Structure of caffeine: O CH 3 CH 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Structure of caffeine: O CH 3 CH 3"

Transcription

1 1 Extraction of Caffeine Introduction Caffeine Caffeine occurs naturally in tea leaves and coffee beans. Cocoa beans, used to produce chocolate, contain a compound that is nearly identical in structure to caffeine. Caffeine is also added to many types of soda and energy drinks. Caffeine is a white solid material at room temperature. It is classified as an alkaloid a nitrogen-containing basic (as opposed to acidic) compound that is obtained from plants and has physiological effects in the body. Caffeine is a stimulant and mildly addictive. Withdrawal symptoms may include headache and irritability. There is no conclusive evidence that caffeine causes cancer or heart disease. However, animal studies suggest it may be a weak teratogen (an agent that causes birth defects in an embryo or fetus), so pregnant women are advised to limit their intake of caffeinated beverages. Structure of caffeine: O CH 3 CH 3 N N O N CH 3 N Extraction Extraction is a technique in which a solvent is used to remove/isolate a compound of interest from a liquid substance. For example, coffee is a liquid which contains dissolved caffeine. In this experiment you will extract (remove) caffeine from coffee. The extraction will be carried out by simply adding a portion of solvent to the coffee. The caffeine is more soluble in the solvent than in the coffee, so it moves out of the coffee and into the solvent. The solvent, now containing dissolved caffeine, is then separated from the coffee. At this point the caffeine has been extracted from the coffee because it is now dissolved in the solvent, rather than the coffee. If the solvent is allowed to evaporate or is removed in some manner, the caffeine will be left behind as a white powder. The solvent that is used for an extraction must be immiscible with the other liquid. Immiscible liquids are two liquids which are not soluble. In other words, when they are mixed together they separate into two layers. The denser liquid will form the bottom layer. (Conversely, miscible liquids are soluble in each other.) In the extraction of caffeine, a solvent that is immiscible with coffee will be added to the coffee. The mixture will be shaken in order to make the solvent and coffee mix together as much as possible, enabling the caffeine to move out of the coffee and into the solvent. As soon as shaking is stopped, the two immiscible liquids will separate into two layers. The mixture is placed into a separatory funnel (which you used during the isolation of limonene), enabling the easy separation of one layer from the other the lower, denser layer can be drained out of the bottom of the separatory funnel, leaving behind the upper layer.

2 2 Coffee is mostly water, so the solvent chosen for the extraction of caffeine must be immiscible with water. Dichloromethane is a water-immiscible solvent that works well, because caffeine is highly soluble in it (which means that most of the caffeine will easily move out of the coffee and into the dichloromethane). Dichloromethane is also often called methylene chloride. Structure of dichloromethane: H H C Cl Cl CH 2 Cl 2 Also called methylene chloride Once the caffeine has been extracted into the dichloromethane solvent, the dichloromethane will need to be removed in order to obtain dry caffeine powder. This could be done by simply allowing the dichloromethane to evaporate, but that would take a long time. Instead, distillation will be used to remove the dichloromethane quickly. The distillation technique will be explained in the prelab lecture.

3 3 Extraction of Caffeine Prelab Name 1. What is an alkaloid? 2. What is a teratogen? 3. What does it mean for two solvents to be immiscible? 4. Complete each of the following conversions ( g is grams; mg is milligrams). Recall from CHEM 103 that there are 1000 mg in 1 g (1000 mg = 1 g) g = mg 284 mg = g g = mg 52 mg = g g = mg 65.3 mg = g 0.3 g = mg 5000 mg = g 5. The structure of caffeine is shown in the introduction. However, some of the carbon atoms are eliminated to simplify the structure, making it similar to a line formula. This is a common practice. Redraw the structure of caffeine, showing all carbon and hydrogen atoms. What is the molecular formula for caffeine? (For example, C 12 H 22 O 11 is a molecular formula.) Use the molecular formula of caffeine to calculate its molecular weight. (C = 12 g/mol; H = 1 g/mol; N = 14 g/mol; O = 16 g/mol)

4 4 Extraction of Caffeine Procedure 1. CAUTION: It is best not to get dichloromethane on your skin. You may choose to wear gloves during this experiment. Otherwise, wash thoroughly if you do get some on your hands. CAUTION: Gas will build up in the separatory funnel while you are shaking it, so you must vent the funnel occasionally to prevent the stopper from popping out, causing a mess and possibly getting dichloromethane on your skin. Obtain a separatory funnel and close the stopcock. Set up a ring stand on your lab bench to support the sep funnel. Place 75 ml of coffee into the sep funnel. Add 20 ml of dichloromethane and place the stopper in the top of the sep funnel. Shake the funnel for 1-2 minutes following the instructions given during the prelab lecture. Place the funnel back in the ring stand and allow the two layers of liquid to separate this may take a few minutes. The lower layer will be dichloromethane. There may be an emulsion at the boundary between the two layers an emulsion is a region where bubbles of one liquid are suspended in the other liquid, and the two refuse to separate. If an emulsion occurs, use a glass stirring rod to poke around in the emulsion to break it up. Ask the instructor for help if the emulsion seems particularly stubborn. Be sure the stopper is removed from the top of the sep funnel for the following drainage step otherwise the liquid will drain out of the funnel extremely slowly. Once the two layers have separated, or are nearly separated, drain the lower dichloromethane layer into a clean, DRY 250 ml flask. Be careful not to drain any of the COFFEE into the flask! It is best to leave a very small amount of dichloromethane at the bottom of the sep funnel so as not to accidently allow some coffee to escape. The dichloromethane you just drained contains dissolved caffeine that has been extracted from the coffee. However, it isn t possible to extract all the caffeine with a single portion of dichloromethane. Therefore, you will do two more extractions using fresh portions of dichloromethane in order to extract the majority of the caffeine that is in the coffee. 2. Set the flask containing the first portion of dichloromethane aside. Add a fresh 20 ml portion of dichloromethane to the coffee in the sep funnel. Shake the funnel for 1-2 minutes. Allow the two layers to separate again. Then drain the lower dichloromethane layer into the 250 ml flask that already contains the first portion of dichloromethane be sure to leave a very small amount of dichloromethane in the funnel and don t allow any coffee to drain out! At this point the two portions of dichloromethane are together in the flask. 3. Repeat step 2. At the end of this step, the flask will contain all three portions of dichloromethane. If everything went well, most of the caffeine from the coffee should be dissolved in this solvent.

5 5 4. The dichloromethane in the flask is certain to contain small amounts of water from the coffee, even if you can t actually see visible water droplets. Therefore, it must be dried to remove any water. If there are some visible droplets of water/coffee present, decant the dichloromethane into a new dry flask, attempting to leave the water droplets behind when decanting. If no visible droplets of water are present, skip the decanting step. When there are no visible water droplets remaining, weigh out approximately 2 grams of anhydrous sodium sulfate and add it to the dichloromethane (it is not necessary to obtain exactly 2 grams). Swirl the container; then let it sit undisturbed for about 10 minutes. The sodium sulfate will absorb any water (which you can t see) that is present. While waiting, proceed to step Weigh a clean, dry 125 ml flask and record the exact mass on the report sheet. Obtain a condenser, two rubber hoses, and a still head (a bent glass tube with a rubber stopper at each end) for carrying out distillation. Attach the rubber tubes to the water outlets on the condenser. Fill a 600 ml beaker about 1/3 full with distilled/purified water and place it on a hot plate. Do not turn the hot plate on yet. After the dichloromethane has dried for ~10 minutes, decant the dichloromethane into this flask, being careful to leave all the sodium sulfate behind. You no longer need the sodium sulfate, so it can be washed down the drain. 6. Assemble a distillation apparatus as follows. Place the flask containing the dichloromethane into the beaker of water on the hotplate, so that the dichloromethane is entirely submerged in water. Use a clamp from the cabinet under your lab bench to clamp the neck of the flask so that it stays in place at the proper level. Place one stopper of the still head into the mouth of the flask. Attach the condenser to the rubber stopper on the other end of the still head. Place a waste beaker under the open end of the condenser to catch liquid that will drip out during the distillation. If necessary, use another clamp to hold the condenser in place. One rubber hose should already be connected to each of the water outlets of the condenser. Attach the other end of the lower rubber hose (the hose furthest from the still head) to the white plastic tube coming out of the water faucet on your lab station. You may have to first remove the black rubber attachment from the end of the white plastic tube. Place the end of the upper rubber hose (the hose nearest to the still head) into the sink so that water coming from the hose can drain into the sink. Ask the instructor to check your distillation apparatus before proceeding. When you are sure the rubber hoses are attached correctly and tightly, turn on the water faucet slowly and allow water to flow into the hoses and condenser. Adjust the water flow so that it is not too fast (otherwise one of the hoses might blow off).

6 6 Turn the hotplate on high. The water in the beaker will begin to boil and its heat will cause the dichloromethane inside the flask to boil. At that point, you will soon see dichloromethane begin to drip out of the condenser into the waste beaker. 7. As the dichloromethane becomes hot and vaporizes (boils), the dichloromethane vapor will travel into the cool condenser where it will condense back to liquid and drip out of the bottom of the condenser into the waste beaker. The caffeine should not vaporize and travel with the dichloromethane. Rather, it should be left behind in the flask. Once all the dichloromethane has boiled out of the flask and the flask is dry, turn off the heat and disassemble the apparatus. There should be caffeine residue inside the flask. Record the appearance of the caffeine on the report sheet. Wipe the outside of the flask completely dry and weigh the flask containing the caffeine. Record the total mass on the report sheet, and then calculate the mass of caffeine extracted by subtracting the mass of the empty flask. Complete the lab report by calculating your percent recovery of caffeine. 8. Pour the distilled dichloromethane into the bottle labeled recycled dichloromethane. The coffee in the sep funnel can be discarded down the drain. Wash the sep funnel with water, rinse it with acetone from the bottles with red lids near the sink, and return the funnel. The caffeine can be washed out of the flask using water (and acetone if necessary). Return the 125 ml flask (do not put it in your drawer).

7 7 Extraction of Caffeine Report Sheet Name Data 1. Mass of empty flask g 2. Description of extracted caffeine: Include physical state (solid, liquid, gas) and color. 3. Mass of flask containing caffeine g Calculations and Conclusions 4. Mass of caffeine extracted g = mg 5. Actual amount of caffeine in coffee sample mg The coffee was prepared by the stockroom manager. According to the recipe used, the coffee had a caffeine concentration of 1 mg/ml. Calculate the actual amount of caffeine in the coffee sample you used for the extraction. Show work here: 6. Percent recovery of caffeine in coffee sample % This is the percent of caffeine you were able to extract from the actual amount of caffeine in the coffee sample. Pay careful attention to units!! Show work here:

8 8 Extraction of Caffeine Postlab Name 1. On the report sheet you calculated your percent recovery of caffeine. If your percent was less than 100%, give at least one reason why it was less than 100%. If your percent was more than 100%, give at least one reason why it was more than 100%. Do NOT simply say human error. Be specific about the types of errors (human or otherwise) that may have occurred, leading to a recovery that is not exactly equal to 100%. 2. Based on what you observed during this experiment, is dichloromethane denser OR less dense than water? Explain your reasoning. Based on what happened in this experiment, is caffeine more soluble in water, OR more soluble in dichloromethane? Explain your reasoning. 3. Ethanol is miscible with water. (After all, alcoholic beverages don t separate into an alcohol layer and a water layer. ) Assuming that caffeine is soluble in ethanol, could you use ethanol as a solvent to extract caffeine from coffee (rather than using dichloromethane as the extraction solvent)? Explain why or why not. 4. A 12 oz can of Coke contains 46 mg of caffeine. One fluid ounce is equivalent to ml (1 oz = ml). What is the concentration of caffeine in Coke, in units of mg/ml? Show your work.

Isolation of Caffeine from Tea

Isolation of Caffeine from Tea Isolation of Caffeine from Tea Introduction A number of interesting, biologically active compounds have been isolated from plants. Isolating some of these natural products, as they are called, can require

More information

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation Experiment 8 Preparation of Cyclohexanone by ypochlorite xidation In this experiment we will prepare cyclohexanone from cyclohexanol using hypochlorite oxidation. We will use common household bleach that

More information

Determination of a Chemical Formula

Determination of a Chemical Formula 1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

More information

CHEM 151 CHEMICAL REACTIONS OF COPPER Fall 2008

CHEM 151 CHEMICAL REACTIONS OF COPPER Fall 2008 CHEM 151 CHEMICAL REACTIONS OF COPPER Fall 2008 Fill-in!!! Pre-lab attached (p 9) Lecture Instructor Stamp Here Name Partner Date Before you begin, read the following section in your Laboratory Handbook:

More information

Recrystallization Introduction Solubility

Recrystallization Introduction Solubility 1 Recrystallization Introduction Solubility Most compounds are more soluble in a given solvent at higher temperatures. As you can see from the data in the table below, the solubilities in water of salt

More information

Experiment 7 Preparation of 1-Bromobutane

Experiment 7 Preparation of 1-Bromobutane Experiment 7 Preparation of 1-Bromobutane In this experiment you will prepare 1-bromobutane (n-butyl bromide) from n-butanol (1-butanol) using a substitution reaction under acidic conditions. This is an

More information

Experiment #6: Isolation of Caffeine from Tea

Experiment #6: Isolation of Caffeine from Tea Experiment #6: Isolation of Caffeine from Tea Pre-Lab: Prepare your notebook. Include: name, partner s name, title of experiment, date, purpose, structure of caffeine, procedures (bulleted list), separation

More information

ISOLATION OF CAFFEINE FROM TEA

ISOLATION OF CAFFEINE FROM TEA ISLATIN F CAFFEINE FRM TEA Introduction In this experiment, caffeine is isolated from tealeaves. The chief problem with the isolation is that caffeine does not exist alone in the tealeaves, but other natural

More information

Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction

Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction Organic Lab 1 Make-up Experiment Extraction of Caffeine from Beverages Introduction Few compounds consumed by Americans are surrounded by as much controversy as caffeine. One article tells us that caffeine

More information

Stoichiometry: Mass-mass and percent yield in a precipitate reaction

Stoichiometry: Mass-mass and percent yield in a precipitate reaction Stoichiometry: Mass-mass and percent yield in a precipitate reaction Prelab Assignment: You will complete the Title, Purpose, Background information, Storyboard, and BLANK data table portion of your lab

More information

Water Lab. Objective: To distill samples of water that contains volatile and nonvolatile components.

Water Lab. Objective: To distill samples of water that contains volatile and nonvolatile components. Water Lab I. Distillation Hypothesis: Water can be purified by distillation. Objective: To distill samples of water that contains volatile and nonvolatile components. Materials and Equipment: Sodium chloride,

More information

Synthesis, Isolation, and Purification of an Ester

Synthesis, Isolation, and Purification of an Ester Synthesis, Isolation, and Purification of an Ester AP Chemistry Laboratory Introduction An ester is a chemical compound that is formed when an organic acid reacts with an alcohol. Esters frequently have

More information

Evaluation copy. Fractional Distillation. computer OBJECTIVES MATERIALS

Evaluation copy. Fractional Distillation. computer OBJECTIVES MATERIALS Fractional Distillation Computer 8 An example of a simple distillation is the separation of a solution of salt and into two separate pure substances. When the salt solution is heated to boiling, vapor

More information

H 2 SO 4 heat + H 3 O +

H 2 SO 4 heat + H 3 O + Dehydration of Cyclohexanol DISCUSSION OF TE EXPERIMENT In this experiment, cyclohexanol is dehydrated by aqueous sulfuric acid to produce cyclohexene as the sole product, and carbocation rearrangement

More information

Purification by Recrystallization

Purification by Recrystallization Experiment 2 Purification by Recrystallization Objectives 1) To be able to select an appropriate recrystallizing solvent. 2) To separate and purify acetanilide by recrystallization. 3) To compare the melting

More information

Separation by Solvent Extraction

Separation by Solvent Extraction Experiment 3 Separation by Solvent Extraction Objectives To separate a mixture consisting of a carboxylic acid and a neutral compound by using solvent extraction techniques. Introduction Frequently, organic

More information

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance 1 Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance Read pp 142-155, 161-162, Chapter 10 and pp 163-173, Chapter 11, in LTOC. View the videos: 4.2 Extraction (Macroscale);

More information

EXPERIMENT 1: MELTING POINTS

EXPERIMENT 1: MELTING POINTS EXPERIMENT 1: MELTING POINTS 1. Prepare a known sample of urea and determine its melting point. (Use a well packed capillary with ~1-2 mm of sample, with a rise in temperature of ~ 1-2 o C per min near

More information

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

SEPARATION OF A MIXTURE OF SUBSTANCES LAB SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present

More information

Experiment 9 Chem 276 Fall Semester 2010 Page 1 of 8. Separation of compounds using acid-base extraction

Experiment 9 Chem 276 Fall Semester 2010 Page 1 of 8. Separation of compounds using acid-base extraction Experiment 9 Chem 276 Fall Semester 2010 Page 1 of 8 Introduction: Separation of compounds using acid-base extraction Organic compounds are generally insoluble in water. Instead, they are soluble in organic

More information

Extraction: Separation of Acidic Substances

Extraction: Separation of Acidic Substances Extraction: Separation of Acidic Substances Chemists frequently find it necessary to separate a mixture of compounds by moving a component from one solution or mixture to another. The process most often

More information

How Can the Percent Composition of a Salt, Sand and Iron Mixture be Determined?

How Can the Percent Composition of a Salt, Sand and Iron Mixture be Determined? Lab 2 Name How Can the Percent Composition of a Salt, Sand and Iron Mixture be Determined? Pre-Lab Assignment This written pre-lab is worth 15% (3 points) of your lab report grade and must be turned in

More information

Title: Training Lab 1 Chemistry 11100, Fall Use of a balance a balance is used to measure the mass of solids in the chemistry lab.

Title: Training Lab 1 Chemistry 11100, Fall Use of a balance a balance is used to measure the mass of solids in the chemistry lab. Title: Training Lab 1 Chemistry 11100, Fall 2012 Introduction The purpose of this lab is to introduce you to a series of techniques that you will use in chemistry lab. For this lab, you will be using the

More information

SEPARATION OF A MIXTURE OF SAND AND SALT Experiment 12

SEPARATION OF A MIXTURE OF SAND AND SALT Experiment 12 Physical Science 14 SEPARATION OF A MIXTURE OF SAND AND SALT Experiment 12 INTRODUCTION: Most of the materials we encounter in everyday life are not pure substances. Materials such as cement, wood, soil,

More information

Separation of Active Components from Excedrin ES

Separation of Active Components from Excedrin ES Separation of Active Components from Excedrin ES Purpose: The purpose of this lab is to isolate the active components present in Exedrin ES tablets, namely acetaminophen, aspirin, and caffeine. To accomplish

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

List several types of chromatography. How do the types of chromatography you have listed differ? How are they similar?

List several types of chromatography. How do the types of chromatography you have listed differ? How are they similar? CLASSIFICATION AND SEPARATION OF MATTER Pre-lab Questions: Define the following: (You will need to use your textbook and any other references, such as a dictionary, in addition to the text of this experiment.)

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

PHYSICAL AND CHEMICAL CHANGE EXPERIMENT 1

PHYSICAL AND CHEMICAL CHANGE EXPERIMENT 1 PURPOSE To investigate the criteria used to distinguish between physical and chemical changes in matter. 1 DEFINITIONS Chemical property, physical property, chemical change, physical change, conservation

More information

Experiment #2 Liquid/Liquid Extraction Organic Chem I 1

Experiment #2 Liquid/Liquid Extraction Organic Chem I 1 Experiment #2 Liquid/Liquid Extraction rganic Chem I 1 Alternative Title: Shake it all out! Liquid/liquid extraction is the most common technique used to separate a desired organic product from a reaction

More information

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum

More information

INVESTIGATING SOLUTIONS. Pre-Lab Queries. Procedure

INVESTIGATING SOLUTIONS. Pre-Lab Queries. Procedure NAME PARTNER(S) SECTION DATE INVESTIGATING SOLUTIONS The objective of this activity is to uncover characteristics of a variety of solutions and factors that affect the making of solutions. Pre-Lab Queries

More information

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 OBJECTIVE The objective of this experiment will be the standardization of sodium hydroxide using potassium hydrogen phthalate by the titration

More information

Experiment 9 Chem 110 Lab SOLUTIONS I. INTRODUCTION. Polar or Nonpolar? 1 ethanol (ethyl alcohol) C 2 H 6 O. 2 cyclohexane, C 6 H 12

Experiment 9 Chem 110 Lab SOLUTIONS I. INTRODUCTION. Polar or Nonpolar? 1 ethanol (ethyl alcohol) C 2 H 6 O. 2 cyclohexane, C 6 H 12 Experiment 9 Chem 110 Lab SOLUTIONS I. INTRODUCTION A solution is a homogeneous mixture of two (or more) substances. It is composed of a solvent and a dissolved material called a solute. The solute is

More information

Steam Distillation of an Essential Oil

Steam Distillation of an Essential Oil CHEM 333L Organic Chemistry Laboratory Revision 2.1 Steam Distillation of an Essential Oil In this laboratory exercise we will employ Steam Distillation to isolate an Essential Oil from either Mint leaves

More information

Austin Peay State University Department of Chemistry CHEM 1111. Copper Cycle

Austin Peay State University Department of Chemistry CHEM 1111. Copper Cycle Cautions Nitric acid and sulfuric acid are toxic and oxidizers and may burn your skin. Nitrogen dioxide gas produced is hazardous if inhaled. Sodium hydroxide is toxic and corrosive and will cause burns

More information

CSUS Department of Chemistry Experiment 4 Chem.1A

CSUS Department of Chemistry Experiment 4 Chem.1A Name: Section: Experiment 4: Synthesis of Alum Pre-laboratory Assignment (Read through the experiment before starting!) 1. a) What are the strong acid and strong base used in this synthesis? b) What should

More information

DETERMINATION of the EMPIRICAL FORMULA

DETERMINATION of the EMPIRICAL FORMULA DETERMINATION of the EMPIRICAL FORMULA One of the fundamental statements of the atomic theory is that elements combine in simple whole number ratios. This observation gives support to the theory of atoms,

More information

# 14 Synthesis of Salicylic Acid from Aspirin Tablets

# 14 Synthesis of Salicylic Acid from Aspirin Tablets # 14 Synthesis of Salicylic Acid from Aspirin Tablets Purpose: Acetyl salicylic acid is extracted from aspirin tablets, then is hydrolyzed to form another white solid, salicylic acid. Introduction: The

More information

THIN LAYER CHROMATOGRAPHY AND MELTING POINT DETERMINATION: DETECTION OF CAFFEINE IN VARIOUS SAMPLES

THIN LAYER CHROMATOGRAPHY AND MELTING POINT DETERMINATION: DETECTION OF CAFFEINE IN VARIOUS SAMPLES EXPERIMENT 3 THIN LAYER CHROMATOGRAPHY AND MELTING POINT DETERMINATION: DETECTION OF CAFFEINE IN VARIOUS SAMPLES Additional Resources http://orgchem.colorado.edu/hndbksupport/tlc/tlc.html http://coffeefaq.com/caffaq.html

More information

Experiment 5 Preparation of Cyclohexene

Experiment 5 Preparation of Cyclohexene Experiment 5 Preparation of yclohexene In this experiment we will prepare cyclohexene from cyclohexanol using an acid catalyzed dehydration reaction. We will use the cyclohexanol that we purified in our

More information

Recovery of Elemental Copper from Copper (II) Nitrate

Recovery of Elemental Copper from Copper (II) Nitrate Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform

More information

Lab # 4: Separation of a Mixture Lab Objective Introduction

Lab # 4: Separation of a Mixture Lab Objective Introduction Name: Lab Partner(s): Date Completed: Lab # 4: Separation of a Mixture Lab Accelerated Chemistry 1 Objective You will be given a mixture containing sodium chloride (NaCl, table salt), benzoic acid (C 7

More information

Molecular Weight of a Volatile Liquid

Molecular Weight of a Volatile Liquid Molecular Weight of a Volatile Liquid One of the important applications of the Ideal Gas Law is found in the experimental determination of the molecular weight of gases and vapors. In order to measure

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Procedure Each Part of lab requires a separate data table. You might want to put each table on a separate page so you can leave room to show equations and calculations.

More information

Household Acids and Bases

Household Acids and Bases Household Acids and Bases GRADE LEVEL INDICATORS Experiment Demonstrate that the ph scale (0-14) is used to measure acidity and classify substances or solutions as acidic, basic, or neutral. 21 Develop

More information

Experiment 16 The Solution is Dilution

Experiment 16 The Solution is Dilution Experiment 16 The is Dilution OUTCOMES Upon completion of this lab, the student should be able to proficiently calculate molarities for solutions. prepare a solution of known concentration. prepare a dilute

More information

THREE CHEMICAL REACTIONS

THREE CHEMICAL REACTIONS THREE CHEMICAL REACTIONS 1 NOTE: You are required to view the podcast entitled Decanting and Suction Filtration before coming to lab this week. Go to http://podcast.montgomerycollege.edu/podcast.php?rcdid=172

More information

Chemical Reactions: Making Table Salt

Chemical Reactions: Making Table Salt Chem 100 Section Experiment 5 Name Partner s Name Chemical Reactions: Making Table Salt Introduction During chemical reactions, substances combine with each other in a definite proportion by mass, meaning

More information

Covalent Bonding - Benzoic Acid from Ethyl Benzoate by Base Hydrolysis

Covalent Bonding - Benzoic Acid from Ethyl Benzoate by Base Hydrolysis EXPERIMENT 2: Introduction ovalent Bonding - Benzoic Acid from Ethyl Benzoate by Base Hydrolysis Ethyl benzoate (boiling point 211-213, melting point -34 ) belongs to a class of compounds called esters.

More information

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER Chemistry 111 Lab: Synthesis of a Copper Complex Page H-1 SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER In this experiment you will synthesize a compound by adding NH 3 to a concentrated

More information

Continued on next page

Continued on next page 1 Breathalyzer Reaction Introduction A breathalyzer (breath analyzer) is a device for estimating blood alcohol content (BAC) from a breath sample. The invention of the breathalyzer provided law enforcement

More information

Hands-On Labs SM-1 Lab Manual

Hands-On Labs SM-1 Lab Manual EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.

More information

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide.

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide. The Empirical Formula of a Copper Oxide Reading assignment: Chang, Chemistry 10 th edition, pp. 55-58. Goals The reaction of hydrogen gas with a copper oxide compound will be studied quantitatively. By

More information

Chemistry 1215 Experiment #9 Copper and its Compounds

Chemistry 1215 Experiment #9 Copper and its Compounds Chemistry 1215 Experiment #9 Copper and its Compounds Objective The objective of this experiment is to take a piece of copper as efficiently as possible through a series of chemical reactions. The final

More information

Acid/Base Extraction

Acid/Base Extraction Acid/Base Extraction Theory: Extraction is one of the most frequently used separation techniques in organic chemistry. An extraction essentially separates water-insoluble organic compounds from water-soluble

More information

12BL Experiment 10: Friedel Crafts Acylation An EAS Reaction

12BL Experiment 10: Friedel Crafts Acylation An EAS Reaction 12BL Experiment 10: Friedel Crafts Acylation An EAS Reaction Safety: Proper lab goggles/glasses must be worn (even over prescription glasses). WEAR GLOVES! Acetic anhydride is corrosive and a lachrymator

More information

SOLUTIONS EXPERIMENT 13

SOLUTIONS EXPERIMENT 13 SOLUTIONS EXPERIMENT 13 OBJECTIVE The objective of this experiment is to demonstrate the concepts of concentrations of solutions and the properties of solution. Colloids will be demonstrated. EQUIPMENT

More information

Determination of Molecular Mass by Freezing Point Depression

Determination of Molecular Mass by Freezing Point Depression Determination of Molecular Mass by Freezing Point Depression Objectives: To determine the molecular mass of an unknown solid using the colligative property of freezing point depression. Background: When

More information

Isolation of (+)-Limonene from Orange Peel

Isolation of (+)-Limonene from Orange Peel Isolation of (+)-Limonene from Orange Peel Introduction Limonene, a compound with a familiar citrus odor, is found in the peel of many citrus fruits. The structure of limonene, an unsaturated hydrocarbon,

More information

What is a Chemical Reaction?

What is a Chemical Reaction? Lab 8 Name What is a Chemical Reaction? Macroscopic Indications and Symbolic Representations Pre-Lab Assignment This written pre-lab is worth 25% (5 POINTS) of your lab report grade and must be turned

More information

1. The Solubility of a Salt

1. The Solubility of a Salt 1. The Solubility of a Salt Objective In this experiment, you will determine the solubility of a given salt at various temperatures. Also you will prepare the solubility curve for your salt. Introduction

More information

Experiment 10B DETERMINING THE MOLAR MASS OF A GAS

Experiment 10B DETERMINING THE MOLAR MASS OF A GAS Experiment 10B DETERMINING THE MOLAR MASS OF A GAS FV 3-31-16 MATERIALS: Dry 250 ml Erlenmeyer flask, piece of foil (~3 x 3 ), 800 ml beaker, 500 ml graduated cylinder, iron ring, ring stand, wire gauze,

More information

Friedel-Crafts Acylaton of Ferrocene

Friedel-Crafts Acylaton of Ferrocene Friedel-Crafts Acylaton of Ferrocene Introduction In this reaction, a compound containing two aromatic rings will undergo Friedel-Crafts acylation. Since it has two rings, it can either react once or twice,

More information

EXPERIMENT 12: Empirical Formula of a Compound

EXPERIMENT 12: Empirical Formula of a Compound EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

What is the Percent Copper in a Compound?

What is the Percent Copper in a Compound? Lab 9 Name What is the Percent Copper in a Compound? Pre-Lab Assignment Complete this pre-lab on this sheet. This written pre-lab is worth 15% (3 points) of your lab report grade and must be initialed

More information

PHYSICAL SEPARATION TECHNIQUES. Introduction

PHYSICAL SEPARATION TECHNIQUES. Introduction PHYSICAL SEPARATION TECHNIQUES Lab #2 Introduction When two or more substances, that do not react chemically, are blended together, the result is a mixture in which each component retains its individual

More information

Laboratory 2. Separation of the Components of a Mixture. Objectives. Introduction

Laboratory 2. Separation of the Components of a Mixture. Objectives. Introduction Laboratory 2 Separation of the Components of a Mixture Objectives Use extraction methods to separate the components of a mixture and determine the mass percent of each component of the mixture. Learn the

More information

Physical and Chemical Properties

Physical and Chemical Properties Physical and Chemical Properties Introduction Matter can be classified in different ways using physical and chemical properties. Physical properties include color, odor, density, hardness, structure, solubility,

More information

LAB SEVEN. Carbonate to Halide Conversion

LAB SEVEN. Carbonate to Halide Conversion Name Lab Partner(s) Section Date: Carbonate to Halide Conversion Objective The theoretical yield of the reaction product and the ratio of products to reactants will be predicted using the Law of Conservation

More information

Percent Composition of Hydrates

Percent Composition of Hydrates Name Class Date Percent Composition of Hydrates You are a research chemist working for a company that is developing a new chemical moisture absorber and indicator. The company plans to seal the moisture

More information

Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container.

Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container. TITRATION: STANDARDIZATION OF A BASE AND ANALYSIS OF STOMACH ANTACID TABLETS 2009, 1996, 1973 by David A. Katz. All rights reserved. Reproduction permitted for education use provided original copyright

More information

Dr. Caddell A Cycle of Copper Reactions Chemistry 101. The Law of Conservation of Mass: A Cycle of Copper Reactions

Dr. Caddell A Cycle of Copper Reactions Chemistry 101. The Law of Conservation of Mass: A Cycle of Copper Reactions The Law of Conservation of Mass: A Cycle of Copper Reactions EQUIPMENT You will need one 250 ml beaker, one hot plate, beaker tongs, a 50 ml graduated cylinder, a stirring rod, a wash bottle full of D.I.

More information

Molar Mass by Freezing Point Depression AP Chemistry Laboratory #4

Molar Mass by Freezing Point Depression AP Chemistry Laboratory #4 Catalog No. AP6356 Publication No. 6356A Molar Mass by Freezing Point Depression AP Chemistry Laboratory #4 Introduction A procedure for determining the molar mass of a substance is very useful to chemists.

More information

Experiment 8 Synthesis of Aspirin

Experiment 8 Synthesis of Aspirin Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The

More information

The technique used to measure the volume of sodium hydroxide solution required to react with the acid solution is called titration.

The technique used to measure the volume of sodium hydroxide solution required to react with the acid solution is called titration. Experiment 12 Chem 110 Lab TITRATION I. INTRODUCTION In this experiment you will be determining the molarity of an unknown acid solution by measuring the volume of a sodium hydroxide solution of known

More information

CHEM 2423 Extraction of Benzoic Acid EXPERIMENT 6 - Extraction Determination of Distribution Coefficient

CHEM 2423 Extraction of Benzoic Acid EXPERIMENT 6 - Extraction Determination of Distribution Coefficient EXPERIMENT 6 - Extraction Determination of Distribution Coefficient Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum

More information

DETERMINATION OF THE PERCENT COMPOSITION OF A MIXTURE

DETERMINATION OF THE PERCENT COMPOSITION OF A MIXTURE Chemistry 111 Lab: Percent Composition Page D-3 DETERMINATION OF THE PERCENT COMPOSITION OF A MIXTURE In this experiment you are to determine the composition of a mixture containing unknown proportions

More information

Lab 1: Gravimetric Analysis of a Metal Carbonate

Lab 1: Gravimetric Analysis of a Metal Carbonate AP Chemistry Lab Date: Chemist: Lab Write Up Due Date: Lab 1: Gravimetric Analysis of a Metal Carbonate BACKGROUND How do chemists determine the identity of a compound? A large variety of analytical techniques

More information

The Reaction of Calcium Chloride with Carbonate Salts

The Reaction of Calcium Chloride with Carbonate Salts The Reaction of Calcium Chloride with Carbonate Salts PRE-LAB ASSIGNMENT: Reading: Chapter 3 & Chapter 4, sections 1-3 in Brown, LeMay, Bursten, & Murphy. 1. What product(s) might be expected to form when

More information

How are drugs developed?

How are drugs developed? How are drugs developed? Take part in the research of a drug Experiment workshop Student guide 1 Introduction Many stages are involved in the discovery and development of medicines. One of the most important

More information

Properties of Matter and Density

Properties of Matter and Density Cautions Flames will be used and some of the chemicals will have odors and may stain your hands or clothes if you come into direct contact with them. Purpose In this experiment you will characterize common

More information

Synthesize t-butyl (or t-pentyl) Chloride

Synthesize t-butyl (or t-pentyl) Chloride Synthesize t-butyl (or t-pentyl) Chloride Note: This experiment may utilize either t-butyl Alcohol (m.p. 25.7 o C) or t-pentyl Alcohol (m.p. -9.5 o C) as one of the starting reactants Text References Slayden

More information

ANALYSIS OF PHOSPHORUS IN PLANT FOOD

ANALYSIS OF PHOSPHORUS IN PLANT FOOD Experiment 10 ANALYSIS OF PHOSPHORUS IN PLANT FOOD Adapted by Ross S. Nord, Eastern Michigan University, from Analysis of Phosphorous in Fertilizer found at http://chem.lapeer.org/chem2docs/phosphateanal.html

More information

Taking Apart the Pieces

Taking Apart the Pieces Lab 4 Taking Apart the Pieces How does starting your morning out right relate to relief from a headache? I t is a lazy Saturday morning and you ve just awakened to your favorite cereal Morning Trails and

More information

The Molar Mass of a Gas

The Molar Mass of a Gas The Molar Mass of a Gas Goals The purpose of this experiment is to determine the number of grams per mole of a gas by measuring the pressure, volume, temperature, and mass of a sample. Terms to Know Molar

More information

Pre-Lab Exercises Lab 1: Scientific Measurement

Pre-Lab Exercises Lab 1: Scientific Measurement Pre-Lab Exercises Lab 1: Scientific Measurement Name Date Section 1. What is a hypothesis? 2. One meter equals millimeters. 3. Which has a larger volume, a liter or a quart? 4. If a cube had a volume of

More information

Hydrogen Peroxide Analysis

Hydrogen Peroxide Analysis elearning 2009 Introduction Hydrogen Peroxide Analysis Consumer Chemistry Publication No. 91253 Hydrogen peroxide is regarded as an environmentally friendly alternative to chlorine for water purification

More information

Vitamin C Content of Fruit Juice

Vitamin C Content of Fruit Juice 1 Vitamin C Content of Fruit Juice Introduction Vitamin C Vitamins are organic compounds that have important biological functions. For instance, in humans they enable a variety of enzymes in the body to

More information

Volumetric Glassware

Volumetric Glassware There are several types of glassware used to measure the volume of a liquid accurately. These include graduated cylinders, volumetric flasks, burets, and pipets. Graduated cylinders and volumetric flasks

More information

STEP 5: ESTRONE-3-METHYL ETHER-17-ETHYLENE KETAL. Li / NH 3 (l) 1. Procedure

STEP 5: ESTRONE-3-METHYL ETHER-17-ETHYLENE KETAL. Li / NH 3 (l) 1. Procedure STEP 5: ESTRNE-3-METYL ETER-17-ETYLENE KETAL 3 C Li / N 3 (l) 3 C C 3 C 3 1. Procedure At least 24 hours in advance: Fill a 250-mL, 3-necked round-bottomed flask equipped with a stirbar with 50 ml acetone.

More information

Experiment #7: Esterification

Experiment #7: Esterification Experiment #7: Esterification Pre-lab: 1. Choose an ester to synthesize. Determine which alcohol and which carboxylic acid you will need to synthesize your ester. Write out the reaction for your specific

More information

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB Purpose: Most ionic compounds are considered by chemists to be salts and many of these are water soluble. In this lab, you will determine the solubility,

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

CH204 Experiment 2. Experiment 1 Post-Game Show. Experiment 1 Post-Game Show continued... Dr. Brian Anderson Fall 2008

CH204 Experiment 2. Experiment 1 Post-Game Show. Experiment 1 Post-Game Show continued... Dr. Brian Anderson Fall 2008 CH204 Experiment 2 Dr. Brian Anderson Fall 2008 Experiment 1 Post-Game Show pipette and burette intensive and extensive properties interpolation determining random experimental error What about gross error

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What

More information

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual Making Biodiesel from Virgin Vegetable Oil: Teacher Manual Learning Goals: Students will understand how to produce biodiesel from virgin vegetable oil. Students will understand the effect of an exothermic

More information

Core Lab: Properties of Ionic and Molecular Compounds Unit 3: Chemical Reactions

Core Lab: Properties of Ionic and Molecular Compounds Unit 3: Chemical Reactions Core Lab: Properties of Ionic and Molecular Compounds Unit 3: Chemical Reactions Teacher Notes: The main purpose of this lab is for the students to determine the differences between ionic and molecular

More information

CHM Accuracy and the Measurement of Volume

CHM Accuracy and the Measurement of Volume CHM 130 - Accuracy and the Measurement of Volume PURPOSE: The purpose of this experiment is to practice using various types of volume measuring apparatus, focusing on their uses and accuracy. DISCUSSION:

More information