Lecture 8: Random Walk vs. Brownian Motion, Binomial Model vs. Log-Normal Distribution
|
|
|
- Alexina Scott
- 9 years ago
- Views:
Transcription
1 Lecture 8: Random Walk vs. Brownian Motion, Binomial Model vs. Log-ormal Distribution October 4, 200 Limiting Distribution of the Scaled Random Walk Recall that we defined a scaled simple random walk last time, {W t } t [0, ] : Fix a > 0 and large positive integer, define X 0 = 0 and W t = t X j, t = 0,, 2,...,, where {X j } j are i.i.d. random variables that take ± with probability 0.5. he value of X t for general t is defined using linear interpolation. Obviously, the path of W t is continuous. Moreover, we have seen that {W t } is a martingale for time points t = k, 0 k. In fact, the increment W t W s is independent of W u for all t s u +. As, the first-order variation of the path {W t } t [0, ] tends to, but the quadratic variation tends to. It is interesting to know the limiting distribution of W as. he impact of this is that, when we choose a finer partition of the interval [0, ] with a larger, we would like to know what we will obtain in the end. A good tool to study limiting probability distribution is the moment-generating function. Recall that, for a random variable Z, its moment-generating function is defined as φu = Ee uz. 2 Since moment-generating function is the signature of a probability distribution, to study the limiting distribution of W, it suffices to know its limiting moment-generating function. hus, we proceed to define: uw [ ] X j s are i.i.d. φ u = Ee = E exp u X j = E exp u X [ ] = 2 eu + 2 e u. 3 o see the limit lim φ u, it suffices to know lim log φ u. Let x =, then log lim log φ 2 exu + 2 e xu u = lim x 0 + x 2 = 2 u2, 4 where the last equality is a result of L Hôspital s rule. As a result, the limiting distribution of W moment-generating function has φu = e 2 u2. 5 Probability distribution can be uniquely determined by its moment-generating function.
2 Recall that the moment-generating function of a normal random variable with mean µ and variance σ 2 has moment-generating function e uµ+ 2 u2 σ 2, 5 implies that, the limiting distribution of W, as, is normal with mean 0 and variance. In other words, the limiting distribution has density fx = 2π e x2 2. Remark. he above result is a special case of central limit law. In fact, the result still holds if we replace {X j } by any other i.i.d. random variable with zero mean and unit variance e.g. standard normals, which is quit useful for simulations. 2 Log-ormal Distribution as the Limit of the Binomial Model We play the scaling game for binomial model in this section. Fix a time horizon > 0, choose a large positive integer to partition [0, ] with equal length, so that we have a -period binomial model. We consider zero rate for simplicity: r = 0. Let us fix a positive number σ > 0, we then take the up factor to be u = + σ and the down factor to be d = + σ p = + r d = σ u d 2σ. he risk-neutral probabilities are then = 2 = q. At time, which is the -th step of the -period binomial tree, the stock price is H S = S 0 u H d = S 0 + σ σ, 6 where H / is the number of heads/tails observed in the coin tosses. Suppose we have a simple random walk starting from zero, whose increment is if a head shows up and if a tail shows up, and let us denote the value of the simple random walk at the -th step by M, then On the other hand, hus, we have M = H. 7 = H +. 8 H = 2 + M, = 2 M. 9 Combining 6 with 9 and taking log we obtain that log S = log S M log + σ Moreover, using the fact that we obtain that log + x = x 2 x2 + Ox 3, log S = log S M σ σ2 2 + O M log σ M σ σ2 2 + O 3 2 = log S 0 2 σ2 + O 2 + σ M + On. 2
3 Recall that in last section, the scaled random walk W = M = X j W, as where W is a normal with zero mean and variance. In conclusion, as, the stock price at time has distribution S = S 0 exp σw 2 σ2. 2 hat is, the log price is normally distributed. 3 Brownian Motion We studied the limiting marginal distribution of scaled random walk and -period binomial model. If we look at the whole path, we obtain Brownian motion. Brownian motion has a random continuous path W t for all t 0 that satisfies W 0 = 0. For all 0 = t 0 < t < t 2 <... t k the increments W t = W t W t 0, W t 2 W t,..., W t k W t k 3 are independent and each of these increments is normally distributed with EW t i+ W t i = 0, 4 VarW t i+ W t i = t i+ t i. 5 In other words, increments of Brownian motion are independent and stationary 2. he joint distribution of the values of Brownian motion at different times can be easily obtained. When the marginal distributions are known, two jointly normal variables are uniquely determined by their covariance. In the case of Brownian motion, W t and W s are zero mean normal variables with variance t and s, respectively. heir covariance is CovW t, W s = EW tw s = min{t, s}. 6 Alternatively, one can also easily obtain the joint moment-generating function of W t, W s using the independence of increments. Without loss of generality, assume t > s, then for u, v R, φu, v = Ee uw t+vw s = Ee uw s+w t W s+vw s = Ee u+vw s+uw t W s independence = Ee u+vw s Ee uw t W s = e 2 u+v2s e 2 u2 t s 7 Let us denote by F t the information available at time t for the Brownian motion. hat is, F t contains all the history of W s for any 0 s t. hen Brownian motion {W t} t 0 is a martingale with respect to the filtration F = {F t } t 0. his is a simple consequence of the fact that increments of Brownian motion have zero mean and are independent of the past. 4 Quadratic Variation of Brownian Motion and Volatility Estimation In Lecture 7 we have shown that, as, the scaled random walk {W k } 0 k has infinite first-order variation and finite quadratic variation. Brownian motion has the same property. For a given time-horizon > 0, we consider an arbitrage partition Π = {t 0, t,..., t } such that 0 = t 0 < t <... < t =. 2 he history does not matter. What matters is the time lapse of the increment. 3
4 he diameter of the partition Π is defined as the maximum time lapse: Π := max 0 i {t i+ t i }. 8 hen the quadratic variation of Brownian motion {W t} t 0 at time is defined as 3 W := lim W t j+ W t j 2 9 he above limit has a surprisingly simple result. One may get some flavor by taking the expectation of both sides and interchanging 4 the order of limit and expectation: E W = lim EW t j+ W t j 2 = o completely show that W = one just need to show that lim t j+ t j =. 20 Var W = 0. 2 his is not a problem because, using independence of increments, Var EW t j+ W t j 2 = Var [ W t j+ W t j 2] = 2 t j+ t j 2 2 Π t j+ t j = 2 Π 0 +, 22 as Π 0 +. he above result is the fundamental of stochastic calculus. If we use dw t to express the infinitesimal increment of Brownian motion, then we can informally write j=0 In other words, = W = 0 dw t dw t 2 = dt. 24 his is a striking result, as we know that dt 2 = 0. Moreover, one can also show that dw tdt = 0. he fact that the quadratic variation of Brownian motion is simply the time past can be used to estimate the volatility of stock price. Let us consider the classical geometric Brownian motion model for stock price St = S0 exp { σw t + α 2 σ2 t }. 25 where α and σ > 0 are constants. We observe the price process {S t } t 0 and we want to estimate the volatility σ. Fix a time-horizon > 0 say, a day, consider a partition 0 = t 0 < t <... < t =. ote that for any 0 k, log St k+ St k = σw t k+ W t k + α 2 σ2 t k+ t k ote that the limit here is more complicated than that in random walk case: not only, but also Π he interchange is legal because, the value of the summation is increasing as we choose more points and finer partitions. In probability this is called the monotone converge theorem. 4
5 If the partition is fine relatively high-frequency data, then k=0 log St 2 k+ St k = σ 2 W t k+ W t k 2 + terms proportional to t k+ t k 2 or W t k+ W t k t k+ t k k=0 σ 2 dw t 2 = σ 2. 0 Hence we have the estimation ˆσ 2 = j=0 27 log St 2 k+. 28 St k 5
Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab
Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?
Mathematical Finance
Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European
Monte Carlo Methods in Finance
Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction
Math 526: Brownian Motion Notes
Math 526: Brownian Motion Notes Definition. Mike Ludkovski, 27, all rights reserved. A stochastic process (X t ) is called Brownian motion if:. The map t X t (ω) is continuous for every ω. 2. (X t X t
ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida
ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic
Chapter 2: Binomial Methods and the Black-Scholes Formula
Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the
LECTURE 15: AMERICAN OPTIONS
LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These
Lecture 13: Martingales
Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of
IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem
IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem Time on my hands: Coin tosses. Problem Formulation: Suppose that I have
Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.
LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing
CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options
CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common
ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE
ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.
Pricing American Options without Expiry Date
Pricing American Options without Expiry Date Carisa K. W. Yu Department of Applied Mathematics The Hong Kong Polytechnic University Hung Hom, Hong Kong E-mail: [email protected] Abstract This paper
1 Sufficient statistics
1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =
Simple Arbitrage. Motivated by and partly based on a joint work with T. Sottinen and E. Valkeila. Christian Bender. Saarland University
Simple Arbitrage Motivated by and partly based on a joint work with T. Sottinen and E. Valkeila Saarland University December, 8, 2011 Problem Setting Financial market with two assets (for simplicity) on
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint
From Binomial Trees to the Black-Scholes Option Pricing Formulas
Lecture 4 From Binomial Trees to the Black-Scholes Option Pricing Formulas In this lecture, we will extend the example in Lecture 2 to a general setting of binomial trees, as an important model for a single
HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
Options 1 OPTIONS. Introduction
Options 1 OPTIONS Introduction A derivative is a financial instrument whose value is derived from the value of some underlying asset. A call option gives one the right to buy an asset at the exercise or
The Black-Scholes pricing formulas
The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock
Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.
Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than
Stochastic Processes and Advanced Mathematical Finance. The Definition of Brownian Motion and the Wiener Process
Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced
COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS
COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic mean-variance problems in
Master s Theory Exam Spring 2006
Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding
Math 431 An Introduction to Probability. Final Exam Solutions
Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <
1 IEOR 4700: Introduction to stochastic integration
Copyright c 7 by Karl Sigman 1 IEOR 47: Introduction to stochastic integration 1.1 Riemann-Stieltjes integration Recall from calculus how the Riemann integral b a h(t)dt is defined for a continuous function
10.2 Series and Convergence
10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and
DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options
DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis review of pricing formulas assets versus futures practical issues call options
Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15
Hedging Options In The Incomplete Market With Stochastic Volatility Rituparna Sen Sunday, Nov 15 1. Motivation This is a pure jump model and hence avoids the theoretical drawbacks of continuous path models.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
Monte Carlo-based statistical methods (MASM11/FMS091)
Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February 5, 2013 J. Olsson Monte Carlo-based
E3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
The Black-Scholes-Merton Approach to Pricing Options
he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining
LOGNORMAL MODEL FOR STOCK PRICES
LOGNORMAL MODEL FOR STOCK PRICES MICHAEL J. SHARPE MATHEMATICS DEPARTMENT, UCSD 1. INTRODUCTION What follows is a simple but important model that will be the basis for a later study of stock prices as
Simulating Stochastic Differential Equations
Monte Carlo Simulation: IEOR E473 Fall 24 c 24 by Martin Haugh Simulating Stochastic Differential Equations 1 Brief Review of Stochastic Calculus and Itô s Lemma Let S t be the time t price of a particular
1 The Brownian bridge construction
The Brownian bridge construction The Brownian bridge construction is a way to build a Brownian motion path by successively adding finer scale detail. This construction leads to a relatively easy proof
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce
Statistical Machine Learning
Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes
Wald s Identity. by Jeffery Hein. Dartmouth College, Math 100
Wald s Identity by Jeffery Hein Dartmouth College, Math 100 1. Introduction Given random variables X 1, X 2, X 3,... with common finite mean and a stopping rule τ which may depend upon the given sequence,
Binomial lattice model for stock prices
Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }
Goal Problems in Gambling and Game Theory. Bill Sudderth. School of Statistics University of Minnesota
Goal Problems in Gambling and Game Theory Bill Sudderth School of Statistics University of Minnesota 1 Three problems Maximizing the probability of reaching a goal. Maximizing the probability of reaching
REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.
REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game
Barrier Options. Peter Carr
Barrier Options Peter Carr Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU March 14th, 2008 What are Barrier Options?
Asian Option Pricing Formula for Uncertain Financial Market
Sun and Chen Journal of Uncertainty Analysis and Applications (215) 3:11 DOI 1.1186/s4467-15-35-7 RESEARCH Open Access Asian Option Pricing Formula for Uncertain Financial Market Jiajun Sun 1 and Xiaowei
The Black-Scholes Formula
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the
Two-State Option Pricing
Rendleman and Bartter [1] present a simple two-state model of option pricing. The states of the world evolve like the branches of a tree. Given the current state, there are two possible states next period.
Finite Differences Schemes for Pricing of European and American Options
Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the Black-Scholes
MTH6121 Introduction to Mathematical Finance Lesson 5
26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random
LECTURE 9: A MODEL FOR FOREIGN EXCHANGE
LECTURE 9: A MODEL FOR FOREIGN EXCHANGE 1. Foreign Exchange Contracts There was a time, not so long ago, when a U. S. dollar would buy you precisely.4 British pounds sterling 1, and a British pound sterling
Financial Time Series Analysis (FTSA) Lecture 1: Introduction
Financial Time Series Analysis (FTSA) Lecture 1: Introduction Brief History of Time Series Analysis Statistical analysis of time series data (Yule, 1927) v/s forecasting (even longer). Forecasting is often
Stephane Crepey. Financial Modeling. A Backward Stochastic Differential Equations Perspective. 4y Springer
Stephane Crepey Financial Modeling A Backward Stochastic Differential Equations Perspective 4y Springer Part I An Introductory Course in Stochastic Processes 1 Some Classes of Discrete-Time Stochastic
Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model
LogNormal stock-price models in Exams MFE/3 and C/4
Making sense of... LogNormal stock-price models in Exams MFE/3 and C/4 James W. Daniel Austin Actuarial Seminars http://www.actuarialseminars.com June 26, 2008 c Copyright 2007 by James W. Daniel; reproduction
10 Binomial Trees. 10.1 One-step model. 1. Model structure. ECG590I Asset Pricing. Lecture 10: Binomial Trees 1
ECG590I Asset Pricing. Lecture 10: Binomial Trees 1 10 Binomial Trees 10.1 One-step model 1. Model structure ECG590I Asset Pricing. Lecture 10: Binomial Trees 2 There is only one time interval (t 0, t
On the Existence of a Unique Optimal Threshold Value for the Early Exercise of Call Options
On the Existence of a Unique Optimal Threshold Value for the Early Exercise of Call Options Patrick Jaillet Ehud I. Ronn Stathis Tompaidis July 2003 Abstract In the case of early exercise of an American-style
EC3070 FINANCIAL DERIVATIVES
BINOMIAL OPTION PRICING MODEL A One-Step Binomial Model The Binomial Option Pricing Model is a simple device that is used for determining the price c τ 0 that should be attributed initially to a call option
The Exponential Distribution
21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding
Nonparametric adaptive age replacement with a one-cycle criterion
Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: [email protected]
Black-Scholes Option Pricing Model
Black-Scholes Option Pricing Model Nathan Coelen June 6, 22 1 Introduction Finance is one of the most rapidly changing and fastest growing areas in the corporate business world. Because of this rapid change,
Forward Price. The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow.
Forward Price The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow. The forward price is the delivery price which makes the forward contract zero
M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung
M2S1 Lecture Notes G. A. Young http://www2.imperial.ac.uk/ ayoung September 2011 ii Contents 1 DEFINITIONS, TERMINOLOGY, NOTATION 1 1.1 EVENTS AND THE SAMPLE SPACE......................... 1 1.1.1 OPERATIONS
Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents
Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents William H. Sandholm January 6, 22 O.. Imitative protocols, mean dynamics, and equilibrium selection In this section, we consider
Lecture L3 - Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
3. Monte Carlo Simulations. Math6911 S08, HM Zhu
3. Monte Carlo Simulations Math6911 S08, HM Zhu References 1. Chapters 4 and 8, Numerical Methods in Finance. Chapters 17.6-17.7, Options, Futures and Other Derivatives 3. George S. Fishman, Monte Carlo:
Numerical Methods for Option Pricing
Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly
Probability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X
Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chi-squared distributions, normal approx'n to the binomial Uniform [,1] random
1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let
Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as
第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model
1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
Notes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12
Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond
Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week
Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics
OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options
OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis binomial model replicating portfolio single period artificial (risk-neutral)
The Monte Carlo Framework, Examples from Finance and Generating Correlated Random Variables
Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh The Monte Carlo Framework, Examples from Finance and Generating Correlated Random Variables 1 The Monte Carlo Framework Suppose we wish
Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson and Linear Approximation
EPJ Web of Conferences 68, 0 00 06 (2014) DOI: 10.1051/ epjconf/ 20146800006 C Owned by the authors, published by EDP Sciences, 2014 Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson
Current Accounts in Open Economies Obstfeld and Rogoff, Chapter 2
Current Accounts in Open Economies Obstfeld and Rogoff, Chapter 2 1 Consumption with many periods 1.1 Finite horizon of T Optimization problem maximize U t = u (c t ) + β (c t+1 ) + β 2 u (c t+2 ) +...
7: The CRR Market Model
Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney MATH3075/3975 Financial Mathematics Semester 2, 2015 Outline We will examine the following issues: 1 The Cox-Ross-Rubinstein
Unified Lecture # 4 Vectors
Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,
Valuation of the Surrender Option Embedded in Equity-Linked Life Insurance. Brennan Schwartz (1976,1979) Brennan Schwartz
Valuation of the Surrender Option Embedded in Equity-Linked Life Insurance Brennan Schwartz (976,979) Brennan Schwartz 04 2005 6. Introduction Compared to traditional insurance products, one distinguishing
IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS
IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS There are four questions, each with several parts. 1. Customers Coming to an Automatic Teller Machine (ATM) (30 points)
Introduction to Arbitrage-Free Pricing: Fundamental Theorems
Introduction to Arbitrage-Free Pricing: Fundamental Theorems Dmitry Kramkov Carnegie Mellon University Workshop on Interdisciplinary Mathematics, Penn State, May 8-10, 2015 1 / 24 Outline Financial market
Review of Basic Options Concepts and Terminology
Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some
Pricing Discrete Barrier Options
Pricing Discrete Barrier Options Barrier options whose barrier is monitored only at discrete times are called discrete barrier options. They are more common than the continuously monitored versions. The
Probability and Random Variables. Generation of random variables (r.v.)
Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly
Martingale Pricing Applied to Options, Forwards and Futures
IEOR E4706: Financial Engineering: Discrete-Time Asset Pricing Fall 2005 c 2005 by Martin Haugh Martingale Pricing Applied to Options, Forwards and Futures We now apply martingale pricing theory to the
Probability Generating Functions
page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence
American Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options
American Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Early Exercise Since American style options give the holder the same rights as European style options plus
Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)
Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February
Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com
Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com In this Note we derive the Black Scholes PDE for an option V, given by @t + 1 + rs @S2 @S We derive the
1 Short Introduction to Time Series
ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The
Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.
Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.
Lectures on Stochastic Processes. William G. Faris
Lectures on Stochastic Processes William G. Faris November 8, 2001 2 Contents 1 Random walk 7 1.1 Symmetric simple random walk................... 7 1.2 Simple random walk......................... 9 1.3
Introduction to General and Generalized Linear Models
Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby
Some Research Problems in Uncertainty Theory
Journal of Uncertain Systems Vol.3, No.1, pp.3-10, 2009 Online at: www.jus.org.uk Some Research Problems in Uncertainty Theory aoding Liu Uncertainty Theory Laboratory, Department of Mathematical Sciences
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this
