AP CALCULUS AB 2006 SCORING GUIDELINES (Form B)
|
|
|
- Noah West
- 9 years ago
- Views:
Transcription
1 AP CALCULUS AB 2006 SCORING GUIDELINES (Form B) Question 6 t (sec) vt () ( ft sec ) at () 2 ( ft sec ) A car travels on a straight track. During the time interval 0 t 60 seconds, the car s velocity v, measured in feet per second, and acceleration a, measured in feet per second per second, are continuous functions. The table above shows selected values of these functions. 60 (a) Using appropriate units, explain the meaning of vt () dtin terms of the car s motion. Approximate 60 vt () dtusing a trapezoidal approximation with the three subintervals determined by the table. (b) Using appropriate units, explain the meaning of at () dtin terms of the car s motion. Find the exact value 0 of at () dt. (c) For 0 < t < 60, must there be a time t when vt () = 5? Justify your answer. (d) For 0 < t < 60, must there be a time t when at () = 0? Justify your answer (a) vt () dtis the distance in feet that the car travels from t = sec to t = 60 sec. Trapezoidal approximation for 60 vt () dt: A = ( ) 5 + ( 10)( 15) + ( 10)( 10) = 185 ft (b) at () dtis the car s change in velocity in ft/sec from 0 t = 0 sec to t = sec. 0 0 a() t dt = v () t dt = v( ) v( 0) = 14 ( 20) = 6 ft/sec (c) Yes. Since v( 35) = 10 < 5 < 0 = v( 50 ), the IVT guarantees a t in ( 35, 50 ) so that vt () = 5. (d) Yes. Since v( 0) = v( 25 ), the MVT guarantees a t in ( 0, 25 ) so that at () = v () t = 0. Units of ft in (a) and ft/sec in (b) 2 : { 1 : explanation 1 : value 2 : { 1 : explanation 1 : value 1 : v( 35) < 5 < v( 50) 2 : 1 : Yes; refers to IVT or hypotheses 1 : v( 0) = v( 25) 2 : 1 : Yes; refers to MVT or hypotheses 1 : units in (a) and (b) 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and (for AP students and parents). 7
2
3
4
5
6
7
8 AP CALCULUS AB 2006 SCORING COMMENTARY (Form B) Question 6 Overview This problem presented students with a table of the values of a car s velocity and acceleration at selected times. In part (a) students had to recognize the given definite integral as the total distance traveled by the car, in feet, from time t = seconds to time t = 60 seconds and then approximate this distance using a trapezoidal approximation with three intervals of unequal lengths. In part (b) students had to recognize the given definite integral as the total change in velocity, in feet per second, from time t = 0 seconds to time t = seconds and then calculate the exact value of this integral using the Fundamental Theorem of Calculus. Units of measure were important in both parts (a) and (b). In part (c) students were expected to use the Intermediate Value Theorem with vt () to justify that vt () = 5 somewhere on the interval. Part (d) asked a similar question about the acceleration, but here students were expected to use the Mean Value Theorem applied to vt () to show the existence of a time t when at () = v () t = 0. Sample: 6A Score: 9 The student earned all 9 points. Sample: 6B Score: 6 The student earned 6 points: 1 point in part (a), 2 points in part (c), 2 points in part (d), and the units point. In part (a) the student earned the explanation point but makes an arithmetic mistake in the last line and so did not earn the value point. In part (b) the student understands that velocity is the antiderivative of acceleration but does not recognize the definite integral as the change in the velocity and did not earn the explanation point. The student does not find the correct value for the definite integral. In part (c) the student makes the correct conclusion and gives a correct reason, which earned both points. It is not necessary to name the Intermediate Value Theorem since the hypothesis (continuity) is mentioned. In part (d) the student applies Rolle s Theorem (the Mean Value Theorem is also acceptable). Although the student only mentions continuity in the general description of Rolle s Theorem, the second point was still earned. The correct units are used in parts (a) and (b), and the student therefore earned the units point. Sample: 6C Score: 4 The student earned 4 points: 1 point in part (b), 2 points in part (c), and the units point. In part (a) the total displacement is not the same as the total distance traveled, and so the student did not earn the first point. Because the student fails to use the absolute value in the first two terms of the trapezoidal approximation, the answer is incorrect. In part (b) the integral is not the average velocity so the student did not earn the first point. The computation for the second point is correct. In part (c) the student earned both points by correctly citing the Intermediate Value Theorem and drawing the correct conclusion. In part (d) the student answers no. There is no way to justify an incorrect answer so the student earned no points in this part. The student gives the correct units in (a) and (b) and earned the units point The College Board. All rights reserved.
AP CALCULUS AB 2006 SCORING GUIDELINES. Question 4
AP CALCULUS AB 2006 SCORING GUIDELINES Question 4 t (seconds) vt () (feet per second) 0 10 20 30 40 50 60 70 80 5 14 22 29 35 40 44 47 49 Rocket A has positive velocity vt () after being launched upward
Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)
Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the
AP CALCULUS AB 2006 SCORING GUIDELINES (Form B) Question 4
AP CALCULUS AB 2006 SCORING GUIDELINES (Form B) Question 4 The rate, in calories per minute, at which a person using an exercise machine burns calories is modeled by the function 1 3 3 2 f. In the figure
AP Calculus AB 2006 Scoring Guidelines
AP Calculus AB 006 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college
AP Calculus AB 2011 Free-Response Questions
AP Calculus AB 11 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in
AP Calculus AB 2011 Scoring Guidelines
AP Calculus AB Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 9, the
AP CALCULUS AB 2007 SCORING GUIDELINES (Form B)
AP CALCULUS AB 2007 SCORING GUIDELINES (Form B) Question 4 Let f be a function defined on the closed interval 5 x 5 with f ( 1) = 3. The graph of f, the derivative of f, consists of two semicircles and
AP CALCULUS AB 2007 SCORING GUIDELINES (Form B)
AP CALCULUS AB 2007 SCORING GUIDELINES (Form B) Question 3 The wind chill is the temperature, in degrees Fahrenheit ( F, ) a human feels based on the air temperature, in degrees Fahrenheit, and the wind
AP Calculus AB 2007 Scoring Guidelines Form B
AP Calculus AB 7 Scoring Guidelines Form B The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to
Calculus AB 2014 Scoring Guidelines
P Calculus B 014 Scoring Guidelines 014 The College Board. College Board, dvanced Placement Program, P, P Central, and the acorn logo are registered trademarks of the College Board. P Central is the official
AP Calculus AB 2009 Free-Response Questions
AP Calculus AB 2009 Free-Response Questions The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded
AP Calculus AB 2005 Free-Response Questions
AP Calculus AB 25 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to
Student Performance Q&A:
Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief
Mark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,
2010 The College Board. Visit the College Board on the Web: www.collegeboard.com.
AP CALCULUS AB 21 SCORING GUIDELINES Question 2 A zoo sponsored a one-day contest to name a new baby elephant. Zoo visitors deposited entries in a special box between noon ( t = ) and 8 P.M. ( t = 8. )
AP Calculus AB 2003 Scoring Guidelines Form B
AP Calculus AB Scoring Guidelines Form B The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the
AP Calculus BC 2008 Scoring Guidelines
AP Calculus BC 8 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college
AP CALCULUS AB 2009 SCORING GUIDELINES
AP CALCULUS AB 2009 SCORING GUIDELINES Question 5 x 2 5 8 f ( x ) 1 4 2 6 Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in
AP Calculus BC 2001 Free-Response Questions
AP Calculus BC 001 Free-Response Questions The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must
AP Calculus BC 2006 Free-Response Questions
AP Calculus BC 2006 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to
AP CALCULUS AB 2009 SCORING GUIDELINES
AP CALCULUS AB 2009 SCORING GUIDELINES Question 3 Mighty Cable Company manufactures cable that sells for $120 per meter. For a cable of fixed length, the cost of producing a portion of the cable varies
AP Calculus AB 2006 Scoring Guidelines Form B
AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success
Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs
Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs Shown are three different animations, each with three toy monster trucks moving to the right. Two ways to describe
AP Calculus AB 2004 Scoring Guidelines
AP Calculus AB 4 Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and eam preparation; permission for any other use must be sought from
AP Calculus AB 2013 Free-Response Questions
AP Calculus AB 2013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded
AP Calculus AB 2001 Scoring Guidelines
P Calculus Scing Guidelines The materials included in these files are intended f non-commercial use by P teachers f course and eam preparation; permission f any other use must be sought from the dvanced
2008 AP Calculus AB Multiple Choice Exam
008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus
AP Calculus AB 2010 Free-Response Questions Form B
AP Calculus AB 2010 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.
Mark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Eam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice eam contributors: Benita Albert Oak Ridge High School,
AP Calculus BC 2010 Free-Response Questions
AP Calculus BC 2010 Free-Response Questions The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded
correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
= f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )).
Math 1205 Calculus/Sec. 3.3 The Derivative as a Rates of Change I. Review A. Average Rate of Change 1. The average rate of change of y=f(x) wrt x over the interval [x 1, x 2 ]is!y!x ( ) - f( x 1 ) = y
PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
AP Calculus AB 2010 Free-Response Questions
AP Calculus AB 2010 Free-Response Questions The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded
Area Under the Curve. Riemann Sums And the Trapezoidal Rule
Area Under the Curve Riemann Sums And the Trapezoidal Rule Who knew that D=R x T would connect to velocity, and now integration, and the area under a curve? Take a look at the attached applications. Let
Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan
Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while
AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period:
AP Calculus AB First Semester Final Eam Practice Test Content covers chapters 1- Name: Date: Period: This is a big tamale review for the final eam. Of the 69 questions on this review, questions will be
AP Calculus AB 2012 Free-Response Questions
AP Calculus AB 1 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in
Derivatives as Rates of Change
Derivatives as Rates of Change One-Dimensional Motion An object moving in a straight line For an object moving in more complicated ways, consider the motion of the object in just one of the three dimensions
Homework #10 Solutions
MAT Fall Homework # Solutions Problems Bolded problems are worth points. Section 5.:, 6, 8,, Section 5.:, 6,, 8,, Notes: On 5.., evaluate the integral using the fnint function (available through MATH 9
Rolle s Theorem. q( x) = 1
Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question
Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
AP Calculus AB 2004 Free-Response Questions
AP Calculus AB 2004 Free-Response Questions The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be
W i f(x i ) x. i=1. f(x i ) x = i=1
Work Force If an object is moving in a straight line with position function s(t), then the force F on the object at time t is the product of the mass of the object times its acceleration. F = m d2 s dt
The Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
AP Calculus AB 2003 Scoring Guidelines
AP Calculus AB Scoring Guidelines The materials included in these files are intended for use y AP teachers for course and exam preparation; permission for any other use must e sought from the Advanced
3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea.
BA01 ENGINEERING MATHEMATICS 01 CHAPTER 3 APPLICATION OF DIFFERENTIATION 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH Introduction to Applications of Differentiation In Isaac Newton's
In order to describe motion you need to describe the following properties.
Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.
AP Calculus AB 2005 Scoring Guidelines Form B
AP Calculus AB 5 coring Guidelines Form B The College Board: Connecting tudents to College uccess The College Board is a not-for-profit membership association whose mission is to connect students to college
AP Calculus BC 2013 Free-Response Questions
AP Calculus BC 013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in
To define concepts such as distance, displacement, speed, velocity, and acceleration.
Chapter 7 Kinematics of a particle Overview In kinematics we are concerned with describing a particle s motion without analysing what causes or changes that motion (forces). In this chapter we look at
Answer Key for the Review Packet for Exam #3
Answer Key for the Review Packet for Eam # Professor Danielle Benedetto Math Ma-Min Problems. Show that of all rectangles with a given area, the one with the smallest perimeter is a square. Diagram: y
5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4.
Version PREVIEW B One D Kine REVIEW burke (1111) 1 This print-out should have 34 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Jogging
Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
(b)using the left hand end points of the subintervals ( lower sums ) we get the aprroximation
(1) Consider the function y = f(x) =e x on the interval [, 1]. (a) Find the area under the graph of this function over this interval using the Fundamental Theorem of Calculus. (b) Subdivide the interval
AP Calculus AB Syllabus
Course Overview and Philosophy AP Calculus AB Syllabus The biggest idea in AP Calculus is the connections among the representations of the major concepts graphically, numerically, analytically, and verbally.
Problem 12.33. s s o v o t 1 2 a t2. Ball B: s o 0, v o 19 m s, a 9.81 m s 2. Apply eqn. 12-5: When the balls pass each other: s A s B. t 2.
ENPH 131 Assignment # Solutions Tutorial Problem (Rocket Height) A rocket, initially at rest on the ground, accelerates straight upward with a constant acceleration of 3. m s. The rocket accelerates for
AP STATISTICS 2010 SCORING GUIDELINES
2010 SCORING GUIDELINES Question 4 Intent of Question The primary goals of this question were to (1) assess students ability to calculate an expected value and a standard deviation; (2) recognize the applicability
APPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
MATH 132: CALCULUS II SYLLABUS
MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early
Motion. Complete Table 1. Record all data to three decimal places (e.g., 4.000 or 6.325 or 0.000). Do not include units in your answer.
Labs for College Physics: Mechanics Worksheet Experiment 2-1 Motion As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact
ChE-1800 H-2: Flowchart Diagrams (last updated January 13, 2013)
ChE-1800 H-2: Flowchart Diagrams (last updated January 13, 2013) This handout contains important information for the development of flowchart diagrams Common Symbols for Algorithms The first step before
Slope and Rate of Change
Chapter 1 Slope and Rate of Change Chapter Summary and Goal This chapter will start with a discussion of slopes and the tangent line. This will rapidly lead to heuristic developments of limits and the
Calculating average acceleration from velocity change and time
Calculating average acceleration from velocity change and time Acceleration is a measure of how rapidly the velocity is changing. Since we define average acceleration, a av or a av, as the change in velocity
Lesson 3 - Understanding Energy (with a Pendulum)
Lesson 3 - Understanding Energy (with a Pendulum) Introduction This lesson is meant to introduce energy and conservation of energy and is a continuation of the fundamentals of roller coaster engineering.
Solutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
Lesson 3. Numerical Integration
Lesson 3 Numerical Integration Last Week Defined the definite integral as limit of Riemann sums. The definite integral of f(t) from t = a to t = b. LHS: RHS: Last Time Estimate using left and right hand
Calculus 1st Semester Final Review
Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim
1.3.1 Position, Distance and Displacement
In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an
Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion
Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.
3 e) x f) 2. Precalculus Worksheet P.1. 1. Complete the following questions from your textbook: p11: #5 10. 2. Why would you never write 5 < x > 7?
Precalculus Worksheet P.1 1. Complete the following questions from your tetbook: p11: #5 10. Why would you never write 5 < > 7? 3. Why would you never write 3 > > 8? 4. Describe the graphs below using
Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses
Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the
Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM. x + 5 = 7 2 + 5-2 = 7-2 5 + (2-2) = 7-2 5 = 5. x + 5-5 = 7-5. x + 0 = 20.
Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM 1. Introduction (really easy) An equation represents the equivalence between two quantities. The two sides of the equation are in balance, and solving
Active Calculus & Mathematical Modeling Activities and Voting Questions Carroll College MA 122. Carroll College Mathematics Department
Active Calculus & Mathematical Modeling Activities and Voting Questions Carroll College MA 122 Carroll College Mathematics Department Last Update: June 2, 2015 2 To The Student This packet is NOT your
Physics 1010: The Physics of Everyday Life. TODAY Velocity, Acceleration 1D motion under constant acceleration Newton s Laws
Physics 11: The Physics of Everyday Life TODAY, Acceleration 1D motion under constant acceleration Newton s Laws 1 VOLUNTEERS WANTED! PHET, The PHysics Educational Technology project, is looking for students
AP Calculus BC 2004 Scoring Guidelines
AP Calculus BC Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be sought from
Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507. Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.
Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com Many examples of open channel flow can be approximated
18.01 Single Variable Calculus Fall 2006
MIT OpenCourseWare http://ocw.mit.edu 8.0 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Unit : Derivatives A. What
Chapter 4 One Dimensional Kinematics
Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity
Numerical Solution of Differential Equations
Numerical Solution of Differential Equations Dr. Alvaro Islas Applications of Calculus I Spring 2008 We live in a world in constant change We live in a world in constant change We live in a world in constant
2.2. Instantaneous Velocity
2.2. Instantaneous Velocity toc Assuming that your are not familiar with the technical aspects of this section, when you think about it, your knowledge of velocity is limited. In terms of your own mathematical
Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton
Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Position is a Vector Compare A A ball is 12 meters North of the Sun God to A A ball is 10 meters from here A vector has both a direction
1. Which of the 12 parent functions we know from chapter 1 are power functions? List their equations and names.
Pre Calculus Worksheet. 1. Which of the 1 parent functions we know from chapter 1 are power functions? List their equations and names.. Analyze each power function using the terminology from lesson 1-.
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2
COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level This study guide is for students trying to test into College Algebra. There are three levels of math study guides. 1. If x and y 1, what
ALGEBRA I (Common Core)
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA I (Common Core) Wednesday, June 17, 2015 1:15 to 4:15 p.m. MODEL RESPONSE SET Table of Contents Question 25..................
KINETIC AND POTENTIAL ENERGY
UNIT 1 - ENERGY SECTION 1 - ENERGEIA Background Information Energy can be in one of two states: potential or kinetic. Energy can be transferred from potential to kinetic and between objects. Potential
Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}
Mathematics Pre-Test Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {-1, 1} III. {-1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following
Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008
Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling
