

More information

Expt 44 Syntheses of Nylon & Polystyrene

Expt 44 Syntheses of Nylon & Polystyrene Expt 44 Syntheses of Nylon & Polystyrene Procedure adapted from K. L. Williamson, R. D. Minard, K. M. Masters Macroscale and Microscale rganic Experiments, 5th Ed. 2007 PreLab Question: 1. Name two (2)

More information

THE LABORATORY NOTEBOOK CHEM 7A/7B

THE LABORATORY NOTEBOOK CHEM 7A/7B THE LABORATORY NOTEBOOK CHEM 7A/7B GENERAL COMMENTS It takes a lot of time and work to keep a good laboratory notebook. Your organic chemistry lab notebook techniques are the kinds expected in a professional

More information

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation Experiment 8 Preparation of Cyclohexanone by ypochlorite xidation In this experiment we will prepare cyclohexanone from cyclohexanol using hypochlorite oxidation. We will use common household bleach that

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

Experiment 1: Thin Layer Chromatography

Experiment 1: Thin Layer Chromatography Experiment 1: Thin Layer Part A: understanding R f Part B: R f & solvent polarity Part C: R f & compound functionality Part D: identification of commercial food dye components Reading: MHS Ch. 17 pgs 219-235

More information

CSUS Department of Chemistry Experiment 4 Chem.1A

CSUS Department of Chemistry Experiment 4 Chem.1A Name: Section: Experiment 4: Synthesis of Alum Pre-laboratory Assignment (Read through the experiment before starting!) 1. a) What are the strong acid and strong base used in this synthesis? b) What should

More information

Structure of caffeine: O CH 3 CH 3

Structure of caffeine: O CH 3 CH 3 1 Extraction of Caffeine Introduction Caffeine Caffeine occurs naturally in tea leaves and coffee beans. Cocoa beans, used to produce chocolate, contain a compound that is nearly identical in structure

More information

EXPERIMENT 29 SYNTHESIS OF ASPIRIN

EXPERIMENT 29 SYNTHESIS OF ASPIRIN EXPERIMENT 29 SYNTHESIS OF ASPIRIN INTRODUCTION Aspirin is one of the most widely used medications in the world. It is employed as an analgesic (pain relief), an anti-pyretic (fever control) and an anti

More information

Synthesis of Fragrant Esters

Synthesis of Fragrant Esters Synthesis of Fragrant Esters Introduction: An ester is an organic compound that is formed when a carboxylic acid reacts with an alcohol. In addition to an ester being form, water is another product of

More information

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle EXPERIMENT 5 (Organic Chemistry II) Pahlavan/Cherif Dehydration of Alcohols - Dehydration of Cyclohexanol Purpose - The purpose of this lab is to produce cyclohexene through the acid catalyzed elimination

More information

Covalent Bonding - Benzoic Acid from Ethyl Benzoate by Base Hydrolysis

Covalent Bonding - Benzoic Acid from Ethyl Benzoate by Base Hydrolysis EXPERIMENT 2: Introduction ovalent Bonding - Benzoic Acid from Ethyl Benzoate by Base Hydrolysis Ethyl benzoate (boiling point 211-213, melting point -34 ) belongs to a class of compounds called esters.

More information

Synthesis of Aspirin and Oil of Wintergreen

Synthesis of Aspirin and Oil of Wintergreen Austin Peay State University Department of hemistry hem 1121 autions Purpose Introduction Acetic Anhydride corrosive and a lachrymator all transfers should be done in the vented fume hood Methanol, Ethanol

More information

Separation of Active Components from Excedrin ES

Separation of Active Components from Excedrin ES Separation of Active Components from Excedrin ES Purpose: The purpose of this lab is to isolate the active components present in Exedrin ES tablets, namely acetaminophen, aspirin, and caffeine. To accomplish

More information

Water Lab. Objective: To distill samples of water that contains volatile and nonvolatile components.

Water Lab. Objective: To distill samples of water that contains volatile and nonvolatile components. Water Lab I. Distillation Hypothesis: Water can be purified by distillation. Objective: To distill samples of water that contains volatile and nonvolatile components. Materials and Equipment: Sodium chloride,

More information

12BL Experiment 10: Friedel Crafts Acylation An EAS Reaction

12BL Experiment 10: Friedel Crafts Acylation An EAS Reaction 12BL Experiment 10: Friedel Crafts Acylation An EAS Reaction Safety: Proper lab goggles/glasses must be worn (even over prescription glasses). WEAR GLOVES! Acetic anhydride is corrosive and a lachrymator

More information

Experiment 9 Chem 110 Lab SOLUTIONS I. INTRODUCTION. Polar or Nonpolar? 1 ethanol (ethyl alcohol) C 2 H 6 O. 2 cyclohexane, C 6 H 12

Experiment 9 Chem 110 Lab SOLUTIONS I. INTRODUCTION. Polar or Nonpolar? 1 ethanol (ethyl alcohol) C 2 H 6 O. 2 cyclohexane, C 6 H 12 Experiment 9 Chem 110 Lab SOLUTIONS I. INTRODUCTION A solution is a homogeneous mixture of two (or more) substances. It is composed of a solvent and a dissolved material called a solute. The solute is

More information

Experiment 8 Synthesis of Aspirin

Experiment 8 Synthesis of Aspirin Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The

More information

STEP 5: ESTRONE-3-METHYL ETHER-17-ETHYLENE KETAL. Li / NH 3 (l) 1. Procedure

STEP 5: ESTRONE-3-METHYL ETHER-17-ETHYLENE KETAL. Li / NH 3 (l) 1. Procedure STEP 5: ESTRNE-3-METYL ETER-17-ETYLENE KETAL 3 C Li / N 3 (l) 3 C C 3 C 3 1. Procedure At least 24 hours in advance: Fill a 250-mL, 3-necked round-bottomed flask equipped with a stirbar with 50 ml acetone.

More information

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance 1 Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance Read pp 142-155, 161-162, Chapter 10 and pp 163-173, Chapter 11, in LTOC. View the videos: 4.2 Extraction (Macroscale);

More information

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum

More information

ISOLATION OF CAFFEINE FROM TEA

ISOLATION OF CAFFEINE FROM TEA ISLATIN F CAFFEINE FRM TEA Introduction In this experiment, caffeine is isolated from tealeaves. The chief problem with the isolation is that caffeine does not exist alone in the tealeaves, but other natural

More information

What is a Chemical Reaction?

What is a Chemical Reaction? Lab 8 Name What is a Chemical Reaction? Macroscopic Indications and Symbolic Representations Pre-Lab Assignment This written pre-lab is worth 25% (5 POINTS) of your lab report grade and must be turned

More information

Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction

Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction Organic Lab 1 Make-up Experiment Extraction of Caffeine from Beverages Introduction Few compounds consumed by Americans are surrounded by as much controversy as caffeine. One article tells us that caffeine

More information

List several types of chromatography. How do the types of chromatography you have listed differ? How are they similar?

List several types of chromatography. How do the types of chromatography you have listed differ? How are they similar? CLASSIFICATION AND SEPARATION OF MATTER Pre-lab Questions: Define the following: (You will need to use your textbook and any other references, such as a dictionary, in addition to the text of this experiment.)

More information

COLUMN CHROMATOGRAPHY EXTRACTION OF PIGMENTS FROM SPINACH (THIS LABORATORY PROCEDURE WAS PROVIDED BY Dr. V. WAGHULDE.)

COLUMN CHROMATOGRAPHY EXTRACTION OF PIGMENTS FROM SPINACH (THIS LABORATORY PROCEDURE WAS PROVIDED BY Dr. V. WAGHULDE.) COLUMN CHROMATOGRAPHY EXTRACTION OF PIGMENTS FROM SPINACH (THIS LABORATORY PROCEDURE WAS PROVIDED BY Dr. V. WAGHULDE.) Purpose: To separate plant pigments from spinach leaves using column chromatography.

More information

CHEM 344 Thin Layer Chromatography

CHEM 344 Thin Layer Chromatography CHEM 344 Thin Layer Chromatography Thin layer chromatography (TLC) is a useful technique for the separation and identification of compounds in mixtures. TLC is used routinely to follow the progress of

More information

Determination of a Chemical Formula

Determination of a Chemical Formula 1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

More information

Aspirin Synthesis H 3 PO 4

Aspirin Synthesis H 3 PO 4 Aspirin Synthesis Experiment 5 Aspirin is the common name for the compound acetylsalicylic acid, widely used as a fever reducer and as a pain killer. Salicylic acid, whose name comes from Salix, the willow

More information

The Friedel-Crafts Reaction: Acetylation of Ferrocene

The Friedel-Crafts Reaction: Acetylation of Ferrocene The Friedel-Crafts Reaction: Acetylation of Ferrocene Objective This reaction illustrates electrophilic aromatic substitution reaction, in which an electrophile replaces a hydrogen atom in an aromatic

More information

14 Friedel-Crafts Alkylation

14 Friedel-Crafts Alkylation 14 Friedel-Crafts Alkylation 14.1 Introduction Friedel-Crafts alkylation and acylation reactions are a special class of electrophilic aromatic substitution (EAS) reactions in which the electrophile is

More information

Syllabus CHM 2202 Organic Chemistry Laboratory II Spring 2011

Syllabus CHM 2202 Organic Chemistry Laboratory II Spring 2011 Villanova University Department of Chemistry Syllabus CHM 2202 Organic Chemistry Laboratory II Spring 2011 Text: C.E. Bell, D.F. Taber and A.K. Clark, Organic Chemistry Laboratory with Qualitative Analysis,

More information

Acid/Base Extraction

Acid/Base Extraction Acid/Base Extraction Theory: Extraction is one of the most frequently used separation techniques in organic chemistry. An extraction essentially separates water-insoluble organic compounds from water-soluble

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

A Friedel-Crafts Alkylation. The Synthesis of 1,4-Di-tert-Butyl-2,5-Dimethoxybenzene

A Friedel-Crafts Alkylation. The Synthesis of 1,4-Di-tert-Butyl-2,5-Dimethoxybenzene CHEM 334L Organic Chemistry Laboratory Revision 3.1 A Friedel-Crafts Alkylation The Synthesis of 1,4-Di-tert-Butyl-2,5-Dimethoxybenzene In this laboratory exercise we will synthesize the compound 1,4-di-tert-butyl-2,5-dimethoxybenzene.

More information

Online edition for students of organic chemistry lab courses at the University of Colorado, Boulder, Dept of Chem and Biochem.

Online edition for students of organic chemistry lab courses at the University of Colorado, Boulder, Dept of Chem and Biochem. u Experiment 9 Aromatic Chemistry: Synthesis of o-nitroaniline and p-nitroaniline via a Multi-Step Sequence Reading: Introduction to rganic Chemistry by Streitwieser, Heathcock, and Kosower, pp. 695-696

More information

For this reason, the apparatus and all reagents and solvents must be scrupulously dry.

For this reason, the apparatus and all reagents and solvents must be scrupulously dry. ORGANIC II LABORATORY(Major's) KELLY Grignard Reaction READ: Landgrebe - Experiment 21 pp 427 to 431 We will follow an alternate experimental procedure from the one in the lab manual, however you should

More information

EXPERIMENT 2: Recrystallization and Melting Point

EXPERIMENT 2: Recrystallization and Melting Point Recrystallization (or Crystallization) is a technique used to purify solids. This procedure relies on the fact that solubility increases as temperature increases (you can dissolve more sugar in hot water

More information

THREE CHEMICAL REACTIONS

THREE CHEMICAL REACTIONS THREE CHEMICAL REACTIONS 1 NOTE: You are required to view the podcast entitled Decanting and Suction Filtration before coming to lab this week. Go to http://podcast.montgomerycollege.edu/podcast.php?rcdid=172

More information

Experiment 9 Chem 276 Fall Semester 2010 Page 1 of 8. Separation of compounds using acid-base extraction

Experiment 9 Chem 276 Fall Semester 2010 Page 1 of 8. Separation of compounds using acid-base extraction Experiment 9 Chem 276 Fall Semester 2010 Page 1 of 8 Introduction: Separation of compounds using acid-base extraction Organic compounds are generally insoluble in water. Instead, they are soluble in organic

More information

Physical and Chemical Properties

Physical and Chemical Properties Physical and Chemical Properties Introduction Matter can be classified in different ways using physical and chemical properties. Physical properties include color, odor, density, hardness, structure, solubility,

More information

GUIDELINES FOR WRITING LAB REPORTS

GUIDELINES FOR WRITING LAB REPORTS CHEM 2123 and 2125 Organic Chemistry Lab I and II GUIDELINES FOR WRITING LAB REPORTS INTRODUCTION Writing reports in organic chemistry lab may differ from the way it s done in general chemistry. One goal

More information

Titration of Aspirin Tablets

Titration of Aspirin Tablets Titration of Aspirin Tablets In this lab, you will determine the percent purity of two commercially available aspiring tablets using an acid-base titration. In general, an acid and a base react to produce

More information

Classification of organic compounds By solubility

Classification of organic compounds By solubility Classification of organic compounds By solubility In this experiment we begin the process of determining the structural composition of organic compounds based upon interpretation of simple solubility tests

More information

For Chromatography, you must remember Polar Dissolves More, not like dissolves like.

For Chromatography, you must remember Polar Dissolves More, not like dissolves like. Chromatography In General Separation of compounds based on the polarity of the compounds being separated Two potential phases for a compound to eist in: mobile (liquid or gas) and stationary Partitioning

More information

EXAMPLE OF LABORATORY WRITE-UP CHM 2201/2202

EXAMPLE OF LABORATORY WRITE-UP CHM 2201/2202 EXAMPLE F LABRATRY WRITE-UP CHM 2201/2202 Experiment Title: Reduction of Benzophenone Date: September 23, 2007 Name: Ima Chemist Course: 2201 Section: Lab Partner: re Ganic Statement of Purpose: To Reduce

More information

Using Periodic Properties to Identify Group 2A Cations and Group 7A Anions

Using Periodic Properties to Identify Group 2A Cations and Group 7A Anions Using Periodic Properties to Identify Group 2A Cations and Group 7A Anions Objectives The objectives of this lab are as follows: To observe the solubility properties of various ionic compounds containing

More information

EXPERIMENT 7 DISTILLATION PRELAB ASSIGNMENT

EXPERIMENT 7 DISTILLATION PRELAB ASSIGNMENT EXPERIMENT 7 DISTILLATION PRELAB ASSIGNMENT 1. Prepare a Table of Physical Constants for this experiment, for the compounds, ethyl acetate and 1-butanol. Include boiling point and refractive index. 2.

More information

# 14 Synthesis of Salicylic Acid from Aspirin Tablets

# 14 Synthesis of Salicylic Acid from Aspirin Tablets # 14 Synthesis of Salicylic Acid from Aspirin Tablets Purpose: Acetyl salicylic acid is extracted from aspirin tablets, then is hydrolyzed to form another white solid, salicylic acid. Introduction: The

More information

Stoichiometry: Mass-mass and percent yield in a precipitate reaction

Stoichiometry: Mass-mass and percent yield in a precipitate reaction Stoichiometry: Mass-mass and percent yield in a precipitate reaction Prelab Assignment: You will complete the Title, Purpose, Background information, Storyboard, and BLANK data table portion of your lab

More information

PHYSICAL SEPARATION TECHNIQUES. Introduction

PHYSICAL SEPARATION TECHNIQUES. Introduction PHYSICAL SEPARATION TECHNIQUES Lab #2 Introduction When two or more substances, that do not react chemically, are blended together, the result is a mixture in which each component retains its individual

More information

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER Chemistry 111 Lab: Synthesis of a Copper Complex Page H-1 SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER In this experiment you will synthesize a compound by adding NH 3 to a concentrated

More information

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate Pahlavan/Cherif Purpose a) Study electrophilic aromatic substitution reaction (EAS) b) Study regioselectivity

More information

Grignard Synthesis of Triphenylmethanol

Grignard Synthesis of Triphenylmethanol Grignard Synthesis of Triphenylmethanol Exp t 100 from K. L. Williamson, Macroscale and Microscale rganic Experiments, 2nd Ed. 1994, Houghton Mifflin, Boston. p364 Rev 9/22/03 Note: **ne lab period before

More information

IDENTIFICATION OF AN UNKNOWN ORGANIC COMPOUND Classification Tests

IDENTIFICATION OF AN UNKNOWN ORGANIC COMPOUND Classification Tests IDENTIFICATION OF AN UNKNOWN ORGANIC COMPOUND Classification Tests In this experiment you will attempt to identify an organic unknown from a selected group of compounds from the class of alcohols, aldehydes,

More information

Weeks 4 & 5: The Grignard Reaction: Preparation of Triphenylmethanol

Weeks 4 & 5: The Grignard Reaction: Preparation of Triphenylmethanol Weeks 4 & 5: The Grignard Reaction: Preparation of Triphenylmethanol pg.1 The polarity of an alkyl halide, R-X, is such that R exhibits a carbocationic character. This allows R-X to undergo a multitude

More information

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND #3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric

More information

Distillation Lab. CHM220 Distillation Lab

Distillation Lab. CHM220 Distillation Lab CHM220 Distillation Lab Distillation Lab Introduction - Since organic compounds do not usually occur in pure condition in nature, and are accompanied by impurities when synthesized, the purification of

More information

EXPERIMENT FIVE. Preparation of Cyclohexene from Cyclohexanol: an Elimination Reaction DISCUSSION

EXPERIMENT FIVE. Preparation of Cyclohexene from Cyclohexanol: an Elimination Reaction DISCUSSION EXPERIMENT FIVE Preparation of Cyclohexene from Cyclohexanol: an Elimination Reaction DISCUSSION A secondary alcohol, such as cyclohexanol, undergoes dehydration by an E1 mechanism. The key intermediate

More information

Composition otebook. Student ame: Kip ibly Class: CHM 1025/1045/2210/2211. Instructor: Dr. Barnett

Composition otebook. Student ame: Kip ibly Class: CHM 1025/1045/2210/2211. Instructor: Dr. Barnett Composition otebook Student ame: Kip ibly Class: CM 1025/1045/2210/2211 Instructor: Dr. Barnett (Back of Front Cover) Table of Contents Experimental Title Page Numbers Synthesis of Acetanilide 4 15 1 Table

More information

Recrystallization. Good. Bad. solubility ---> Bad. temperature --->

Recrystallization. Good. Bad. solubility ---> Bad. temperature ---> Recrystallization. Recrystallization is the primary method for purifying solid organic compounds. Compounds obtained from natural sources or from reaction mixtures almost always contain impurities. The

More information

Fractional Distillation notes

Fractional Distillation notes Reminder: These notes are meant to supplement, not replace, the textbook and laboratory manual. Fractional Distillation notes History and Application: Fractional distillation is one of the most widely

More information

Oxidation of Isoborneol to Camphor

Oxidation of Isoborneol to Camphor Oxidation of Isoborneol to Camphor Organic Redox A simple way to think about organic redox is that it is really an increase in the electronegativity or electropositivity of carbon due to functional group

More information

Matthew Seidler of 5

Matthew Seidler of 5 Matthew Seidler 0588687 1 of 5 JN ABBTT CLLEGE LABRATRY #8 TE CANNIZZAR REACTIN Instructor: D. Fenwick biectives: To carry out a Cannizzaro reaction using p-chlorobenzaldehyde as the substrate and to identify

More information

Distillation of liquid mixtures

Distillation of liquid mixtures CHEM 344 Distillation of liquid mixtures 1. Distillation basics The vaporization of a liquid and condensation of the resulting vapor is the basis of distillation. Organic liquids containing small amounts

More information

This compound, which contains two carbon atoms with a C-OH structure on one end of the molecule is ethanol, commonly called ethyl alcohol.

This compound, which contains two carbon atoms with a C-OH structure on one end of the molecule is ethanol, commonly called ethyl alcohol. ESTERS An Introduction to rganic hemistry Reactions 2006, 1990, 1982 by David A. Katz. All rights reserved. Reproduction permitted for educationa use provided original copyright is included. In contrast

More information

4026 Synthesis of 2-chloro-2-methylpropane (tert-butyl chloride) from tert-butanol

4026 Synthesis of 2-chloro-2-methylpropane (tert-butyl chloride) from tert-butanol 4026 Synthesis of 2-chloro-2-methylpropane (tert-butyl chloride) from tert-butanol OH + HCl Cl + H 2 O C 4 H 10 O C 4 H 9 Cl (74.1) (36.5) (92.6) Classification Reaction types and substance classes nucleophilic

More information

Isolation of (+)-Limonene from Orange Peel

Isolation of (+)-Limonene from Orange Peel Isolation of (+)-Limonene from Orange Peel Introduction Limonene, a compound with a familiar citrus odor, is found in the peel of many citrus fruits. The structure of limonene, an unsaturated hydrocarbon,

More information