Lecture 10. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 7

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Lecture 10. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 7"

Transcription

1 Lecture 10 Sergei Fedotov Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) / 7

2 Lecture 10 1 Binomial Model for Stock Price 2 Option Pricing on Binomial Tree 3 Matching Volatility σ with u and d Sergei Fedotov (University of Manchester) / 7

3 Binomial model for the stock price Continuous random model for the stock price: ds = µsdt + σsdw Sergei Fedotov (University of Manchester) / 7

4 Binomial model for the stock price Continuous random model for the stock price: ds = µsdt + σsdw The binomial model for the stock price is a discrete time model: The stock price S changes only at discrete times t, 2 t, 3 t,... Sergei Fedotov (University of Manchester) / 7

5 Binomial model for the stock price Continuous random model for the stock price: ds = µsdt + σsdw The binomial model for the stock price is a discrete time model: The stock price S changes only at discrete times t, 2 t, 3 t,... The price either moves up S Su or down S Sd with d < e r t < u. Sergei Fedotov (University of Manchester) / 7

6 Binomial model for the stock price Continuous random model for the stock price: ds = µsdt + σsdw The binomial model for the stock price is a discrete time model: The stock price S changes only at discrete times t, 2 t, 3 t,... The price either moves up S Su or down S Sd with d < e r t < u. The probability of up movement is q. Sergei Fedotov (University of Manchester) / 7

7 Binomial model for the stock price Continuous random model for the stock price: ds = µsdt + σsdw The binomial model for the stock price is a discrete time model: The stock price S changes only at discrete times t, 2 t, 3 t,... The price either moves up S Su or down S Sd with d < e r t < u. The probability of up movement is q. Let us build up a tree of possible stock prices. The tree is called a binomial tree, because the stock price will either move up or down at the end of each time period. Each node represents a possible future stock price. Sergei Fedotov (University of Manchester) / 7

8 Binomial model for the stock price Continuous random model for the stock price: ds = µsdt + σsdw The binomial model for the stock price is a discrete time model: The stock price S changes only at discrete times t, 2 t, 3 t,... The price either moves up S Su or down S Sd with d < e r t < u. The probability of up movement is q. Let us build up a tree of possible stock prices. The tree is called a binomial tree, because the stock price will either move up or down at the end of each time period. Each node represents a possible future stock price. We divide the time to expiration T into several time steps of duration t = T/N, where N is the number of time steps in the tree. Sergei Fedotov (University of Manchester) / 7

9 Binomial model for the stock price Continuous random model for the stock price: ds = µsdt + σsdw The binomial model for the stock price is a discrete time model: The stock price S changes only at discrete times t, 2 t, 3 t,... The price either moves up S Su or down S Sd with d < e r t < u. The probability of up movement is q. Let us build up a tree of possible stock prices. The tree is called a binomial tree, because the stock price will either move up or down at the end of each time period. Each node represents a possible future stock price. We divide the time to expiration T into several time steps of duration t = T/N, where N is the number of time steps in the tree. Example: Let us sketch the binomial tree for N = 4. Sergei Fedotov (University of Manchester) / 7

10 Stock Price Movement in the Binomial Model We introduce the following notations: S m n is the n-th possible value of stock price at time-step m t. Sergei Fedotov (University of Manchester) / 7

11 Stock Price Movement in the Binomial Model We introduce the following notations: S m n is the n-th possible value of stock price at time-step m t. Then Sn m = u n d m n S0 0, where n = 0,1,2,...,m. S0 0 is the stock price at the time t = 0. Note that u and d are the same at every node in the tree. Sergei Fedotov (University of Manchester) / 7

12 Stock Price Movement in the Binomial Model We introduce the following notations: S m n is the n-th possible value of stock price at time-step m t. Then Sn m = u n d m n S0 0, where n = 0,1,2,...,m. S0 0 is the stock price at the time t = 0. Note that u and d are the same at every node in the tree. For example, at the third time-step 3 t, there are four possible stock prices: S 3 0 = d3 S 0 0, S3 1 = ud2 S 0 0, S3 2 = u2 ds 0 0 and S3 3 = u3 S 0 0. At the final time-step N t, there are N + 1 possible values of stock price. Sergei Fedotov (University of Manchester) / 7

13 Call Option Pricing on Binomial Tree We denote by C m n the n-th possible value of call option at time-step m t. Sergei Fedotov (University of Manchester) / 7

14 Call Option Pricing on Binomial Tree We denote by C m n the n-th possible value of call option at time-step m t. Risk Neutral Valuation (backward in time): C m n = e r t ( pc m+1 n+1 Here 0 n m and p = er t d u d. ) + (1 p)cm+1 n. Sergei Fedotov (University of Manchester) / 7

15 Call Option Pricing on Binomial Tree We denote by C m n the n-th possible value of call option at time-step m t. Risk Neutral Valuation (backward in time): C m n = e r t ( pc m+1 n+1 Here 0 n m and p = er t d u d. ) + (1 p)cm+1 n. Final condition: C N n = max ( S N n E,0 ), where n = 0,1,2,...,N, E is the strike price. Sergei Fedotov (University of Manchester) / 7

16 Call Option Pricing on Binomial Tree We denote by C m n the n-th possible value of call option at time-step m t. Risk Neutral Valuation (backward in time): C m n = e r t ( pc m+1 n+1 Here 0 n m and p = er t d u d. ) + (1 p)cm+1 n. Final condition: C N n = max ( S N n E,0 ), where n = 0,1,2,...,N, E is the strike price. The current option price C0 0 is the expected payoff in a risk-neutral world, discounted at risk-free rate r: C0 0 = e rt E p [C T ]. Example: N = 4. Sergei Fedotov (University of Manchester) / 7

17 Matching volatility σ with u and d We assume that the stock price starts at the value S 0 and the time step is t. Let us find the expected stock price, E [S], and the variance of the return, var [ ] S S, for continuous and discrete models. Sergei Fedotov (University of Manchester) / 7

18 Matching volatility σ with u and d We assume that the stock price starts at the value S 0 and the time step is t. Let us find the expected stock price, E [S], and the variance of the return, var [ ] S S, for continuous and discrete models. Expected stock price: Continuous model: E [S] = S 0 e µ t. Sergei Fedotov (University of Manchester) / 7

19 Matching volatility σ with u and d We assume that the stock price starts at the value S 0 and the time step is t. Let us find the expected stock price, E [S], and the variance of the return, var [ ] S S, for continuous and discrete models. Expected stock price: Continuous model: E [S] = S 0 e µ t. On the binomial tree: E [S] = qs 0 u + (1 q)s 0 d. Sergei Fedotov (University of Manchester) / 7

20 Matching volatility σ with u and d We assume that the stock price starts at the value S 0 and the time step is t. Let us find the expected stock price, E [S], and the variance of the return, var [ ] S S, for continuous and discrete models. Expected stock price: Continuous model: E [S] = S 0 e µ t. On the binomial tree: E [S] = qs 0 u + (1 q)s 0 d. First equation: qu + (1 q)d = e µ t. Sergei Fedotov (University of Manchester) / 7

21 Matching volatility σ with u and d We assume that the stock price starts at the value S 0 and the time step is t. Let us find the expected stock price, E [S], and the variance of the return, var [ ] S S, for continuous and discrete models. Expected stock price: Continuous model: E [S] = S 0 e µ t. On the binomial tree: E [S] = qs 0 u + (1 q)s 0 d. First equation: qu + (1 q)d = e µ t. Variance of the return: Continuous model: var [ S S ] = σ 2 t (Lecture2) Sergei Fedotov (University of Manchester) / 7

22 Matching volatility σ with u and d We assume that the stock price starts at the value S 0 and the time step is t. Let us find the expected stock price, E [S], and the variance of the return, var [ ] S S, for continuous and discrete models. Expected stock price: Continuous model: E [S] = S 0 e µ t. On the binomial tree: E [S] = qs 0 u + (1 q)s 0 d. First equation: qu + (1 q)d = e µ t. Variance of the return: Continuous model: var [ ] S S = σ 2 t (Lecture2) On the binomial tree: var [ ] S S = q(u 1) 2 + (1 q)(d 1) 2 [q(u 1) + (1 q)(d 1)] 2 = qu 2 + (1 q)d 2 [qu + (1 q)d] 2. Recall: var [X] = E [ X 2] [E (X)] 2. Sergei Fedotov (University of Manchester) / 7

23 Matching volatility σ with u and d We assume that the stock price starts at the value S 0 and the time step is t. Let us find the expected stock price, E [S], and the variance of the return, var [ ] S S, for continuous and discrete models. Expected stock price: Continuous model: E [S] = S 0 e µ t. On the binomial tree: E [S] = qs 0 u + (1 q)s 0 d. First equation: qu + (1 q)d = e µ t. Variance of the return: Continuous model: var [ ] S S = σ 2 t (Lecture2) On the binomial tree: var [ ] S S = q(u 1) 2 + (1 q)(d 1) 2 [q(u 1) + (1 q)(d 1)] 2 = qu 2 + (1 q)d 2 [qu + (1 q)d] 2. Recall: var [X] = E [ X 2] [E (X)] 2. Second equation: qu 2 + (1 q)d 2 [qu + (1 q)d] 2 = σ 2 t. Sergei Fedotov (University of Manchester) / 7

24 Matching volatility σ with u and d We assume that the stock price starts at the value S 0 and the time step is t. Let us find the expected stock price, E [S], and the variance of the return, var [ ] S S, for continuous and discrete models. Expected stock price: Continuous model: E [S] = S 0 e µ t. On the binomial tree: E [S] = qs 0 u + (1 q)s 0 d. First equation: qu + (1 q)d = e µ t. Variance of the return: Continuous model: var [ ] S S = σ 2 t (Lecture2) On the binomial tree: var [ ] S S = q(u 1) 2 + (1 q)(d 1) 2 [q(u 1) + (1 q)(d 1)] 2 = qu 2 + (1 q)d 2 [qu + (1 q)d] 2. Recall: var [X] = E [ X 2] [E (X)] 2. Second equation: qu 2 + (1 q)d 2 [qu + (1 q)d] 2 = σ 2 t. Third equation: u = d 1. Sergei Fedotov (University of Manchester) / 7

25 Matching volatility σ with u and d From the first equation we find q = eµ t d u d. This is the probability of an up movement in the real world. Sergei Fedotov (University of Manchester) / 7

26 Matching volatility σ with u and d From the first equation we find q = eµ t d u d. This is the probability of an up movement in the real world. Substituting this probability into the second equation, we obtain e µ t (u + d) ud e 2µ t = σ 2 t. Sergei Fedotov (University of Manchester) / 7

27 Matching volatility σ with u and d From the first equation we find q = eµ t d u d. This is the probability of an up movement in the real world. Substituting this probability into the second equation, we obtain Using u = d 1, we get e µ t (u + d) ud e 2µ t = σ 2 t. e µ t (u + 1 u ) 1 e2µ t = σ 2 t. This equation can be reduced to the quadratic equation. (Exercise sheet 4, part 5). Sergei Fedotov (University of Manchester) / 7

28 Matching volatility σ with u and d From the first equation we find q = eµ t d u d. This is the probability of an up movement in the real world. Substituting this probability into the second equation, we obtain Using u = d 1, we get e µ t (u + d) ud e 2µ t = σ 2 t. e µ t (u + 1 u ) 1 e2µ t = σ 2 t. This equation can be reduced to the quadratic equation. (Exercise sheet 4, part 5). One can obtain u e σ t 1 + σ t and d e σ t. These are the values of u and d obtained by Cox, Ross, and Rubinstein in Recall: e x 1 + x for small x. Sergei Fedotov (University of Manchester) / 7

Lecture 11. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 7

Lecture 11. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 7 Lecture 11 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 7 Lecture 11 1 American Put Option Pricing on Binomial Tree 2 Replicating

More information

Lecture 9. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 8

Lecture 9. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 8 Lecture 9 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 8 Lecture 9 1 Risk-Neutral Valuation 2 Risk-Neutral World 3 Two-Steps Binomial

More information

Lecture 8. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 1

Lecture 8. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 8 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 8 1 One-Step Binomial Model for Option Price 2 Risk-Neutral Valuation

More information

Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week

Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics

More information

Binomial trees and risk neutral valuation

Binomial trees and risk neutral valuation Binomial trees and risk neutral valuation Moty Katzman September 19, 2014 Derivatives in a simple world A derivative is an asset whose value depends on the value of another asset. Call/Put European/American

More information

Lecture 15. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6

Lecture 15. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 1 Black-Scholes Equation and Replicating Portfolio 2 Static

More information

Lecture 21 Options Pricing

Lecture 21 Options Pricing Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Put-call

More information

Numerical Methods for Option Pricing

Numerical Methods for Option Pricing Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly

More information

OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options

OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis binomial model replicating portfolio single period artificial (risk-neutral)

More information

Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena

Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model

More information

Consider a European call option maturing at time T

Consider a European call option maturing at time T Lecture 10: Multi-period Model Options Black-Scholes-Merton model Prof. Markus K. Brunnermeier 1 Binomial Option Pricing Consider a European call option maturing at time T with ihstrike K: C T =max(s T

More information

10 Binomial Trees. 10.1 One-step model. 1. Model structure. ECG590I Asset Pricing. Lecture 10: Binomial Trees 1

10 Binomial Trees. 10.1 One-step model. 1. Model structure. ECG590I Asset Pricing. Lecture 10: Binomial Trees 1 ECG590I Asset Pricing. Lecture 10: Binomial Trees 1 10 Binomial Trees 10.1 One-step model 1. Model structure ECG590I Asset Pricing. Lecture 10: Binomial Trees 2 There is only one time interval (t 0, t

More information

Pricing Options: Pricing Options: The Binomial Way FINC 456. The important slide. Pricing options really boils down to three key concepts

Pricing Options: Pricing Options: The Binomial Way FINC 456. The important slide. Pricing options really boils down to three key concepts Pricing Options: The Binomial Way FINC 456 Pricing Options: The important slide Pricing options really boils down to three key concepts Two portfolios that have the same payoff cost the same. Why? A perfectly

More information

Lecture 14. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 7

Lecture 14. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 7 Lecture 14 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 7 Lecture 14 1 -Hedging 2 Greek Letters or Greeks Sergei Fedotov (University

More information

Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.

Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options. Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards

More information

American and European. Put Option

American and European. Put Option American and European Put Option Analytical Finance I Kinda Sumlaji 1 Table of Contents: 1. Introduction... 3 2. Option Style... 4 3. Put Option 4 3.1 Definition 4 3.2 Payoff at Maturity... 4 3.3 Example

More information

The Black-Scholes pricing formulas

The Black-Scholes pricing formulas The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock

More information

ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 10, 11, 12, 18. October 21, 2010 (Thurs)

ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 10, 11, 12, 18. October 21, 2010 (Thurs) Problem ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 0,, 2, 8. October 2, 200 (Thurs) (i) The current exchange rate is 0.0$/. (ii) A four-year dollar-denominated European put option

More information

Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)

Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald) Copyright 2003 Pearson Education, Inc. Slide 08-1 Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared

More information

BINOMIAL OPTIONS PRICING MODEL. Mark Ioffe. Abstract

BINOMIAL OPTIONS PRICING MODEL. Mark Ioffe. Abstract BINOMIAL OPTIONS PRICING MODEL Mark Ioffe Abstract Binomial option pricing model is a widespread numerical method of calculating price of American options. In terms of applied mathematics this is simple

More information

UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014. MFE Midterm. February 2014. Date:

UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014. MFE Midterm. February 2014. Date: UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014 MFE Midterm February 2014 Date: Your Name: Your Equiz.me email address: Your Signature: 1 This exam is open book,

More information

DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options

DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis review of pricing formulas assets versus futures practical issues call options

More information

Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12.

Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12. Week 9 Binomial Trees : Hull, Ch. 12. 1 Binomial Trees Objective: To explain how the binomial model can be used to price options. 2 Binomial Trees 1. Introduction. 2. One Step Binomial Model. 3. Risk Neutral

More information

where N is the standard normal distribution function,

where N is the standard normal distribution function, The Black-Scholes-Merton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at

More information

Introduction to Binomial Trees

Introduction to Binomial Trees 11 C H A P T E R Introduction to Binomial Trees A useful and very popular technique for pricing an option involves constructing a binomial tree. This is a diagram that represents di erent possible paths

More information

7: The CRR Market Model

7: The CRR Market Model Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney MATH3075/3975 Financial Mathematics Semester 2, 2015 Outline We will examine the following issues: 1 The Cox-Ross-Rubinstein

More information

Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12

Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12 Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond

More information

Additional questions for chapter 4

Additional questions for chapter 4 Additional questions for chapter 4 1. A stock price is currently $ 1. Over the next two six-month periods it is expected to go up by 1% or go down by 1%. The risk-free interest rate is 8% per annum with

More information

1. Assume that a (European) call option exists on this stock having on exercise price of $155.

1. Assume that a (European) call option exists on this stock having on exercise price of $155. MØA 155 PROBLEM SET: Binomial Option Pricing Exercise 1. Call option [4] A stock s current price is $16, and there are two possible prices that may occur next period: $15 or $175. The interest rate on

More information

Option Valuation. Chapter 21

Option Valuation. Chapter 21 Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price

More information

FIN 673 Pricing Real Options

FIN 673 Pricing Real Options FIN 673 Pricing Real Options Professor Robert B.H. Hauswald Kogod School of Business, AU From Financial to Real Options Option pricing: a reminder messy and intuitive: lattices (trees) elegant and mysterious:

More information

Lecture 17/18/19 Options II

Lecture 17/18/19 Options II 1 Lecture 17/18/19 Options II Alexander K. Koch Department of Economics, Royal Holloway, University of London February 25, February 29, and March 10 2008 In addition to learning the material covered in

More information

The Binomial Option Pricing Model André Farber

The Binomial Option Pricing Model André Farber 1 Solvay Business School Université Libre de Bruxelles The Binomial Option Pricing Model André Farber January 2002 Consider a non-dividend paying stock whose price is initially S 0. Divide time into small

More information

Financial Modeling. Class #06B. Financial Modeling MSS 2012 1

Financial Modeling. Class #06B. Financial Modeling MSS 2012 1 Financial Modeling Class #06B Financial Modeling MSS 2012 1 Class Overview Equity options We will cover three methods of determining an option s price 1. Black-Scholes-Merton formula 2. Binomial trees

More information

Chapter 2: Binomial Methods and the Black-Scholes Formula

Chapter 2: Binomial Methods and the Black-Scholes Formula Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the

More information

Lecture 11: Risk-Neutral Valuation Steven Skiena. skiena

Lecture 11: Risk-Neutral Valuation Steven Skiena.  skiena Lecture 11: Risk-Neutral Valuation Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Risk-Neutral Probabilities We can

More information

Options and Derivative Pricing. U. Naik-Nimbalkar, Department of Statistics, Savitribai Phule Pune University.

Options and Derivative Pricing. U. Naik-Nimbalkar, Department of Statistics, Savitribai Phule Pune University. Options and Derivative Pricing U. Naik-Nimbalkar, Department of Statistics, Savitribai Phule Pune University. e-mail: uvnaik@gmail.com The slides are based on the following: References 1. J. Hull. Options,

More information

Options 1 OPTIONS. Introduction

Options 1 OPTIONS. Introduction Options 1 OPTIONS Introduction A derivative is a financial instrument whose value is derived from the value of some underlying asset. A call option gives one the right to buy an asset at the exercise or

More information

1 The Black-Scholes model: extensions and hedging

1 The Black-Scholes model: extensions and hedging 1 The Black-Scholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes

More information

S 1 S 2. Options and Other Derivatives

S 1 S 2. Options and Other Derivatives Options and Other Derivatives The One-Period Model The previous chapter introduced the following two methods: Replicate the option payoffs with known securities, and calculate the price of the replicating

More information

Chapter 13 The Black-Scholes-Merton Model

Chapter 13 The Black-Scholes-Merton Model Chapter 13 The Black-Scholes-Merton Model March 3, 009 13.1. The Black-Scholes option pricing model assumes that the probability distribution of the stock price in one year(or at any other future time)

More information

Financial Options: Pricing and Hedging

Financial Options: Pricing and Hedging Financial Options: Pricing and Hedging Diagrams Debt Equity Value of Firm s Assets T Value of Firm s Assets T Valuation of distressed debt and equity-linked securities requires an understanding of financial

More information

Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.

Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13. Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.

More information

BUS 316 NOTES AND ANSWERS BINOMIAL OPTION PRICING

BUS 316 NOTES AND ANSWERS BINOMIAL OPTION PRICING BUS 316 NOTES AND ANSWERS BINOMIAL OPTION PRICING 3. Suppose there are only two possible future states of the world. In state 1 the stock price rises by 50%. In state 2, the stock price drops by 25%. The

More information

Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D

Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D Exam MFE Spring 2007 FINAL ANSWER KEY Question # Answer 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D **BEGINNING OF EXAMINATION** ACTUARIAL MODELS FINANCIAL ECONOMICS

More information

From Binomial Trees to the Black-Scholes Option Pricing Formulas

From Binomial Trees to the Black-Scholes Option Pricing Formulas Lecture 4 From Binomial Trees to the Black-Scholes Option Pricing Formulas In this lecture, we will extend the example in Lecture 2 to a general setting of binomial trees, as an important model for a single

More information

Martingale Pricing Applied to Options, Forwards and Futures

Martingale Pricing Applied to Options, Forwards and Futures IEOR E4706: Financial Engineering: Discrete-Time Asset Pricing Fall 2005 c 2005 by Martin Haugh Martingale Pricing Applied to Options, Forwards and Futures We now apply martingale pricing theory to the

More information

Options. + Concepts and Buzzwords. Readings. Put-Call Parity Volatility Effects

Options. + Concepts and Buzzwords. Readings. Put-Call Parity Volatility Effects + Options + Concepts and Buzzwords Put-Call Parity Volatility Effects Call, put, European, American, underlying asset, strike price, expiration date Readings Tuckman, Chapter 19 Veronesi, Chapter 6 Options

More information

Lecture 3.1: Option Pricing Models: The Binomial Model

Lecture 3.1: Option Pricing Models: The Binomial Model Important Concepts Lecture 3.1: Option Pricing Models: The Binomial Model The concept of an option pricing model The one and two period binomial option pricing models Explanation of the establishment and

More information

A Study on Heston-Nandi GARCH Option Pricing Model

A Study on Heston-Nandi GARCH Option Pricing Model 2011 3rd International Conference on Information and Financial Engineering IPEDR vol.12 (2011) (2011) IACSIT Press, Singapore A Study on Heston-Nandi GARCH Option Pricing Model Suk Joon Byun KAIST Business

More information

Lecture 14 Option pricing in the one-period binomial model.

Lecture 14 Option pricing in the one-period binomial model. Lecture: 14 Course: M339D/M389D - Intro to Financial Math Page: 1 of 9 University of Texas at Austin Lecture 14 Option pricing in the one-period binomial model. 14.1. Introduction. Recall the one-period

More information

One Period Binomial Model

One Period Binomial Model FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 One Period Binomial Model These notes consider the one period binomial model to exactly price an option. We will consider three different methods of pricing

More information

The Binomial Tree and Lognormality

The Binomial Tree and Lognormality The Binomial Tree and Lognormality The Binomial Tree and Lognormality The usefulness of the binomial pricing model hinges on the binomial tree providing a reasonable representation of the stock price distribution

More information

One-state Variable Binomial Models for European-/American-Style Geometric Asian Options

One-state Variable Binomial Models for European-/American-Style Geometric Asian Options One-state Variable Binomial Models for European-/American-Style Geometric Asian Options Min Dai Laboratory of Mathematics and Applied Mathematics, and Dept. of Financial Mathematics, Peking University,

More information

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model 1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American

More information

Review of Basic Options Concepts and Terminology

Review of Basic Options Concepts and Terminology Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some

More information

BINOMIAL OPTION PRICING

BINOMIAL OPTION PRICING Darden Graduate School of Business Administration University of Virginia BINOMIAL OPTION PRICING Binomial option pricing is a simple but powerful technique that can be used to solve many complex option-pricing

More information

CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options

CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common

More information

Buy a number of shares,, and invest B in bonds. Outlay for portfolio today is S + B. Tree shows possible values one period later.

Buy a number of shares,, and invest B in bonds. Outlay for portfolio today is S + B. Tree shows possible values one period later. Replicating portfolios Buy a number of shares,, and invest B in bonds. Outlay for portfolio today is S + B. Tree shows possible values one period later. S + B p 1 p us + e r B ds + e r B Choose, B so that

More information

FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 12, 13, 14) Liuren Wu The Black-Scholes Model Options Markets 1 / 19 The Black-Scholes-Merton

More information

Option Pricing with S+FinMetrics. PETER FULEKY Department of Economics University of Washington

Option Pricing with S+FinMetrics. PETER FULEKY Department of Economics University of Washington Option Pricing with S+FinMetrics PETER FULEKY Department of Economics University of Washington August 27, 2007 Contents 1 Introduction 3 1.1 Terminology.............................. 3 1.2 Option Positions...........................

More information

Black-Scholes Equation for Option Pricing

Black-Scholes Equation for Option Pricing Black-Scholes Equation for Option Pricing By Ivan Karmazin, Jiacong Li 1. Introduction In early 1970s, Black, Scholes and Merton achieved a major breakthrough in pricing of European stock options and there

More information

TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13

TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 TABLE OF CONTENTS 1. McDonald 9: "Parity and Other Option Relationships" A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 2. McDonald 10: "Binomial Option Pricing:

More information

Arbitrage-Free Pricing Models

Arbitrage-Free Pricing Models Arbitrage-Free Pricing Models Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Arbitrage-Free Pricing Models 15.450, Fall 2010 1 / 48 Outline 1 Introduction 2 Arbitrage and SPD 3

More information

MATH3075/3975 Financial Mathematics

MATH3075/3975 Financial Mathematics MATH3075/3975 Financial Mathematics Week 11: Solutions Exercise 1 We consider the Black-Scholes model M = B, S with the initial stock price S 0 = 9, the continuously compounded interest rate r = 0.01 per

More information

LECTURE 15: AMERICAN OPTIONS

LECTURE 15: AMERICAN OPTIONS LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These

More information

1 Geometric Brownian motion

1 Geometric Brownian motion Copyright c 006 by Karl Sigman Geometric Brownian motion Note that since BM can take on negative values, using it directly for modeling stock prices is questionable. There are other reasons too why BM

More information

Binomial lattice model for stock prices

Binomial lattice model for stock prices Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }

More information

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 3-7, 3-8 The remaining discrete random

More information

Research on Option Trading Strategies

Research on Option Trading Strategies Research on Option Trading Strategies An Interactive Qualifying Project Report: Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree

More information

American Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options

American Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options American Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Early Exercise Since American style options give the holder the same rights as European style options plus

More information

FAIR VALUATION OF THE SURRENDER OPTION EMBEDDED IN A GUARANTEED LIFE INSURANCE PARTICIPATING POLICY. Anna Rita Bacinello

FAIR VALUATION OF THE SURRENDER OPTION EMBEDDED IN A GUARANTEED LIFE INSURANCE PARTICIPATING POLICY. Anna Rita Bacinello FAIR VALUATION OF THE SURRENDER OPTION EMBEDDED IN A GUARANTEED LIFE INSURANCE PARTICIPATING POLICY Anna Rita Bacinello Dipartimento di Matematica Applicata alle Scienze Economiche, Statistiche ed Attuariali

More information

Hedging. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Hedging

Hedging. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Hedging Hedging An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Definition Hedging is the practice of making a portfolio of investments less sensitive to changes in

More information

Introduction to Options. Derivatives

Introduction to Options. Derivatives Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived

More information

Two-State Option Pricing

Two-State Option Pricing Rendleman and Bartter [1] present a simple two-state model of option pricing. The states of the world evolve like the branches of a tree. Given the current state, there are two possible states next period.

More information

Practice Set #7: Binomial option pricing & Delta hedging. What to do with this practice set?

Practice Set #7: Binomial option pricing & Delta hedging. What to do with this practice set? Derivatives (3 credits) Professor Michel Robe Practice Set #7: Binomial option pricing & Delta hedging. What to do with this practice set? To help students with the material, eight practice sets with solutions

More information

Pricing Options Using Trinomial Trees

Pricing Options Using Trinomial Trees Pricing Options Using Trinomial Trees Paul Clifford Oleg Zaboronski 17.11.2008 1 Introduction One of the first computational models used in the financial mathematics community was the binomial tree model.

More information

Stock. Call. Put. Bond. Option Fundamentals

Stock. Call. Put. Bond. Option Fundamentals Option Fundamentals Payoff Diagrams hese are the basic building blocks of financial engineering. hey represent the payoffs or terminal values of various investment choices. We shall assume that the maturity

More information

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13 Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The Black-Scholes-Merton Random Walk Assumption

More information

The Discrete Binomial Model for Option Pricing

The Discrete Binomial Model for Option Pricing The Discrete Binomial Model for Option Pricing Rebecca Stockbridge Program in Applied Mathematics University of Arizona May 4, 2008 Abstract This paper introduces the notion of option pricing in the context

More information

Fundamentals of Finance

Fundamentals of Finance University of Oulu - Department of Finance Fall 2015 What is it about in finance? Finance is basically nothing else but estimating expected future payoffs, and discounting them with an appropriate discount

More information

Call Price as a Function of the Stock Price

Call Price as a Function of the Stock Price Call Price as a Function of the Stock Price Intuitively, the call price should be an increasing function of the stock price. This relationship allows one to develop a theory of option pricing, derived

More information

Valuing equity-based payments

Valuing equity-based payments E Valuing equity-based payments Executive remuneration packages generally comprise many components. While it is relatively easy to identify how much will be paid in a base salary a fixed dollar amount

More information

Financial Modeling. An introduction to financial modelling and financial options. Conall O Sullivan

Financial Modeling. An introduction to financial modelling and financial options. Conall O Sullivan Financial Modeling An introduction to financial modelling and financial options Conall O Sullivan Banking and Finance UCD Smurfit School of Business 31 May / UCD Maths Summer School Outline Introduction

More information

Lecture 3: Put Options and Distribution-Free Results

Lecture 3: Put Options and Distribution-Free Results OPTIONS and FUTURES Lecture 3: Put Options and Distribution-Free Results Philip H. Dybvig Washington University in Saint Louis put options binomial valuation what are distribution-free results? option

More information

Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options

Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder

More information

Lecture 1 Caps. Binomial Interest Rate Trees.

Lecture 1 Caps. Binomial Interest Rate Trees. Lecture: 1 Course: M339W/M389W - Fin Math for Actuaries Page: 1 of 8 University of Texas at Austin Lecture 1 Caps. Binomial Interest Rate Trees. 1.1. Caps. Building up on the reasoning for the introduction

More information

Part V: Option Pricing Basics

Part V: Option Pricing Basics erivatives & Risk Management First Week: Part A: Option Fundamentals payoffs market microstructure Next 2 Weeks: Part B: Option Pricing fundamentals: intrinsic vs. time value, put-call parity introduction

More information

Stochastic Processes and Advanced Mathematical Finance. Multiperiod Binomial Tree Models

Stochastic Processes and Advanced Mathematical Finance. Multiperiod Binomial Tree Models Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced

More information

An Implementation of Binomial Method of Option Pricing using Parallel Computing

An Implementation of Binomial Method of Option Pricing using Parallel Computing An Implementation of Binomial Method of Option Pricing using Parallel Computing Sai K. Popuri, Andrew M. Raim, Nagaraj K. Neerchal, Matthias K. Gobbert Department of Mathematics and Statistics, High Performance

More information

Chapter 21 Valuing Options

Chapter 21 Valuing Options Chapter 21 Valuing Options Multiple Choice Questions 1. Relative to the underlying stock, a call option always has: A) A higher beta and a higher standard deviation of return B) A lower beta and a higher

More information

A REAL OPTIONS DESIGN FOR QUALITY CONTROL CHARTS

A REAL OPTIONS DESIGN FOR QUALITY CONTROL CHARTS 8 THE ENGINEERING ECONOMIST 00 VOLUME 47 NUMBER A REAL OPTIONS DESIGN FOR QUALITY CONTROL CHARTS HARRIET BLACK NEMBHARD University of Wisconsin-Madison LEYUAN SHI University of Wisconsin-Madison MEHMET

More information

ESTIMATING THE VALUE OF DELIVERY OPTIONS IN FUTURES CONTRACTS

ESTIMATING THE VALUE OF DELIVERY OPTIONS IN FUTURES CONTRACTS ESTIMATING THE VALUE OF DELIVEY OPTIONS IN FUTUES CONTACTS Jana Hranaiova U.S. Commodities Futures Trading Commission and University of New Mexico obert A. Jarrow Cornell University and Kamakura Corporation

More information

Properties of Stock Options. Chapter 10

Properties of Stock Options. Chapter 10 Properties of Stock Options Chapter 10 1 Notation c : European call option price C : American Call option price p : European put option price P : American Put option price S 0 : Stock price today K : Strike

More information

1.1 Some General Relations (for the no dividend case)

1.1 Some General Relations (for the no dividend case) 1 American Options Most traded stock options and futures options are of American-type while most index options are of European-type. The central issue is when to exercise? From the holder point of view,

More information

Exam Introduction Mathematical Finance and Insurance

Exam Introduction Mathematical Finance and Insurance Exam Introduction Mathematical Finance and Insurance Date: January 8, 2013. Duration: 3 hours. This is a closed-book exam. The exam does not use scrap cards. Simple calculators are allowed. The questions

More information

Pricing American Options on Leveraged Exchange. Traded Funds in the Binomial Pricing Model

Pricing American Options on Leveraged Exchange. Traded Funds in the Binomial Pricing Model Pricing American Options on Leveraged Exchange Traded Funds in the Binomial Pricing Model By Diana Holmes Wolf A Project Report Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial

More information

Valuing Options / Volatility

Valuing Options / Volatility Chapter 5 Valuing Options / Volatility Measures Now that the foundation regarding the basics of futures and options contracts has been set, we now move to discuss the role of volatility in futures and

More information