Board Design Guidelines for LVDS Systems

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Board Design Guidelines for LVDS Systems"

Transcription

1 Board Design Guidelines for LVDS Systems WP-DESLVDS-2.1 White Paper This white paper explains the basic PCB layout guidelines for designing low-voltage differential signaling (LVDS) boards using Altera FPGAs. Introduction LVDS is a high-speed, low-voltage, low-power, and low-noise general-purpose I/O interface standard. The low-voltage swing and differential current mode outputs significantly reduce electromagnetic interference (EMI). These outputs have fast edge rates that cause signal paths to act as transmission lines. Therefore, ultra-high-speed board design and differential signal theory knowledge is especially useful for designing a board containing Altera FPGAs that integrate LVDS. In addition, a number of factors, such as differential traces, impedance matching, crosstalk, and EMI, have to be considered while designing an LVDS board. Differential Traces LVDS utilizes a differential transmission scheme, which means that every LVDS signal uses two lines. The voltage difference between these two lines defines the value of the LVDS signal. For successful transmission of LVDS signals over differential traces, the following guidelines should be followed while laying out the board. To ensure minimal reflections and maintain the receiver s common mode noise rejection, run the differential traces as closely as possible after they leave the driving IC. Also, to avoid discontinuities in the differential impedance, the distance between the differential LVDS signals should remain constant over the entire length of the traces. To minimize skew, the electrical lengths between the differential LVDS traces should be the same. Arrival of one of the signals before the other creates a phase difference between the signal pair, which impairs the system performance by reducing the available receiver skew margin (RSKM). Minimize the number of vias or other discontinuities on the signal path. Any parasitic loading, such as capacitance, must be present in equal amounts to each line of the differential pair. To avoid signal discontinuities, arcs or 45 traces are recommended instead of 90 turns. Impedance Matching Due to the high speed of LVDS, impedance matching is very important, even for very short runs. Any discontinuities in the differential LVDS traces will cause signal reflections, thereby degrading the signal quality. These discontinuities also increase the common mode noise and will be radiated as EMI. The LVDS outputs, being current mode outputs, need a termination resistor to close the loop and will not work without the resistor termination. The value of this 101 Innovation Drive San Jose, CA Copyright 2010 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective holders as described at Altera warrants performance of its semiconductor products to current specifications in accordance with Altera s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. September 2010 Altera Corporation Feedback Subscribe

2 Page 2 Crosstalk Between LVDS and Single-Ended Signals termination resistor (RT) is chosen to match the differential impedance of the transmission line and can range from 90 to 110 (typically 100. Figure 1 shows the correct usage of the termination resistor. Figure 1. LVDS Termination Scheme From Transmitter ±5% 1/20 W + LVDS Receiver Buffer - The following guidelines should be used when selecting the termination resistor for an LVDS channel. Place the termination resistor at the far end of the differential interconnect from the transmitter. A single 100 resistor is sufficient. Use surface-mount thick-film or 0805-size chip resistors. Install the termination resistor within 7 mm of the receiver, as close to the receiver as possible. Crosstalk Between LVDS and Single-Ended Signals To reduce crosstalk between LVDS and single-ended signals such as LVTTL, SSTL-3, SSTL-2, and similar standards, the differential LVDS signals must be isolated from single-ended signals. If the LVDS and single-ended signals are not placed sufficiently apart from one another, the single-ended signals may cause some interference on the differential pair. The LVDS signal that runs closest to the single-ended signal trace will be affected more than the farther one, creating a difference that will not be rejected by the LVDS receiver as common mode noise. This interference is unlikely to cause the LVDS receiver to falsely trigger; however, it will degrade the signal quality of the LVDS signal, thereby reducing the noise margin. On the same PCB layer, the singleended signals should be placed at least 12 mm from the LVDS signals to avoid crosstalk effects. The VCC and ground planes can also be used to isolate the LVDS signal layers from the single-ended signal layers. Figure 2 shows the shielding of the LVDS layers from the single-ended layers using the power planes. Figure 2. Power Planes LVDS Layer VCC Plane GND Plane Single-Ended Signal Layer Board Design Guidelines for LVDS Systems September 2010 Altera Corporation

3 Electromagnetic Interference Page 3 Electromagnetic Interference Electromagnetic radiation is usually a cause for concern for designers because this radiation can propagate through transverse electromagnetic (TEM) waves. These waves can escape through shielding, causing a system to fail electromagnetic compliance (EMC) tests. With single-ended transmission such as CMOS or TTL, almost all of the field lines are free to radiate away from the conductor. Some of these field lines can travel as TEM waves, which may escape the system and thereby cause EMC problems. For LVDS differential signals, field lines tend to cancel each other out, and the electric fields tend to couple. These coupled fields are tied up with each other and thus are not allowed to escape. Only a few fringing fields escape out of this coupling. Therefore, LVDS, being a differential transmission system, generates less EMI compared to CMOS or TTL signals. Figure 3 shows the electromagnetic field effects in single-ended traces and differential pairs. Figure 3. Electromagnetic Field Effects Fringing Electromagnetic Fields Coupled Fields LVDS signals can be routed on the PCB microstrip (external layers) and stripline (middle layers). Figure 4 shows the electromagnetic field radiation for LVDS stripline and microstrip traces. Figure 4. Microstrip and Stripline Differential Pair Dimensions Microstrip Stripline September 2010 Altera Corporation Board Design Guidelines for LVDS Systems

4 Page 4 General PCB Guidelines For microstrip, the ground plane below couples additional field lines, thereby tying up more field lines and reducing the EMI effects. Stripline couples all of the field lines, thereby reducing EMI significantly, but it also has the following penalties: Considerably higher (typically one and a half times) propagation times than that of microstrip Needs additional vias Needs more layers Difficulty in achieving 100 differential impedance accurately In order to have maximum coupling of the magnetic field lines, the space between two conductors of a differential pair should be kept to a minimum. Figure 5 shows the dimensions of a stripline and microstrip pair. Figure 5. Microstrip and Stripline Differential Pair Dimensions W S W D + - B W S W D + - Microstrip Stripline For better coupling within a differential pair, make S < 2W, S < B, and D = 2S where: W width of a single trace in a differential pair S space between two traces of a differential pair D space between two adjacent differential pairs B thickness of the board General PCB Guidelines For good coupling between two conductors of a differential pair, the following rules should be followed: Space between the conductors should not be more than twice the width (S < 2W) Thickness of the board should be more than the space between the conductors (B > S) Space between two adjacent differential pairs should be greater than or equal to twice the space between the two individual conductors. (D > 2S) This section lists general PCB layout and supply voltage guidelines. The commonly used FR-4 material works well for low frequency (500 to 600 MHz) applications. G-TEK or Teflon can be considered for high-speed designs. Estimate the number, value, and type of decoupling capacitors required to develop an efficient PCB decoupling strategy during the early design phase, without going through extensive pre-layout simulations. Altera s Power Delivery Network (PDN) tool provides these critical pieces of information. Board Design Guidelines for LVDS Systems September 2010 Altera Corporation

5 LVDS Cables Page 5 1 For further information about the PDN tool that targets your FPGA, refer to the Power Distribution Network Design Tool webpage. When using LVDS devices, all the VCC_CKLK and VCC_CKOUT pins should be bypassed with a 0.1-, 0.01-, and F mica, ceramic or polystyrene 0805-size surface-mount chip capacitors connected in parallel. These capacitors should be placed immediately underneath the pins. In addition to these capacitors, another 2.7 F capacitor should be placed close to the pin. Keep the LVDS drivers and the receiver as close to any connectors as possible. The physical length of each trace between the transmitter outputs and the connector should be matched to within 5 mm of each other to reduce data skew. Isolate LVDS signals from TTL signals to reduce crosstalk (preferably on different layers). Separate LVDS ground and supply planes. Always use high-impedance, low-capacitance scope probes with a wide bandwidth scope. Keep stub lengths as short as possible. Multiple vias should be used to connect to power and ground planes. LVDS Cables Cables can be used to transfer the LVDS signals from one board to another. However, due to the specific impedance matching and low skew requirements, typical cables may not be suitable for LVDS. Use the following guidelines to select cables for LVDS applications: The cables must fulfill the matched impedance requirement of LVDS. Cables should have very low skew. The conductor pairs must be balanced (i.e., both of the conductors should incur the same delay while going through the cable). For low speed and very short runs, ribbon cables can be used. For longer runs and high speed, use twisted-pair cables (balanced twisted-pair cables work well in this application). If you use ribbon cables, the signal pairs must be separated by the ground wires, and the edge conductors of the ribbon cable should not be used to carry signals. Figure 6 shows a ribbon cable used for LVDS application. Figure 6. Ribbon Cable for Low Speed LVDS Applications GND GND Twin-axial cables can also be used for LVDS applications, as they are far more balanced then coaxial cables. In contrast to coaxial cables, twin-axial cables generate far less EMI due to the field cancellation effects. The coaxial and twin-axial cables are shown in Figure 7. September 2010 Altera Corporation Board Design Guidelines for LVDS Systems

6 Page 6 LVDS Connectors Figure 7. Coaxial and Twin-Axial Cables Coaxial Cable Twin-Axial Cable For optimum performance, use twisted-pair cables, because the LVDS receiver rejects whatever small common-mode electromagnetic radiation these cables pick up. For small distances (approximately 0.5 m), the CAT3 balanced twisted-pair cables work well. For distances greater than 0.5 m and data rates greater than 500 MHz, use CAT5 balanced cables. LVDS Connectors Connectors can be used to connect the LVDS signals from one board to another. Figure 8 shows good and bad examples of the LVDS connectors. In the right example, the differential pairs are the same length; in the left example, signals of the same differential pair have different lengths, thereby causing skew. Figure 8. Bad (left) and Good (right) LVDS Connectors Short Lead Long Lead Use the following guidelines while selecting connectors to be used for LVDS applications. Connectors must have low skew with matched impedance. Connectors with same length leads should be selected for lower skew and crosstalk. The two members of the same differential pair must be placed adjacent to each other on the connector. Ground pins should be placed between differential pairs. End pins of the connectors should preferably be grounded and must not be used for high-speed signals. All the unused pins of the connector should be properly terminated. Board Design Guidelines for LVDS Systems September 2010 Altera Corporation

7 Summary Page 7 Summary To benefit from the high speed and low noise of LVDS, designers must ensure that differential trace conductors, both on-board and going through connectors or cables, are closely coupled so as to have low noise and are well balanced for low skew and impedance matching. Further Information Document Revision History Table 1. Document Revision History Power Distribution Network Design Tool: Table 1 shows the revision history for this document. Date Version Changes September Minor text edit to Impedance Matching. Updated General PCB Guidelines. July Removed LVDS in APEX Devices, Figure 6. Minor text edits. July Initial release. September 2010 Altera Corporation Board Design Guidelines for LVDS Systems

PCB Design Guidelines for LVDS Technology

PCB Design Guidelines for LVDS Technology PCB Design Guidelines for LVDS Technology INTRODUCTION Technology advances has generated devices operating at clock speeds exceeding 100 MHz With higher clock rates and pico seconds edge rate devices PCB

More information

11. High-Speed Differential Interfaces in Cyclone II Devices

11. High-Speed Differential Interfaces in Cyclone II Devices 11. High-Speed Differential Interfaces in Cyclone II Devices CII51011-2.2 Introduction From high-speed backplane applications to high-end switch boxes, low-voltage differential signaling (LVDS) is the

More information

PL-277x Series SuperSpeed USB 3.0 SATA Bridge Controllers PCB Layout Guide

PL-277x Series SuperSpeed USB 3.0 SATA Bridge Controllers PCB Layout Guide Application Note PL-277x Series SuperSpeed USB 3.0 SATA Bridge Controllers PCB Layout Guide Introduction This document explains how to design a PCB with Prolific PL-277x SuperSpeed USB 3.0 SATA Bridge

More information

Differential Signaling Doesn t Require Differential Impedance. Or, How to Design a Differential Signaling Circuit

Differential Signaling Doesn t Require Differential Impedance. Or, How to Design a Differential Signaling Circuit Article for Printed Circuit Design By Lee W. Ritchey, 3Com Corporation Differential Signaling Doesn t Require Differential Impedance Or, How to Design a Differential Signaling Circuit That title may seem

More information

TI HDMI Design Guide. HDMI Design Guide. June 2007 High-Speed Interface Products 1

TI HDMI Design Guide. HDMI Design Guide. June 2007 High-Speed Interface Products 1 HDMI Design Guide June 2007 High-Speed Interface Products 1 Introduction This application note presents design guide lines helping users of the HDMI 3:1 mux-repeater, TMDS341A, to utilize the full performance

More information

MEETING EMI REQUIREMENTS IN HIGH SPEED BOARD DESIGNS WITH ALLEGRO PCB SI

MEETING EMI REQUIREMENTS IN HIGH SPEED BOARD DESIGNS WITH ALLEGRO PCB SI TECHNICAL PAPER MEETING EMI REQUIREMENTS IN HIGH SPEED BOARD DESIGNS WITH ALLEGRO PCB SI By Zhen Mu Cadence Design Systems, Inc. Even though Signal Integrity (SI) is becoming more and more critical in

More information

Stratix II Device System Power Considerations

Stratix II Device System Power Considerations Stratix II Device System Power Considerations June 2004, ver. 1.0 Application Note 355 Introduction Power Components Altera developed Stratix II devices using a 90-nm process technology optimized for performance

More information

Guidelines for Designing High-Speed FPGA PCBs

Guidelines for Designing High-Speed FPGA PCBs Guidelines for Designing High-Speed FPGA PCBs February 2004, ver. 1.1 Application Note Introduction Over the past five years, the development of true analog CMOS processes has led to the use of high-speed

More information

Using Altera MAX Series as Microcontroller I/O Expanders

Using Altera MAX Series as Microcontroller I/O Expanders 2014.09.22 Using Altera MAX Series as Microcontroller I/O Expanders AN-265 Subscribe Many microcontroller and microprocessor chips limit the available I/O ports and pins to conserve pin counts and reduce

More information

IDT80HSPS1616 PCB Design Application Note - 557

IDT80HSPS1616 PCB Design Application Note - 557 IDT80HSPS1616 PCB Design Application Note - 557 Introduction This document is intended to assist users to design in IDT80HSPS1616 serial RapidIO switch. IDT80HSPS1616 based on S-RIO 2.0 spec offers 5Gbps

More information

Figure 1 FPGA Growth and Usage Trends

Figure 1 FPGA Growth and Usage Trends White Paper Avoiding PCB Design Mistakes in FPGA-Based Systems System design using FPGAs is significantly different from the regular ASIC and processor based system design. In this white paper, we will

More information

Implementing QPI Using the Transceiver Native PHY IP Core in Stratix V Devices

Implementing QPI Using the Transceiver Native PHY IP Core in Stratix V Devices 2015.12.17 Implementing QPI Using the Transceiver Native PHY IP Core in Stratix V Devices AN-687 Subscribe This application note describes how to implement the Intel QuickPath Interconnect (QPI) protocol

More information

Intel Layout Checklist (version 1.0)

Intel Layout Checklist (version 1.0) Intel 82566 Layout Checklist (version 1.0) Project Name Fab Revision Date Designer Intel Contact SECTION CHECK ITEMS REMARKS DONE General Obtain the most recent documentation and specification updates

More information

Using the On-Chip Signal Quality Monitoring Circuitry (EyeQ) Feature in Stratix IV Transceivers

Using the On-Chip Signal Quality Monitoring Circuitry (EyeQ) Feature in Stratix IV Transceivers Using the On-Chip Signal Quality Monitoring Circuitry (EyeQ) Feature in Stratix IV Transceivers AN-605-1.2 Application Note This application note describes how to use the on-chip signal quality monitoring

More information

Using Pre-Emphasis and Equalization with Stratix GX

Using Pre-Emphasis and Equalization with Stratix GX Introduction White Paper Using Pre-Emphasis and Equalization with Stratix GX New high speed serial interfaces provide a major benefit to designers looking to provide greater data bandwidth across the backplanes

More information

CLOCK SYSTEM DESIGN APPLICATION NOTE AN-01. Introduction

CLOCK SYSTEM DESIGN APPLICATION NOTE AN-01. Introduction SY10H842 CLOCK SYSTEM DESIGN Introduction Clock distribution is a significant design challenge for systems operating above 25MHz. The Micrel-Synergy Semiconductor PECL series of clock chips simplifies

More information

Grounding Demystified

Grounding Demystified Grounding Demystified 3-1 Importance Of Grounding Techniques 45 40 35 30 25 20 15 10 5 0 Grounding 42% Case 22% Cable 18% Percent Used Filter 12% PCB 6% Grounding 42% Case Shield 22% Cable Shielding 18%

More information

Signal Integrity: Tips and Tricks

Signal Integrity: Tips and Tricks White Paper: Virtex-II, Virtex-4, Virtex-5, and Spartan-3 FPGAs R WP323 (v1.0) March 28, 2008 Signal Integrity: Tips and Tricks By: Austin Lesea Signal integrity (SI) engineering has become a necessary

More information

Eatman Associates 2014 Rockwall TX 800-388-4036 rev. October 1, 2014. Striplines and Microstrips (PCB Transmission Lines)

Eatman Associates 2014 Rockwall TX 800-388-4036 rev. October 1, 2014. Striplines and Microstrips (PCB Transmission Lines) Eatman Associates 2014 Rockwall TX 800-388-4036 rev. October 1, 2014 Striplines and Microstrips (PCB Transmission Lines) Disclaimer: This presentation is merely a compilation of information from public

More information

Using the Agilent 3070 Tester for In-System Programming in Altera CPLDs

Using the Agilent 3070 Tester for In-System Programming in Altera CPLDs Using the Agilent 3070 Tester for In-System Programming in Altera CPLDs AN-628-1.0 Application Note This application note describes how to use the Agilent 3070 test system to achieve faster programming

More information

Here, we derive formulas for computing crosstalk and show how to reduce it using well designed PCB layer stacks.

Here, we derive formulas for computing crosstalk and show how to reduce it using well designed PCB layer stacks. Crosstalk Ground and power planes serve to: Provide stable reference voltages Distribute power to logic devices Control crosstalk Here, we derive formulas for computing crosstalk and show how to reduce

More information

Application Note AN:005. FPA Printed Circuit Board Layout Guidelines. Introduction Contents. The Importance of Board Layout

Application Note AN:005. FPA Printed Circuit Board Layout Guidelines. Introduction Contents. The Importance of Board Layout FPA Printed Circuit Board Layout Guidelines By Paul Yeaman Principal Product Line Engineer V I Chip Strategic Accounts Introduction Contents Page Introduction 1 The Importance of 1 Board Layout Low DC

More information

PCB Design Conference - East Keynote Address EMC ASPECTS OF FUTURE HIGH SPEED DIGITAL DESIGNS

PCB Design Conference - East Keynote Address EMC ASPECTS OF FUTURE HIGH SPEED DIGITAL DESIGNS OOOO1 PCB Design Conference - East Keynote Address September 12, 2000 EMC ASPECTS OF FUTURE HIGH SPEED DIGITAL DESIGNS By Henry Ott Consultants Livingston, NJ 07039 (973) 992-1793 www.hottconsultants.com

More information

Hardware Design Considerations for MCR20A IEEE Devices

Hardware Design Considerations for MCR20A IEEE Devices Freescale Semiconductor Application Note Document Number: AN5003 Rev. 0, 07/2015 Hardware Design Considerations for MCR20A IEEE 802.15.4 Devices 1 Introduction This application note describes Printed Circuit

More information

White Paper Utilizing Leveling Techniques in DDR3 SDRAM Memory Interfaces

White Paper Utilizing Leveling Techniques in DDR3 SDRAM Memory Interfaces White Paper Introduction The DDR3 SDRAM memory architectures support higher bandwidths with bus rates of 600 Mbps to 1.6 Gbps (300 to 800 MHz), 1.5V operation for lower power, and higher densities of 2

More information

White Paper The Need for Dynamic Phase Alignment in High-Speed FPGAs

White Paper The Need for Dynamic Phase Alignment in High-Speed FPGAs Introduction White Paper The Need for Dynamic Phase Alignment in High-Speed FPGAs With the explosion of data, voice, and video traffic across many markets, FPGAs are now being used in applications that

More information

Printed Circuit Boards. Bypassing, Decoupling, Power, Grounding Building Printed Circuit Boards CAD Tools

Printed Circuit Boards. Bypassing, Decoupling, Power, Grounding Building Printed Circuit Boards CAD Tools Printed Circuit Boards (PCB) Printed Circuit Boards Bypassing, Decoupling, Power, Grounding Building Printed Circuit Boards CAD Tools 1 Bypassing, Decoupling, Power, Grounding 2 Here is the circuit we

More information

Common Mode Choke Filtering Improves CMRR in Ethernet Transformer Applications. Application Note. June 2011

Common Mode Choke Filtering Improves CMRR in Ethernet Transformer Applications. Application Note. June 2011 Common Mode Choke Filtering Improves CMRR in Ethernet Transformer Applications June 2011 Application Note Common mode chokes provide an effective EMI filtering solution for Ethernet transformer applications.

More information

This application note is written for a reader that is familiar with Ethernet hardware design.

This application note is written for a reader that is familiar with Ethernet hardware design. AN18.6 SMSC Ethernet Physical Layer Layout Guidelines 1 Introduction 1.1 Audience 1.2 Overview SMSC Ethernet products are highly-integrated devices designed for 10 or 100 Mbps Ethernet systems. They are

More information

AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation

AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation Abstract EMC compatibility is becoming a key design

More information

PCB Dielectric Material Selection and Fiber Weave Effect on High-Speed Channel Routing

PCB Dielectric Material Selection and Fiber Weave Effect on High-Speed Channel Routing PCB Dielectric Material Selection and Fiber Weave Effect on High-Speed Channel Routing AN-528-1.1 Application Note Differential Signaling As data rates increase, designers are increasingly moving away

More information

AN PCB design and layout guidelines for CBTL04083A/CBTL04083B. Document information

AN PCB design and layout guidelines for CBTL04083A/CBTL04083B. Document information PCB design and layout guidelines for CBTL04083A/CBTL04083B Rev. 1 22 July 2011 Application note Document information Info Content Keywords high-speed signal, PCB, layout, loss, jitter Abstract This document

More information

AP24026. Microcontroller. EMC Design Guidelines for Microcontroller Board Layout. Microcontrollers. Application Note, V 3.

AP24026. Microcontroller. EMC Design Guidelines for Microcontroller Board Layout. Microcontrollers. Application Note, V 3. Microcontroller Application Note, V 3.0, April 2005 AP24026 for Microcontroller Board Layout Microcontrollers Never stop thinking. TriCore Revision History: 2005-04 V 3.0 Previous Version: 2001-04 Page

More information

Reducing Electromagnetic Interference (EMI) With Low Voltage Differential Signaling (LVDS)

Reducing Electromagnetic Interference (EMI) With Low Voltage Differential Signaling (LVDS) Application Report SLLA030C September 2000 Revised June 2002 Reducing Electromagnetic Interference (EMI) With Low Voltage Differential Signaling (LVDS) Elliott Cole High-Performance Analog ABSTRACT This

More information

Proper Wiring for RS-485

Proper Wiring for RS-485 Proper Wiring for RS-485 This application note is intended to provide basic guidelines for wiring an RS-485 network. The RS-485 specification (officially called TIA/EIA-485-A) does not specifically spell

More information

Designing with High-Density BGA Packages for Altera Devices

Designing with High-Density BGA Packages for Altera Devices 2014.12.15 Designing with High-Density BGA Packages for Altera Devices AN-114 Subscribe As programmable logic devices (PLDs) increase in density and I/O pins, the demand for small packages and diverse

More information

USB-Blaster Download Cable User Guide

USB-Blaster Download Cable User Guide USB-Blaster Download Cable User Guide Subscribe UG-USB81204 101 Innovation Drive San Jose, CA 95134 www.altera.com TOC-2 Contents Introduction to USB-Blaster Download Cable...1-1 USB-Blaster Revision...1-1

More information

RS485 & RS422 Basics

RS485 & RS422 Basics RUA ALVARO CHAVES, 155 PORTO ALEGRE RS BRASIL 90220-040 TEL: +55 (51) 3323 3600 FAX: +55 (51) 3323 3644 info@novus.com.br RS485 & RS422 Basics INTRODUCTION The 422 and 485 standards, as they are known

More information

Material: FR-4 Copper thickness: 1.0 to 2.0 ounces Dielectric thickness: 37 mils (1 mm finished board thickness)

Material: FR-4 Copper thickness: 1.0 to 2.0 ounces Dielectric thickness: 37 mils (1 mm finished board thickness) AN 15.17 PCB Layout Guide for USB Hubs Introduction Two Layer PCB PCB Constraints This application note provides information on designing a printed circuit board (PCB) for the SMSC USB251x/xB Family of

More information

Dual DIMM DDR2 and DDR3 SDRAM Interface Design Guidelines

Dual DIMM DDR2 and DDR3 SDRAM Interface Design Guidelines Dual DIMM DDR2 and DDR3 SDRAM Interface Design Guidelines May 2009 AN-444-1.1 This application note describes guidelines for implementing dual unbuffered DIMM DDR2 and DDR3 SDRAM interfaces. This application

More information

Application Note: PCB Design By: Wei-Lung Ho

Application Note: PCB Design By: Wei-Lung Ho Application Note: PCB Design By: Wei-Lung Ho Introduction: A printed circuit board (PCB) electrically connects circuit components by routing conductive traces to conductive pads designed for specific components

More information

14 DIFFERENTIAL TRACES AND IMPEDANCE

14 DIFFERENTIAL TRACES AND IMPEDANCE 14 DIFFERENTIAL TRACES AND IMPEDANCE BACKGROUND We generally think of signals propagating through our circuits in one of three commonly understood modes: single-ended, differential mode, or common mode.

More information

USB-Blaster II Download Cable User Guide

USB-Blaster II Download Cable User Guide USB-Blaster II Download Cable User Guide Subscribe UG-01150 101 Innovation Drive San Jose, CA 95134 www.altera.com TOC-2 Contents Setting Up the USB-Blaster II Download Cable...1-1 Supported Devices and

More information

An Engineer s Guide to Full Compliance for CAT 6A Connecting Hardware

An Engineer s Guide to Full Compliance for CAT 6A Connecting Hardware for CAT 6A Connecting Hardware Written by: Antoine Pelletier Engineer, Global Cabling Products Intertek www.intertek-etlsemko.com 1-800-WORLDLAB Introduction The telecommunication industry recently achieved

More information

2 TO 4 DIFFERENTIAL PCIE GEN1 CLOCK MUX ICS557-06. Features

2 TO 4 DIFFERENTIAL PCIE GEN1 CLOCK MUX ICS557-06. Features DATASHEET 2 TO 4 DIFFERENTIAL PCIE GEN1 CLOCK MUX ICS557-06 Description The ICS557-06 is a two to four differential clock mux designed for use in PCI-Express applications. The device selects one of the

More information

Is Now Part of To learn more about ON Semiconductor, please visit our website at

Is Now Part of To learn more about ON Semiconductor, please visit our website at Is Now Part of To learn more about ON Semiconductor, please visit our website at www.onsemi.com ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC

More information

Fairchild Semiconductor Application Note August 2002 Revised August What is LVDS?

Fairchild Semiconductor Application Note August 2002 Revised August What is LVDS? AN-5029 Fairchild Semiconductor Application Note August 2002 Revised August 2002 Interfacing Between PECL and LVDS Differential Technologies Introduction Over the past several years, growth in the demand

More information

Simulations in Guiding Gpbs PCB Design of Communication Systems

Simulations in Guiding Gpbs PCB Design of Communication Systems Abstract Simulations in Guiding Gpbs PCB Design of Communication Systems Zhen Mu Sycamore Networks Inc. 150 Apollo Dr., Chelmsford, MA 01824 USA This paper describes how to effectively use CAD tools for

More information

Design Considerations for High-Speed RS-485 Data Links

Design Considerations for High-Speed RS-485 Data Links Design Considerations for High-Speed RS-485 Data Links Introduction The trend in high-speed data networks continues to push for higher data rates over longer transmission distances, and under ever-harsher

More information

Section IV. I/O Standards

Section IV. I/O Standards Section IV. I/O Standards This section provides information on Cyclone II single-ended, voltage referenced, and differential I/O standards. This section includes the following chapters: Chapter 10, Selectable

More information

CXP BOARD ROUTING RECOMMENDATIONS

CXP BOARD ROUTING RECOMMENDATIONS TABLE OF CONTENTS 1.0 SCOPE 2.0 PC BOARD REQUIREMENTS 2.1 MATERIAL THICKNESS 2.2 TOLERANCE 2.3 HOLE DIMENSIONS 2.4 LAYOUT 3.0 HIGHSPEED ROUTING 3.1 GENERAL ROUTING EXAMPLE 3.2 HIGH-SPEED TRANSMISSION LINE

More information

AND8326/D. PCB Design Guidelines for Dual Power Supply Voltage Translators

AND8326/D. PCB Design Guidelines for Dual Power Supply Voltage Translators PCB Design Guidelines for Dual Power Supply Voltage Translators Jim Lepkowski ON Semiconductor Introduction The design of the PCB is an important factor in maximizing the performance of a dual power supply

More information

This paper will explain some of the more important factors on how UTP wires work; specifically it will cover the following:

This paper will explain some of the more important factors on how UTP wires work; specifically it will cover the following: UTP Technology In the late 1970s, unshielded twisted pair (UTP) cabling originated in the computer industry as a means of transmitting digital data over computer networks. This cable was designed to be

More information

Time and Frequency Domain Analysis for Right Angle Corners on Printed Circuit Board Traces

Time and Frequency Domain Analysis for Right Angle Corners on Printed Circuit Board Traces Time and Frequency Domain Analysis for Right Angle Corners on Printed Circuit Board Traces Mark I. Montrose Montrose Compliance Services 2353 Mission Glen Dr. Santa Clara, CA 95051-1214 Abstract: For years,

More information

AVR32787: AVR32 AT32UC3A3 High Speed USB Design Guidelines. 32-bit AVR Microcontroller. Application Note. 1. Introduction

AVR32787: AVR32 AT32UC3A3 High Speed USB Design Guidelines. 32-bit AVR Microcontroller. Application Note. 1. Introduction AVR32787: AVR32 AT32UC3A3 High Speed USB Design Guidelines 1. Introduction This document provides guidelines for integrating an AVR 32 AT32UC3A3x high speed USB device controller onto a 4-layer PCB. The

More information

Performance of LVDS With Different Cables

Performance of LVDS With Different Cables Application Report SLLA53B - February 22 Performance of LVDS With Different Cables Elliott Cole, P.E. Mixed Signal Products ABSTRACT This application report focuses on cables for use with LVDS devices

More information

Do's and Don'ts for PCB Layer Stack-up. By Pragnesh Patel & Ronak Shah

Do's and Don'ts for PCB Layer Stack-up. By Pragnesh Patel & Ronak Shah Do's and Don'ts for PCB Layer Stack-up By Pragnesh Patel & Ronak Shah 1. Introduction Each day the electronic gadgets complexity increases with the miniaturization requirements, boards are becoming much

More information

PCIE 16X CONNECTOR BOARD ROUTING RECOMMENDATIONS TABLE OF CONTENTS

PCIE 16X CONNECTOR BOARD ROUTING RECOMMENDATIONS TABLE OF CONTENTS TABLE OF CONTENTS 1.0 SCOPE 2.0 PC BOARD REQUIREMENTS 2.1 MATERIAL THICKNESS 2.2 TOLERANCE 2.3 HOLE DIMENSIONS 2.4 LAYOUT 3.0 HIGHSPEED ROUTING 3.1 GENERAL ROUTING EXAMPLE 3.2 HIGH-SPEED TRANSMISSION LINE

More information

LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays

LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays AN-5059 Fairchild Semiconductor Application Note May 2005 Revised May 2005 LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays Differential technologies such as

More information

WHY and HOW to GROUND ELECTRICAL SYSTEMS

WHY and HOW to GROUND ELECTRICAL SYSTEMS WHY and HOW to GROUND ELECTRICAL SYSTEMS Dr. Tom Van Doren Van Doren Company Rolla, MO, USA 1-573-578-4193 vandoren@mst.edu emc-education.com emclab.mst.edu Grounding is a very controversial and misunderstood

More information

LVDS Owner s Manual Low-Voltage Differential Signaling

LVDS Owner s Manual Low-Voltage Differential Signaling LVDS Owner s Manual Low-Voltage Differential Signaling 3rd Edition, Spring 2004 National Semiconductor The Sight & Sound of Information LVDS Owner s Manual Low-Voltage Differential Signaling Spring 2004

More information

Interfacing Between LVPECL, VML, CML, and LVDS Levels

Interfacing Between LVPECL, VML, CML, and LVDS Levels Application Report SLLA120 - December 2002 Interfacing Between LVPECL, VML, CML, and LVDS Levels Nick Holland ABSTRACT Serial Gigabit Solutions This application report introduces the various interface

More information

Interfacing Intel 8255x Fast Ethernet Controllers without Magnetics. Application Note (AP-438)

Interfacing Intel 8255x Fast Ethernet Controllers without Magnetics. Application Note (AP-438) Interfacing Intel 8255x Fast Ethernet Controllers without Magnetics Application Note (AP-438) Revision 1.0 November 2005 Revision History Revision Revision Date Description 1.1 Nov 2005 Initial Release

More information

CAPACITIVE SENSING MADE EASY, Part 2 Design Guidelines

CAPACITIVE SENSING MADE EASY, Part 2 Design Guidelines CAPACITIVE SENSING MADE EASY, Part 2 Design Guidelines By Pushek Madaan and Priyadeep Kaur, Cypress Semiconductor Corp. When it comes to capacitive sensing design, layout plays a crucial role. Giving importance

More information

Output Filter Design for EMI Rejection of the AAT5101 Class D Audio Amplifier

Output Filter Design for EMI Rejection of the AAT5101 Class D Audio Amplifier The AAT50 is a high efficiency, 2.5W mono class D audio power amplifier. It can be used in portable devices, such as MP4s, cell phones, laptops, GPS and PDAs. The device can work as a filterless class

More information

Optimised For Audio Analogue PCB design for the digital era.

Optimised For Audio Analogue PCB design for the digital era. Optimised For Audio Analogue PCB design for the digital era. David G. Tyas IKON AVS Ltd, 238 Ikon Estate, Hartlebury, Worcs.. DY10 4EU www.ikonavs.com 1. Introduction With increasing emphasis on digital

More information

What Determines FPGA Power Requirements?

What Determines FPGA Power Requirements? Understanding and Meeting FPGA Power Requirements by Amanda Alfonso, Product Marketing Manager WP-01234-1.0 White Paper With all the advantages of an FPGA s flexible implementation comes one growing challenge:

More information

Providing Battery-Free, FPGA-Based RAID Cache Solutions

Providing Battery-Free, FPGA-Based RAID Cache Solutions Providing Battery-Free, FPGA-Based RAID Cache Solutions WP-01141-1.0 White Paper RAID adapter cards are critical data-center subsystem components that ensure data storage and recovery during power outages.

More information

EMI Design Guidelines for USB Components

EMI Design Guidelines for USB Components EMI Design Guidelines for USB Components 1. Disclaimer This document is provided "as is" with no warranties whatsoever, including any warranty of merchantability, fitness for any particular purpose, or

More information

1000BASE-T Copper Transceiver Small Form Pluggable (SFP), 3.3V 1.25Gbps Gigabit Ethernet. Features

1000BASE-T Copper Transceiver Small Form Pluggable (SFP), 3.3V 1.25Gbps Gigabit Ethernet. Features Features Compliant with IEEE 802.3z standard Auto-Negotiation follows 802.3u (1000BASE-T) and 802.3 (1000BASE-X) Link distance at 1.25 Gbps: up to 100m per IEEE802.3 EEPROM with serial ID functionality

More information

Low Noise Printed Circuit Board Design

Low Noise Printed Circuit Board Design Low Noise Printed Circuit Board Design Matt Affeldt November 16, 2012 Design Team 6 ECE480 Keywords: Low Noise, Impedance, Capacitance, PCB, Printed Circuit Board, layout, design Summary: This application

More information

Supertex inc. High Speed Quad MOSFET Driver MD1810. Features. General Description. Applications. Typical Application Circuit

Supertex inc. High Speed Quad MOSFET Driver MD1810. Features. General Description. Applications. Typical Application Circuit inc. High Speed Quad MOSFET Driver Features 6.0ns rise and fall time with 1000pF load 2.0A peak output source/sink current 1.8 to 5.0V input CMOS compatible 5.0 to 12V total supply voltage Smart logic

More information

Features. Modulation Frequency (khz) VDD. PLL Clock Synthesizer with Spread Spectrum Circuitry GND

Features. Modulation Frequency (khz) VDD. PLL Clock Synthesizer with Spread Spectrum Circuitry GND DATASHEET IDT5P50901/2/3/4 Description The IDT5P50901/2/3/4 is a family of 1.8V low power, spread spectrum clock generators capable of reducing EMI radiation from an input clock. Spread spectrum technique

More information

ABB Drives. User s Manual. Pulse Encoder Interface Module RTAC-01

ABB Drives. User s Manual. Pulse Encoder Interface Module RTAC-01 ABB Drives User s Manual Pulse Encoder Interface Module RTAC-0 Pulse Encoder Interface Module RTAC-0 User s Manual 3AFE 64486853 REV A EN EFFECTIVE:.5.00 00 ABB Oy. All Rights Reserved. Safety instructions

More information

Atmel AVR1017: XMEGA - USB Hardware Design Recommendations. 8-bit Atmel Microcontrollers. Application Note. Features.

Atmel AVR1017: XMEGA - USB Hardware Design Recommendations. 8-bit Atmel Microcontrollers. Application Note. Features. Atmel AVR1017: XMEGA - USB Hardware Design Recommendations Features USB 2.0 compliance - Signal integrity - Power consumption - Back driver voltage - Inrush current EMC/EMI considerations Layout considerations

More information

Transmission-Line Effects Influence High-Speed CMOS

Transmission-Line Effects Influence High-Speed CMOS Transmission-Line Effects Influence High-Speed CMOS Unlike low-power, metal-gate CMOS, high-speed 54HC/74HC devices readily drive long cable runs and backplanes. While the family maintains CMOS s traditional

More information

Low Power RF Designs Layout Review Techniques. Suyash Jain FAE Training Oslo January 2011

Low Power RF Designs Layout Review Techniques. Suyash Jain FAE Training Oslo January 2011 Low Power RF Designs Layout Review Techniques Suyash Jain FAE Training Oslo January 2011 1 Abstract The presentation provides guidelines and a checklist to copy TI reference designs for optimum performance.

More information

EMC Countermeasures of Low Voltage Differential Signaling Circuits

EMC Countermeasures of Low Voltage Differential Signaling Circuits TDK EMC Technology Practice Section EMC Countermeasures of Low Voltage Differential Signaling Circuits TDK Corporation Magnetics Business Group Toshio Tomonari 1 Introduction Low Voltage Differential Signaling

More information

Using Stratix II GX in HDTV Video Production Applications

Using Stratix II GX in HDTV Video Production Applications White Paper Introduction The television broadcasting market is rapidly shifting from the established methods of analog video capture and distribution to digital television (DTV), which provides three main

More information

A Validated Methodology for Designing Safe Industrial Systems on a Chip

A Validated Methodology for Designing Safe Industrial Systems on a Chip A Validated Methodology for Designing Safe Industrial Systems on a Chip WP-01168-1.3 White Paper Industrial automation applications across all segments from factory, machine, and process automation to

More information

1997 Advanced System Logic Products

1997 Advanced System Logic Products Application Report 1997 Advanced System Logic Products Printed in U.S.A. 0397 CP SCEA003A Application Report 1997 Advanced System Logic Products Printed in U.S.A. 0397 CP SCEA003A Application Report GTL/BTL:

More information

XTR-869 mod. Transceiver

XTR-869 mod. Transceiver mod. Transceiver Miniaturized data transceiver module, 100 Kbps maximum speed, 869,85 MHz operating frequency. Band without any duty-cycle restriction in the use time (100%). Pin-Out and block diagram

More information

Return Paths and Power Supply Decoupling

Return Paths and Power Supply Decoupling Return Paths and Power Supply Decoupling Dr. José Ernesto Rayas Sánchez 1 Outline Ideal return paths Microstrip return paths Stripline return paths Modeling metallic reference planes Power supply bypassing

More information

Printed Circuit Board Layout and Probing for GaN Power Switches

Printed Circuit Board Layout and Probing for GaN Power Switches Printed Circuit Board Layout and Probing for GaN Power Switches Transphorm, Inc Zan Huang, Felix Recht and Yifeng Wu Application Note AN-0003 This document describes best practices for printed circuit

More information

Rail-to-Rail, High Output Current Amplifier AD8397

Rail-to-Rail, High Output Current Amplifier AD8397 Rail-to-Rail, High Output Current Amplifier AD8397 FEATURES Dual operational amplifier Voltage feedback Wide supply range from 3 V to 24 V Rail-to-rail output Output swing to within.5 V of supply rails

More information

EMC Expert System for Architecture Design

EMC Expert System for Architecture Design EMC Expert System for Architecture Design EMC Expert System for Architecture Design Marcel van Doorn marcel.van.doorn@philips.com Philips Electromagnetics Competence Center High Tech Campus 26, 5656 AE

More information

2D-FEC IP Core. Features

2D-FEC IP Core. Features 2D-FEC IP Core DS-1032 Data Sheet The Altera Two-Dimensional Enhanced Forward Error Correction (2D-FEC) IP Core comprises a high-performance encoder and decoder for Optical Transport Network (OTN) FEC

More information

PCB Manufacture Designing with RF and EMC issues in mind

PCB Manufacture Designing with RF and EMC issues in mind PCB Manufacture Designing with RF and EMC issues in mind Tim Jarvis BSc CEng MIEE MIEEE Radio & EMC Specialist Section 1: EMC and PCB Design Slide 2 1 Single sided PCB - track Very old fashioned Nice antenna!

More information

4 OUTPUT PCIE GEN1/2 SYNTHESIZER IDT5V41186

4 OUTPUT PCIE GEN1/2 SYNTHESIZER IDT5V41186 DATASHEET IDT5V41186 Recommended Applications 4 Output synthesizer for PCIe Gen1/2 General Description The IDT5V41186 is a PCIe Gen2 compliant spread-spectrum-capable clock generator. The device has 4

More information

ByteBlasterMV Parallel Port Download Cable

ByteBlasterMV Parallel Port Download Cable Tools ByteBlasterMV Parallel Port Download Cable November 2001, Version 3.2 Data Sheet Features Allows PC users to perform the following functions: Program MAX 9000, MAX 7000S, MAX 7000A, MAX 7000B, and

More information

Figure 1. Core Voltage Reduction Due to Process Scaling

Figure 1. Core Voltage Reduction Due to Process Scaling AN 574: Printed Circuit Board (PCB) Power Delivery Network (PDN) Design Methodology May 2009 AN-574-1.0 Introduction This application note provides an overview of the various components that make up a

More information

High Speed USB Design Guidelines. Application Note. AT85C51SND3Bx Microcontrollers. 1. Introduction

High Speed USB Design Guidelines. Application Note. AT85C51SND3Bx Microcontrollers. 1. Introduction High Speed USB Design Guidelines 1. Introduction This document provides guidelines for integrating a AT85C51SND3Bx high speed USB device controller onto a 4-layer PCB. The material covered can be broken

More information

Compact Integrated Antennas

Compact Integrated Antennas Freescale Semiconductor, Inc. Application Note Document Number: AN2731 Rev. 3, 09/2015 Compact Integrated Antennas Designs and Applications for the MC1321x, MC1322x, MC1323x, and MKW40/30/20 1 Introduction

More information

Transceiver mod. XTR-434

Transceiver mod. XTR-434 Transceiver mod. XTR-434 Miniaturized data transceiver module, 100Kbps maximum speed, 433,92 MHz operating frequency. Pin-Out and Block diagram Dimensions 1 GND 2 Antenna RX-TX switch Ampl. PLL Controlled

More information

The PCB is a component of op amp design

The PCB is a component of op amp design Amplifiers: Op Amps Texas Instruments Incorporated The PCB is a component of op amp design By Bruce Carter Senior Applications Specialist Most analog designers are familiar with how to use ICs and passive

More information

TX SAW MID 5V TRANSMITTER

TX SAW MID 5V TRANSMITTER TX SAW MID 5V TRANSMITTER SAW Transmitter module with external antenna, for utilisations with ON-OFF modulation of a RF carrier with digital data. Buffer stage for enhanced power and low harmonics on output

More information

High Speed USB Platform Design Guidelines. Rev. 1.0

High Speed USB Platform Design Guidelines. Rev. 1.0 High Speed USB Platform Design Guidelines Rev. 1.0 REVISION HISTORY Revision Revision History Date 0.9 Preliminary release. 07/12/2000 "THIS SPECIFICATION [DOCUMENT] IS PROVIDED "AS IS" WITH NO WARRANTIES

More information

Supertex inc. MD1820. High Speed, Four Channel MOSFET Driver with Non-Inverting Outputs. Features

Supertex inc. MD1820. High Speed, Four Channel MOSFET Driver with Non-Inverting Outputs. Features inc. High Speed, Four Channel MOSFET Driver with Non-Inverting Outputs Features Non-inverting, four channel MOSFET driver.0ns rise and fall time 2.0A peak output source/sink current 1. to 5.0V input CMOS

More information

R-100 OEM Pockels Cell Driver For BBO Pockels Cell Laser Pulse Selection Operation and Installation Manual

R-100 OEM Pockels Cell Driver For BBO Pockels Cell Laser Pulse Selection Operation and Installation Manual R-100 OEM Pockels Cell Driver For BBO Pockels Cell Laser Pulse Selection Operation and Installation Manual Gooch & Housego, Ohio LLC 676 Alpha Drive Highland Heights, Ohio 44143 USA (01) 216-486-6100 for

More information

What Really Is Inductance?

What Really Is Inductance? Bogatin Enterprises, Dr. Eric Bogatin 26235 W 110 th Terr. Olathe, KS 66061 Voice: 913-393-1305 Fax: 913-393-1306 eric@bogent.com www.bogatinenterprises.com Training for Signal Integrity and Interconnect

More information