Crisp and Fuzzy Set Qualitative Comparative Analysis (QCA)


 Norah Carpenter
 1 years ago
 Views:
Transcription
1 Crisp and Fuzzy Set Qualitative Comparative Analysis (QCA) Peer C. Fiss University of Southern California (I thank Charles Ragin for the use of his slides; modified for this workshop)
2 QCA Background QCA s home base is comparative sociology/comparative politics, where there is a strong tradition of caseoriented work alongside an extensive and growing body of quantitative crossnational research. The caseoriented tradition is much older and is populated largely by area and country experts. In contrast to the situation of qualitative researchers in most social scientific subdisciplines, these case oriented researchers have high status, primarily because their case knowledge is useful to the state (e.g., in its effort to maintain or enhance national security) and other corporate actors. Caseoriented researchers are often critical of quantitative crossnational researchers for ignoring the gap between the results of quantitative research and what is known about specific cases. They also have little interest in the abstract, highlevel concepts that often characterize this type of research and the wide analytic gulf separating these concepts from caselevel events and processes. QCA, plain and simple, attempts to bridge these two worlds. This attempt has spawned methodological tools which are useful for social scientists in general.
3 Charles C. Ragin Chancellor's Professor of Sociology at the University of California, Irvine Some Key QCA Works: The Comparative Method (1987) FuzzySet Social Science (2000) Redesigning Social Inquiry: Fuzzy Sets and Beyond (2008)
4 Four (relatively abstract) answers to the question, What is QCA? 1. QCA bridges qualitative and quantitative analysis Most aspects of QCA require familiarity with cases, which in turn demands indepth knowledge. At the same time, QCA is capable of pinpointing decisive crosscase patterns, the usual domain of quantitative analysis. QCA s examination of crosscase patterns respects the diversity of cases and their heterogeneity with regard to their different causally relevant conditions and contexts by comparing cases as configurations.
5 Four (relatively abstract) answers to the question, What is QCA? 2. QCA provides powerful tools for the analysis of causal complexity With QCA, it is possible to study INUS conditions causal conditions that are insufficient but necessary parts of causal recipes which are themselves unnecessary but sufficient. In other words, using QCA it is possible to assess causation that is very complex, involving different combinations of causal conditions capable of generating the same outcome. This emphasis contrasts strongly with the net effects focus prevailing in conventional quantitative social science. QCA also facilitates a form of counterfactual analysis that is grounded in caseoriented research practices.
6 Four (relatively abstract) answers to the question, What is QCA? 3. QCA is ideal for smalltointermediaten research designs QCA can be usefully applied to research designs involving small and intermediatesize Ns (e.g., 550). In this range, there are often too many cases for researchers to keep all the case knowledge in their heads, but too few cases for most conventional statistical techniques. However, more recently QCA has also been applied to largen situations marked by hundreds or thousands of cases. This kind of application requires some changes to how QCA is employed, but many of its advantages for analyzing causal complexity still remain.
7 Four (relatively abstract) answers to the question, What is QCA? 4. QCA brings settheoretic methods to social inquiry QCA is grounded in the analysis of set relations, not correlations. Because social theory is largely verbal and verbal formulations are largely set theoretic in nature, QCA provides a closer link to theory than is possible using conventional quantitative methods. Note also that important causal relations, necessity and sufficiency, are indicated when certain set relations exist: With necessity, the outcome is a subset of the causal condition; with sufficiency, the causal condition is a subset of the outcome. With INUS conditions, cases with a specific combination of causal conditions form a subset of the cases with the outcome. Only set theoretical methods are well suited for the analysis of causal complexity.
8 An Exciting Time for Work with QCA In 2012 we celebrate 25 years of QCA A growing community and greater interest than ever before PDWs, symposia, methods retreats, etc. Greater receptiveness and publication opportunities Recent publications in top management journals, including AMJ, AMR, JBR, JIBS, Org Studies, ORM as well as a growing number and edited volumes and special issues (e.g. Rihoux & Ragin, 2009; Fiss, Cambré & Marx, 2012; Marx & Rihoux, 2012) New measures, tools, and ways of presenting results New package for R (Thiem & Dusa); STATA routine, fsqca 2.5 Consistency and coverage measures have become standard Configuration tables are becoming a standard way of presenting results (e.g. Ragin & Fiss, 2008; Crilly, 2011; Fiss 2011; Greckhamer 2011);
9 The Comparative Method
10 The Underlying Model of Social Research Ideas/Theory mostly inductive Analytic Frames retroduction Representations mostly deductive Images Evidence/Data Source: Ragin, Constructing Social Research, 1994
11 Two Main Methodological Approaches to Social Research CaseOriented Approach Only through close examination of individual cases do we have any chance of understanding social phenomena Most phenomena have been misrepresented or incompletely represented This can be remedied only through close engagement and intensive examination. VariableOriented Approach Underlying truths are evident only when we look at broad patterns across many cases Individual cases can be deceptive Patterns reveal underlying structures and relationship purged of the specificity of any individual case.
12 The Methodological Divide Source: Ragin (2000:25)
13 The CaseOriented/Variable Oriented Dimension Single Case The Comparative QN Study of Study Method Covariation CaseOriented SmallN Qualitative Intensive Within Case Analysis Problem of Representation??? VariableOriented LargeN Quantitative Extensive CrossCase Analysis Problem of Inference
14 The Basics of QCA
15 Sets are Central to Social Scientific Discourse Many, if not most, social scientific statements, especially empirical generalizations about crosscase patterns, involve settheoretic relationships: A. Organizations with high levels of internal and external fit are highperforming. (Highly fit organizations are a subset of highperforming organizations) B. Professionals have advanced degrees. (Professionals are a subset of those with advanced degrees.) C. Democracy requires a state with at least medium capacity. (Democratic states are a subset of states with at least medium capacity.) D. "Elite brokerage" is central to successful democratization. (Instances of successful democratization are a subset of instances of elite brokerage.) E. No bourgeoisie, no democracy. (Barrington Moore, Jr.) An urban bourgeoisie is one of the preconditions for the development of democracy. Usually, but not always, the subset is mentioned first. Sometimes, it takes a little deciphering to figure out the settheoretic relationship, as in E.
16 Explaining Outcomes and SetTheoretic Reasoning 1. When explaining outcomes, the focus is on temporally bounded qualitative change. 2. Often, the explanation of the outcome is combinatorial, citing a confluence of actors, events, and structures. 3. Explaining how things happen(ed) is central to case study and comparative research: The origins of. Becoming a. The decline of. The emergence of. 4. With more than one case, there may be multiple combinations of conditions (i.e., multiple causal recipes), with different cases following different paths to the same outcome. 5. Each path can be understood as a different combination of conditions, which in turn can be formulated as an intersection of sets (a causal recipe). 6. Sufficiency is established when it can be shown that instances of the causal recipe constitute a subset of instances of the outcome.
17 Correlational Connections Correlation is central to conventional quantitative social science. The core principle is the idea of assessing the degree to which two series of values parallel each other across cases. The simplest form is the 2x2 table crosstabulating the presence/absence of a cause against presence/absence of an outcome: Cause absent Outcome present cases in this cell (#1) contribute to error Outcome absent many cases should be in this cell (#3) Cause present many cases should be in this cell (#2) cases in this cell (#4) contribute to error Correlation is strong (and in the expected direction) when there are as many cases as possible in cells #2 and #3 (both count in favor of the causal argument, equally) and as few cases as possible in cells #1 and #4 (both count against the causal argument, equally). Correlation is completely symmetrical.
18 Correlational Versus SetTheoretic Connections A correlational connection is a description of tendencies in the evidence: Org. Structure A Org. Structure B Firm survived 8 11 Firm failed 16 5 An explicit connection is a subset relation or nearsubset relation: Org. Structure A Org. Structure B Firm survived Firm failed 6 0 In the second table all firms with structure B survived, that is, they are a subset of those that survived. The first table is stronger and more interesting from a correlational viewpoint; the second table is stronger and more interesting from the perspective of explicit connections even though the correlations are almost identical.
19 Anyone interested in demonstrating necessity and/or sufficiency must address settheoretic relations. Necessity and sufficiency are difficult to assess using conventional quantitative methods. CAUSE IS NECESSARY BUT NOT SUFFICIENT Cause absent Cause present Outcome present 1. no cases here 2. cases here Outcome absent 3. not relevant 4. not relevant CAUSE IS SUFFICIENT BUT NOT NECESSARY Cause absent Cause present Outcome present 1. not relevant 2. cases here Outcome absent 3. not relevant 4. no cases here
20 Necessity (without Sufficiency) I. Expressed as a simple truth table: Cause Outcome II. Expressed as an inequality: (value of the outcome) (value of the cause) III. Expressed as a research strategy: Find instances of the outcome (i.e., select on the dependent variable) and assess their agreement on the causal condition (i.e., make sure that the cause does not vary substantially across instances of the outcome). This strategy is central to many forms of qualitative research.
21 Sufficiency (without Necessity) I. Expressed as a simple truth table: Cause Outcome II. Expressed as an inequality: (values of the cause) (value of the outcome) III. Expressed as a research strategy: Find instances of the causal condition (i.e., select on the independent variable) and assess their agreement on the outcome (i.e., make sure that the outcome does not vary substantially across instances of the cause).
22 Causal Complexity Causal complexity is pervasive but hard to tackle with conventional methods. For instance, a researcher studies production sites in a strikeprone industry and considers four possible causes of strikes: technology = the introduction of new technology wages = stagnant wages in times of high inflation overtime = reduction in overtime hours sourcing = outsourcing portions of production Possible findings include: is logical and (1) technology strikes + is logical or (2) technology wages strikes (3) technology + wages strikes (4) technology wages + overtime sourcing strikes In (1) technology is necessary and sufficient (2) technology is necessary but not sufficient (3) technology is sufficient but not necessary (4) technology is neither necessary nor sufficient
23 INUS Causation In situations of causal complexity, no single cause may be either necessary or sufficient, as in the logic equation: TECHNOLOGY*WAGES + OVERTIME*SOURCING STRIKES In The Comparative Method, this situation is called multiple conjunctural causation. In The Cement of the Universe, Mackie (1974) labels these causal conditions INUS causes because each one is: Insufficient (not sufficient by itself) but Necessary components of causal combinations that are Unnecessary (because of multiple paths) but Sufficient for the outcome
24 The Degree of Consistency of a Subset Relation The consistency of a crisp subset relation is straightforward. It is simply the number of cases displaying both the cause and the outcome (cell 2) divided by the number of cases displaying the causal condition (the sum of cells 2 and 4). For example, in the following table the consistency of the evidence with the argument that having org. structure B is sufficient for survival: 14/(2 + 14) = 14/16 = Org. Structure A Org. Structure B Firm survived Firm failed 11 2 Only cases in the second column are involved in the assessment of consistency of the evidence with the subset relation. The following is a Venn diagram illustrating this high but lessthanperfect degree of consistency.
25 The Degree of Consistency of a Subset Relation 13 Set of surviving firms 14 Set of firms with org. structure B 2 Consistency of subset relation = 14/(2+14) = 14/16 = 0.875
26 The Degree of Coverage of a Subset Relation Once it has been established that a subset is at least roughly consistent, it is possible to assess its degree of coverage. The calculation of coverage for crisp sets is straightforward. It is simply the number of cases with both the causal condition and the outcome (again, cell 2) divided by the number of cases with the outcome (cell 1 + cell 2). In other words, coverage answers the question: What proportion of cases with the outcome has been explained? or How common is the cause (or causal combination) among the cases with the outcome? 14/( ) = 14/27 = Org. Structure A Firm survived Firm failed 11 2 Org. Structure B Only cases in the first row are involved in the assessment of coverage. The key consideration is the proportion of the larger set covered by the interior set.
27 The Degree of Consistency of a Subset Relation 13 Set of surviving firms 14 Set of firms with org. structure B 2 Coverage of subset relation = 14/( ) = 14/27 = 0.519
28 Set Coincidence Set coincidence combines and bridges consistency and coverage. Set coincidence focuses on the degree to which two sets overlap that is, the degree to which they are one and the same set. While degree of set coincidence can be assessed using multiple sets (i.e., more than two), it is easiest to grasp the basic principles using two sets. For example, the degree to which the set of surviving firms and the set of firms with org. structure B are one and the same is indicated by the degree to which the cases than have both of these two traits embraces the set of cases that have either trait. In other words, set coincidence is the number of cases found in the intersection of two sets, expressed relative to the number of cases found in their union: (# of cases in intersection)/(# of cases in union)
29 Set A Set B Low set coincidence: set intersection is a small fraction of set union. Set A Set B High set coincidence: set intersection almost fully covers set union.
30 Crisp Set Analysis
31 Overview of the Steps in csqca Step 1: Identify relevant cases and causal conditions Step 2: Construct the data set Step 3: Test for necessary conditions Step 4: Construct the truth table and resolve contradictions Step 5: Analyze the truth table Step 6: Evaluate the Results Step 7: Return to step 3 and repeat the analysis for the negation of the outcome
32 Step 1: Identify relevant cases and causal conditions 11. Identify the outcome of interest and the cases that exemplify this outcome. Learn as much as you can about these positive cases Based on #1, identify negative cases those that might seem to be candidates for the outcome but nevertheless failed to display it ( negative cases). Together #1 and #2 constitute the set of cases relevant to the analysis Again based on #1, and relevant theoretical and substantive knowledge, identify the major causal conditions relevant to the outcome. Often, it is useful to think in terms of different causal recipes 14. Try to streamline the causal conditions as much as possible, e.g. combine two conditions into one when they seem substitutable.
33 Step 1: Examples Identify positive instances of mass protest against austerity measures mandated by the International Monetary Fund (IMF) as conditions for debt renegotiation ( conditionality ). Peru, Argentina, Tunisia,... Identify negative cases: for example, debtor countries that were also subject to IMF conditionality, but nevertheless did not experience mass protest. Mexico, Costa Rica,...
34 Step 1: Examples Cont d Identify relevant causal conditions: severity of austerity measures, degree of debt, living conditions, consumer prices, prior levels of political mobilization, government corruption, union strength, trade dependence, investment dependence, urbanization and other structural conditions relevant to protest mobilization. One recipe might be severe austerity measures combined with government corruption, rapid consumer price increases and high levels of prior political mobilization. Streamlining: Based on case knowledge, the researcher might surmise that high levels of trade dependence and high levels of investment dependence are substitutable manifestations of international economic dependence and therefore create a single condition from these two, using logical or.
35 Step 2: Construct the data set QCA data sets have the standard format: Cases define the rows, and aspects of cases define the columns. However, it is important to remember that the columns are sets and that the relevant sets must be carefully conceptualized and labeled. The cells of the data spreadsheet are filled with set membership scores. When using crisp sets, there are only two possible values: 1 (member) and 0 (nonmember).
36 Step 2: Construct the data set It is important to specify set membership criteria as carefully as possible and make sure that the membership scores that are assigned are faithful to the set label and how it is conceptualized. Very often it is useful to use to same evidence (e.g., parental income) as a basis for more than one set. For example, the set of individual with highincome parents has different membership than the set of individual with notlow income parents. The former is a subset of the latter. These multiple conceptualizations based on the same source variable (e.g., parental income) can be used in the same analysis.
37 Here s a sample data set with crisp sets : Case ID PriorMob SevereAus GovCor PriceRis Protest a b c d e f g h i j k l m n o p q r s t u v w x y z etc
38 Step 3: Test for necessary conditions The core of QCA is truth table analysis, which looks for causal combinations ( recipes ) that are sufficient for the outcome. Before conducting a truth table analysis, however, it is useful to see if any of the causal conditions might be considered necessary (but not sufficient) conditions for the outcome. If a causal condition is necessary for an outcome, then instances of the outcome constitute a subset of instances of the causal condition. With crisp sets, the simplest way to assess necessary conditions is the use QCA s crosstabs procedure and ask for row percentages. Look across the row showing the presence of the outcome; if all instances (or almost all instances) agree in displaying a particular causal condition, then that condition might be interpreted as a necessary condition.
39 Using the data set presented earlier might we find: N Row % priormob protest Total N 71 Missing 0 N Row % severeaus protest Total N 71 Missing 0 N Row % govcor protest Total N 71 Missing 0 N Row % priceris protest Total N 71 Missing 0
40 Step 3: Test for necessary conditions The key calculation is the percentage of the cases with the outcome (second row in these tables) that also display the causal condition (cell 4, in these tables). The causal condition severeaus (severe austerity) is close enough (at 93.9%) to be considered a candidate for necessity ( almost always necessary). When evaluating possible necessary conditions, I look for consistency scores of at least 90%. It is important to evaluate whether the condition makes sense as a necessary condition! Remember that a necessary condition is a superset of the outcome, while a sufficient condition (or combination of conditions) is a subset. In general, it is useful to know which conditions are necessary, because they are often eliminated from parsimonious solutions.
41 Step 4: Construct the truth table and resolve contradictions 41. Construct a truth table based on the causal conditions specified in step 1 or some reasonable subset of these conditions (e.g., using a recipe that seems especially promising). A truth table sorts cases by the combinations of causal conditions they exhibit. All logically possible combinations of conditions are considered, even those without empirical instances Assess the consistency of the cases in each row with respect to the outcome: Do they agree in displaying (or not displaying) the outcome? Consistency for crisp sets is the percentage of cases in each row displaying the outcome. Consistency scores of either 1 or 0 indicate perfect consistency for a given row, while a score of 0.50 indicates perfect inconsistency.
42 Step 4: Construct the truth table and resolve contradictions 43. Identify contradictory rows. Technically, a contradictory row is any row with a consistency score that is not equal to 1 or 0. However, it is sometimes reasonable to relax this standard, for example, if an inconsistent case in a given row can be explained by its specific circumstances Compare cases within each contradictory rows. If possible, identify decisive differences between positive and negative cases, and then revise the truth table accordingly.
43 An example, using one possible recipe as a starting point: Row# Prior Severe Gov t Rapid price Cases w/ Cases w/o Consistency mobiliz.? austerity? corrupt? rise? protest? protest 1 0 (no) 0 (no) 0 (no) 0 (no) 0 0?? 2 0 (no) 0 (no) 0 (no) 1 (yes) 0 0?? 3 0 (no) 0 (no) 1 (yes) 0 (no) (no) 0 (no) 1 (yes) 1 (yes) (no) 1 (yes) 0 (no) 0 (no) 0 0?? 6 0 (no) 1 (yes) 0 (no) 1 (yes) (no) 1 (yes) 1 (yes) 0 (no) 0 0?? 8 0 (no) 1 (yes) 1 (yes) 1 (yes) (yes) 0 (no) 0 (no) 0 (no) (yes) 0 (no) 0 (no) 1 (yes) (yes) 0 (no) 1 (yes) 0 (no) (yes) 0 (no) 1 (yes) 1 (yes) 0 0?? 13 1 (yes) 1 (yes) 0 (no) 0 (no) (yes) 1 (yes) 0 (no) 1 (yes) (yes) 1 (yes) 1 (yes) 0 (no) (yes) 1 (yes) 1 (yes) 1 (yes)
44 a) This table has five rows without cases (1, 2, 5, 7, 12). In QCA, these rows are known as remainders. Having remainders is known as limited diversity. b) There are seven noncontradictory rows, three that are uniform in not displaying the outcome (consistency = 0.0; rows 3, 9, 11) and four that are uniform in displaying the outcome (consistency = 1.0; rows 6, 8, 14, 16). c) The remaining four rows are contradictory. Three are close to 0.0 (rows 4, 10, 13), and one is close to 1.0 (row 15). d) Suppose that the three (unexpected) positive cases (one each in rows 4, 10, 13) are all cases of contagion a neighboring country with severe IMF protest spawned sympathy protest in these countries. These contradictory cases can be explained using case knowledge, showing that these instances are irrelevant to the recipe in question. Thus, these three cases can be safely set aside. e) e. Suppose the comparison of the positive and negative cases in row 15, reveals that the (unexpected) negative cases all had severely repressive regimes. This pattern suggests that having a notseverelyrepressive regime is part of the recipe and that the recipe has five key conditions, not four. The revised truth table follows.
45 Prior mobiliz.? Severe austerity? Gov t corrupt? Rapid price rise? Cases w/ protest? Cases w/o protest 0 (no) 0 (no) 1 (yes) 0 (no) 0 (no) (no) 0 (no) 1 (yes) 1 (yes) 0 (no) (no) 1 (yes) 0 (no) 1 (yes) 0 (no) (no) 1 (yes) 1 (yes) 1 (yes) 1 (yes) (yes) 0 (no) 0 (no) 0 (no) 0 (no) (yes) 0 (no) 0 (no) 1 (yes) 1 (yes) (yes) 0 (no) 1 (yes) 0 (no) 0 (no) (yes) 1 (yes) 0 (no) 0 (no) 1 (yes) (yes) 1 (yes) 0 (no) 1 (yes) 0 (no) (yes) 1 (yes) 1 (yes) 0 (no) 1 (yes) (yes) 1 (yes) 1 (yes) 0 (no) 0 (no) (yes) 1 (yes) 1 (yes) 1 (yes) 1 (yes) Not repressive? Consistency This is the revised truth table. Notice that now there are no contradictions. The three cases of contagion have been removed, and the contradictory cases in row 15 of the previous table have been resolved. The full version of this truth table would have 32 rows and 20 remainders (causal combinations lacking cases).
46 Step 5: Analyze the truth table The fsqca software can be used to analyze truth tables like the two just shown. The goal of the analysis is to specify the different combinations of conditions linked to the selected outcome The first part of the fsqca algorithm compares rows of the truth table to identify matched pairs. For example, these two rows both have the outcome, but differ by ONLY ONE causal conditions, providing an experimentlike contrast: Prior mobiliz.? Severe austerity? Gov t corrupt? Rapid price rise? Not repressive? Cases w/ protest? Cases w/o protest Consistency 1 (yes) 1 (yes) 1 (yes) 0 (no) 1 (yes) (yes) 1 (yes) 1 (yes) 1 (yes) 1 (yes)
47 Step 5: Analyze the truth table Prior mobiliz.? Severe austerity? Gov t corrupt? Rapid price rise? Not repressive? protest? Cases w/ protest Cases w/o tency Consis 1 (yes) 1 (yes) 1 (yes) 0 (no) 1 (yes) (yes) 1 (yes) 1 (yes) 1 (yes) 1 (yes) This paired comparison indicates that if prior mobilization, severe IMF austerity, government corruption, and a nonrepressive regime coincide, it doesn t matter whether there are also rapid price increases; protest will still erupt. The term that differs is eliminated, and a single, simpler row replaces the two rows shown This process of bottomup paired comparison continues until no further simplification is possible. Only rows with the outcome are paired; only one condition may differ in each paired comparison. The one that differs is eliminated.
48 53. Rows without cases ( remainders ) also may be used to aid the process of simplifying the patterns. For example, there are no instances of the second row listed below. However, based on substantive and theoretical knowledge, it is reasonable to speculate that if such cases existed, they would be positive instances of IMF protest, just like the empirical cases they are paired with: Prior Severe Gov t Rapid Not Repressive? Cases w/ Cases w/o Consis mobiliz.? austerity? corrupt? price rise? protest? protest tency 0 (no) 1 (yes) 0 (no) 1 (yes) 0 (no) (yes) 1 (yes) 1 (yes) 1 (yes) 0 (no) 0 0?? The reasoning is as follows: (1) the remainder case resembles the empirical cases above it in every respect except one; (2) the one difference (the remainder case has government corruption) involves a condition that should only make IMF protest more likely; (3) therefore, the remainder case, if it existed, would display IMF protest, just like the empirical cases. This pairing allows the production of a logically simpler configuration, eliminating the absence of government corruption as a possible (INUS) ingredient. This example shows how fsqca incorporates a form of counterfactual analysis that parallels practices in qualitative caseoriented research.
49 54. The process of paired comparisons culminates in a list of causal combinations linked to the outcome. fsqca then selects the smallest number of these that will cover all the positive instances of the outcome fsqca presents three solutions to each truth table analysis: (1) a complex solution that avoids using any counterfactual cases (rows without cases remainders ); (2) a parsimonious solution, which permits the use of any remainder that will yield simpler (or fewer) recipes; and (3) an intermediate solution, which uses only the remainders that survive counterfactual analysis based on theoretical and substantive knowledge (which is input by the user). Generally, intermediate solutions are best. For the table just presented, the three solutions are: Complex: SA gc PR nr + PM SA GC NR + SA GC PR NR Parsimonious: GC NR + SA PR Intermediate: PM SA GC NR + SA PR (Multiplication indicates set intersection combined conditions; addition indicates set union alternate combinations.)
50 Because they are logical statements, these two recipes for IMF protest can be factored. For example, the intermediate solution can be factored to show that severe austerity (SA) is present in both: SA (PR + PM GC NR) The expression indicates that IMF protest erupts when severe austerity (SA) is combined with either (1) rapid price increases (PR) or (2) the combination of prior mobilization (PM), government corruption (GC), and nonrepressive regime (NR). Recall that severe austerity was close to perfection as a necessary condition in the crosstabs analysis, so its importance here is not surprising. Notice, however, that severe austerity is absent from one of the recipes in the parsimonious solution, suggesting that the parsimonious solution is probably too parsimonious.
What is Qualitative Comparative Analysis (QCA)?
What is Qualitative Comparative Analysis (QCA)? Charles C. Ragin Department of Sociology and Department of Political Science University of Arizona Tucson, AZ 85721 USA www.fsqca.com www.compasss.org www.u.arizona.edu/~cragin
More informationQUALITATIVE COMPARATIVE ANALYSIS. Charles C. Ragin Department of Sociology University of Arizona Tucson, AZ 85718. http://www.fsqca.
QUALITATIVE COMPARATIVE ANALYSIS Charles C. Ragin Department of Sociology University of Arizona Tucson, AZ 85718 http://www.fsqca.com http://www.compasss.org http://www.u.arizona.edu/~cragin Why the UShaped
More informationQUALITATIVE COMPARATIVE ANALYSIS AND FUZZY SETS
QUALITATIVE COMPARATIVE ANALYSIS AND FUZZY SETS Charles C. Ragin Department of Sociology and Department of Political Science University of Arizona Tucson, AZ 85718 cragin@u.arizona.edu http://www.fsqca.com
More informationUsing fsqca. A Brief Guide and Workshop for FuzzySet Qualitative Comparative Analysis
Using fsqca A Brief Guide and Workshop for FuzzySet Qualitative Comparative Analysis Ray Kent Department of Marketing University of Stirling r.a.kent@stir.ac.uk 2008 Preface Ray Kent of the University
More information0DNLQJ&RPSDUDWLYH$QDO\VLV&RXQW. Charles C. Ragin Department of Sociology University of Arizona Tucson, Arizona 85721 USA.
0DNLQJ&RPSDUDWLYH$QDO\VLV&RXQW Charles C. Ragin Department of Sociology University of Arizona Tucson, Arizona 85721 USA August 2003 Preliminary Draft Please do not quote or cite without author s permission.,qwurgxfwlrq
More informationAnalyzing and interpreting data Evaluation resources from Wilder Research
Wilder Research Analyzing and interpreting data Evaluation resources from Wilder Research Once data are collected, the next step is to analyze the data. A plan for analyzing your data should be developed
More informationMathematics Cognitive Domains Framework: TIMSS 2003 Developmental Project Fourth and Eighth Grades
Appendix A Mathematics Cognitive Domains Framework: TIMSS 2003 Developmental Project Fourth and Eighth Grades To respond correctly to TIMSS test items, students need to be familiar with the mathematics
More informationFor example, estimate the population of the United States as 3 times 10⁸ and the
CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number
More informationWhat Is a Case Study? series of related events) which the analyst believes exhibits (or exhibit) the operation of
What Is a Case Study? Mitchell (1983) defined a case study as a detailed examination of an event (or series of related events) which the analyst believes exhibits (or exhibit) the operation of some identified
More informationAnalyzing Research Articles: A Guide for Readers and Writers 1. Sam Mathews, Ph.D. Department of Psychology The University of West Florida
Analyzing Research Articles: A Guide for Readers and Writers 1 Sam Mathews, Ph.D. Department of Psychology The University of West Florida The critical reader of a research report expects the writer to
More informationPA Common Core Standards Standards for Mathematical Practice Grade Level Emphasis*
Habits of Mind of a Productive Thinker Make sense of problems and persevere in solving them. Attend to precision. PA Common Core Standards The Pennsylvania Common Core Standards cannot be viewed and addressed
More informationApplications of Methods of Proof
CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The settheoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are
More informationCFSD 21 ST CENTURY SKILL RUBRIC CRITICAL & CREATIVE THINKING
Critical and creative thinking (higher order thinking) refer to a set of cognitive skills or strategies that increases the probability of a desired outcome. In an information rich society, the quality
More informationSouth Carolina College and CareerReady (SCCCR) Probability and Statistics
South Carolina College and CareerReady (SCCCR) Probability and Statistics South Carolina College and CareerReady Mathematical Process Standards The South Carolina College and CareerReady (SCCCR)
More informationNODAL ANALYSIS. Circuits Nodal Analysis 1 M H Miller
NODAL ANALYSIS A branch of an electric circuit is a connection between two points in the circuit. In general a simple wire connection, i.e., a 'shortcircuit', is not considered a branch since it is known
More informationCRM Forum Resources http://www.crmforum.com
CRM Forum Resources http://www.crmforum.com BEHAVIOURAL SEGMENTATION SYSTEMS  A Perspective Author: Brian Birkhead Copyright Brian Birkhead January 1999 Copyright Brian Birkhead, 1999. Supplied by The
More informationChapter 2 Conceptualizing Scientific Inquiry
Chapter 2 Conceptualizing Scientific Inquiry 2.1 Introduction In order to develop a strategy for the assessment of scientific inquiry in a laboratory setting, a theoretical construct of the components
More informationCREATING LEARNING OUTCOMES
CREATING LEARNING OUTCOMES What Are Student Learning Outcomes? Learning outcomes are statements of the knowledge, skills and abilities individual students should possess and can demonstrate upon completion
More informationCrispSet Qualitative Comparative Analysis (csqca)
03Rihoux45607:03Rihoux45607 7/18/2008 12:37 PM Page 33 3 CrispSet Qualitative Comparative Analysis (csqca) Benoît Rihoux Gisèle De Meur Goals of This Chapter After reading this chapter, you should
More informationWorking Paper 201479
Working Paper 201479 QCA, the Truth Table Analysis and LargeN Survey Data: The Benefits of Calibration and the Importance of Robustness Tests Patrick Emmenegger, Dominik Schraff and André Walter Department
More informationVisualization Quick Guide
Visualization Quick Guide A best practice guide to help you find the right visualization for your data WHAT IS DOMO? Domo is a new form of business intelligence (BI) unlike anything before an executive
More informationEvaluation Tool for Assessment Instrument Quality
REPRODUCIBLE Figure 4.4: Evaluation Tool for Assessment Instrument Quality Assessment indicators Description of Level 1 of the Indicator Are Not Present Limited of This Indicator Are Present Substantially
More informationModels of Dissertation Research in Design
Models of Dissertation Research in Design S. Poggenpohl Illinois Institute of Technology, USA K. Sato Illinois Institute of Technology, USA Abstract This paper is a metalevel reflection of actual experience
More informationThe Alignment of Common Core and ACT s College and Career Readiness System. June 2010
The Alignment of Common Core and ACT s College and Career Readiness System June 2010 ACT is an independent, notforprofit organization that provides assessment, research, information, and program management
More informationREQUIREMENTS FOR THE MASTER THESIS IN INNOVATION AND TECHNOLOGY MANAGEMENT PROGRAM
APPROVED BY Protocol No. 18022016 Of 18 February 2016 of the Studies Commission meeting REQUIREMENTS FOR THE MASTER THESIS IN INNOVATION AND TECHNOLOGY MANAGEMENT PROGRAM Vilnius 20162017 1 P a g e
More informationLasse Cronqvist. Email: lasse@staff.unimarburg.de. Tosmana. TOol for SMAllN Analysis. version 1.2. User Manual
Lasse Cronqvist Email: lasse@staff.unimarburg.de Tosmana TOol for SMAllN Analysis version 1.2 User Manual Release: 24 th of January 2005 Content 1. Introduction... 3 2. Installing Tosmana... 4 Installing
More informationBasic Concepts in Research and Data Analysis
Basic Concepts in Research and Data Analysis Introduction: A Common Language for Researchers...2 Steps to Follow When Conducting Research...3 The Research Question... 3 The Hypothesis... 4 Defining the
More informationAn Investigation into Visualization and Verbalization Learning Preferences in the Online Environment
An Investigation into Visualization and Verbalization Learning Preferences in the Online Environment Dr. David Seiler, Assistant Professor, Department of Adult and Career Education, Valdosta State University,
More informationUMEÅ INTERNATIONAL SCHOOL
UMEÅ INTERNATIONAL SCHOOL OF PUBLIC HEALTH Master Programme in Public Health  Programme and Courses Academic year 20152016 Public Health and Clinical Medicine Umeå International School of Public Health
More informationChapter 7. Hierarchical cluster analysis. Contents 71
71 Chapter 7 Hierarchical cluster analysis In Part 2 (Chapters 4 to 6) we defined several different ways of measuring distance (or dissimilarity as the case may be) between the rows or between the columns
More informationInflation. Chapter 8. 8.1 Money Supply and Demand
Chapter 8 Inflation This chapter examines the causes and consequences of inflation. Sections 8.1 and 8.2 relate inflation to money supply and demand. Although the presentation differs somewhat from that
More informationData Analysis, Statistics, and Probability
Chapter 6 Data Analysis, Statistics, and Probability Content Strand Description Questions in this content strand assessed students skills in collecting, organizing, reading, representing, and interpreting
More informationACH 1.1 : A Tool for Analyzing Competing Hypotheses Technical Description for Version 1.1
ACH 1.1 : A Tool for Analyzing Competing Hypotheses Technical Description for Version 1.1 By PARC AI 3 Team with Richards Heuer Lance Good, Jeff Shrager, Mark Stefik, Peter Pirolli, & Stuart Card ACH 1.1
More information7 Conclusions and suggestions for further research
7 Conclusions and suggestions for further research This research has devised an approach to analyzing systemlevel coordination from the point of view of product architecture. The analysis was conducted
More informationInteger Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions
Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.
More informationInequality, Mobility and Income Distribution Comparisons
Fiscal Studies (1997) vol. 18, no. 3, pp. 93 30 Inequality, Mobility and Income Distribution Comparisons JOHN CREEDY * Abstract his paper examines the relationship between the crosssectional and lifetime
More informationTHE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING
THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The BlackScholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages
More informationCircuits 1 M H Miller
Introduction to Graph Theory Introduction These notes are primarily a digression to provide general background remarks. The subject is an efficient procedure for the determination of voltages and currents
More informationFairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
More informationCOMMON CORE STATE STANDARDS FOR
COMMON CORE STATE STANDARDS FOR Mathematics (CCSSM) High School Statistics and Probability Mathematics High School Statistics and Probability Decisions or predictions are often based on data numbers in
More informationMINITAB ASSISTANT WHITE PAPER
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. OneWay
More informationIP Subnetting: Practical Subnet Design and Address Determination Example
IP Subnetting: Practical Subnet Design and Address Determination Example When educators ask students what they consider to be the most confusing aspect in learning about networking, many say that it is
More informationThe Contextualization of Project Management Practice and Best Practice
The Contextualization of Project Management Practice and Best Practice Claude Besner PhD, University of Quebec at Montreal Brian Hobbs PhD, University of Quebec at Montreal Abstract This research aims
More informationMaster s Programme in International Administration and Global Governance
Programme syllabus for the Master s Programme in International Administration and Global Governance 120 higher education credits Second Cycle Confirmed by the Faculty Board of Social Sciences 20150511
More informationRachel J. Goldberg, Guideline Research/Atlanta, Inc., Duluth, GA
PROC FACTOR: How to Interpret the Output of a RealWorld Example Rachel J. Goldberg, Guideline Research/Atlanta, Inc., Duluth, GA ABSTRACT THE METHOD This paper summarizes a realworld example of a factor
More informationWhat is the purpose of this document? What is in the document? How do I send Feedback?
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Statistics
More informationCORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
More informationMeasurement with Ratios
Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve realworld and mathematical
More informationChapter 6: The Information Function 129. CHAPTER 7 Test Calibration
Chapter 6: The Information Function 129 CHAPTER 7 Test Calibration 130 Chapter 7: Test Calibration CHAPTER 7 Test Calibration For didactic purposes, all of the preceding chapters have assumed that the
More informationThe primary goal of this thesis was to understand how the spatial dependence of
5 General discussion 5.1 Introduction The primary goal of this thesis was to understand how the spatial dependence of consumer attitudes can be modeled, what additional benefits the recovering of spatial
More informationThe Graphical Method: An Example
The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,
More informationThe Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
More informationErrors in Operational Spreadsheets: A Review of the State of the Art
Errors in Operational Spreadsheets: A Review of the State of the Art Stephen G. Powell Tuck School of Business Dartmouth College sgp@dartmouth.edu Kenneth R. Baker Tuck School of Business Dartmouth College
More informationOPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
More informationBachelor's Degree in Business Administration and Master's Degree course description
Bachelor's Degree in Business Administration and Master's Degree course description Bachelor's Degree in Business Administration Department s Compulsory Requirements Course Description (402102) Principles
More informationTraditional Conjoint Analysis with Excel
hapter 8 Traditional onjoint nalysis with Excel traditional conjoint analysis may be thought of as a multiple regression problem. The respondent s ratings for the product concepts are observations on the
More informationAN EXECUTIVE VIEW OF THE DIFFERENCE BETWEEN BRAND AND REPUTATION
AN EXECUTIVE VIEW OF THE DIFFERENCE BETWEEN BRAND AND REPUTATION by Peter Zandan, Ph.D., Chairman, Research + Data Insights and Michael Lustina, Ph.D., President & COO, Research + Data Insights Abstract:
More informationDraft Martin Doerr ICSFORTH, Heraklion, Crete Oct 4, 2001
A comparison of the OpenGIS TM Abstract Specification with the CIDOC CRM 3.2 Draft Martin Doerr ICSFORTH, Heraklion, Crete Oct 4, 2001 1 Introduction This Mapping has the purpose to identify, if the OpenGIS
More informationChallenging the Scientist Practitioner Model: Questions About IO Education and Training
Challenging the Scientist Practitioner Model: Questions About IO Education and Training Rosemary HaysThomas The University of West Florida Editor s Note: The following paper resulted from an Education
More informationComputer Analysis of Survey Data  File Organization for MultiLevel Data. Chris Wolf Ag Econ Computer Service Michigan State University 1/3/90
Computer Analysis of Survey Data  File Organization for MultiLevel Data Chris Wolf Ag Econ Computer Service Michigan State University 1/3/90 Largescale socioeconomic surveys require a tremendous amount
More informationAsymmetry and the Cost of Capital
Asymmetry and the Cost of Capital Javier García Sánchez, IAE Business School Lorenzo Preve, IAE Business School Virginia Sarria Allende, IAE Business School Abstract The expected cost of capital is a crucial
More informationDatabase design theory, Part I
Database design theory, Part I Functional dependencies Introduction As we saw in the last segment, designing a good database is a non trivial matter. The E/R model gives a useful rapid prototyping tool,
More informationRELEVANT TO ACCA QUALIFICATION PAPER P3. Studying Paper P3? Performance objectives 7, 8 and 9 are relevant to this exam
RELEVANT TO ACCA QUALIFICATION PAPER P3 Studying Paper P3? Performance objectives 7, 8 and 9 are relevant to this exam Business forecasting and strategic planning Quantitative data has always been supplied
More informationACT Research Explains New ACT Test Writing Scores and Their Relationship to Other Test Scores
ACT Research Explains New ACT Test Writing Scores and Their Relationship to Other Test Scores Wayne J. Camara, Dongmei Li, Deborah J. Harris, Benjamin Andrews, Qing Yi, and Yong He ACT Research Explains
More informationNominal, Real and PPP GDP
Nominal, Real and PPP GDP It is crucial in economics to distinguish nominal and real values. This is also the case for GDP. While nominal GDP is easier to understand, real GDP is more important and used
More informationCreating A Grade Sheet With Microsoft Excel
Creating A Grade Sheet With Microsoft Excel Microsoft Excel serves as an excellent tool for tracking grades in your course. But its power is not limited to its ability to organize information in rows and
More informationIBM SPSS Direct Marketing 22
IBM SPSS Direct Marketing 22 Note Before using this information and the product it supports, read the information in Notices on page 25. Product Information This edition applies to version 22, release
More informationCHAPTER 11. AN OVEVIEW OF THE BANK OF ENGLAND QUARTERLY MODEL OF THE (BEQM)
1 CHAPTER 11. AN OVEVIEW OF THE BANK OF ENGLAND QUARTERLY MODEL OF THE (BEQM) This model is the main tool in the suite of models employed by the staff and the Monetary Policy Committee (MPC) in the construction
More informationAP Statistics 2002 Scoring Guidelines
AP Statistics 2002 Scoring Guidelines The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought
More informationProbability Using Dice
Using Dice One Page Overview By Robert B. Brown, The Ohio State University Topics: Levels:, Statistics Grades 5 8 Problem: What are the probabilities of rolling various sums with two dice? How can you
More informationIn mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.
MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target
More information3. Data Analysis, Statistics, and Probability
3. Data Analysis, Statistics, and Probability Data and probability sense provides students with tools to understand information and uncertainty. Students ask questions and gather and use data to answer
More informationAN ILLUSTRATION OF COMPARATIVE QUANTITATIVE RESULTS USING ALTERNATIVE ANALYTICAL TECHNIQUES
CHAPTER 8. AN ILLUSTRATION OF COMPARATIVE QUANTITATIVE RESULTS USING ALTERNATIVE ANALYTICAL TECHNIQUES Based on TCRP B11 Field Test Results CTA CHICAGO, ILLINOIS RED LINE SERVICE: 8A. CTA Red Line  Computation
More informationTutorial for proteome data analysis using the Perseus software platform
Tutorial for proteome data analysis using the Perseus software platform Laboratory of Mass Spectrometry, LNBio, CNPEM Tutorial version 1.0, January 2014. Note: This tutorial was written based on the information
More informationPerformance Level Descriptors Grade 6 Mathematics
Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.12 Grade 6 Math : SubClaim A The student solves problems involving the Major Content for grade/course with
More informationEasily Identify Your Best Customers
IBM SPSS Statistics Easily Identify Your Best Customers Use IBM SPSS predictive analytics software to gain insight from your customer database Contents: 1 Introduction 2 Exploring customer data Where do
More informationGRADE 8 MATH: TALK AND TEXT PLANS
GRADE 8 MATH: TALK AND TEXT PLANS UNIT OVERVIEW This packet contains a curriculumembedded Common Core standards aligned task and instructional supports. The task is embedded in a three week unit on systems
More informationQCA: A Package for Qualitative Comparative Analysis by Alrik Thiem and Adrian Duşa
CONTRIBUTED RESEARCH ARTICLES 87 QCA: A Package for Qualitative Comparative Analysis by Alrik Thiem and Adrian Duşa Abstract We present QCA, a package for performing Qualitative Comparative Analysis (QCA).
More information6 Scalar, Stochastic, Discrete Dynamic Systems
47 6 Scalar, Stochastic, Discrete Dynamic Systems Consider modeling a population of sandhill cranes in year n by the firstorder, deterministic recurrence equation y(n + 1) = Ry(n) where R = 1 + r = 1
More informationImproving Data Quality with Open Mapping Tools. February 2011. Robert Worden. Open Mapping Software Ltd. 2011 Open Mapping Software
Improving Data Quality with Open Mapping Tools February 2011 Robert Worden Open Mapping Software Ltd 2011 Open Mapping Software Contents 1. Introduction: The Business Problem 2 2. Initial Assessment: Understanding
More informationMethods in Case Study Analysis
Methods in Case Study Analysis Linda T. Kohn, Ph.D. The Center for Studying Health System Change Technical Publication No. 2 June 1997 Methods in Case Study Analysis Linda T. Kohn, Ph.D. The Center for
More informationCurriculum  Doctor of Philosophy
Curriculum  Doctor of Philosophy CORE COURSES Pharm 545546.Pharmacoeconomics, Healthcare Systems Review. (3, 3) Exploration of the cultural foundations of pharmacy. Development of the present state of
More informationAPPENDIX F Science and Engineering Practices in the NGSS
APPENDIX F Science and Engineering Practices in the NGSS A Science Framework for K12 Science Education provides the blueprint for developing the Next Generation Science Standards (NGSS). The Framework
More informationExecutive Summary. Summary  1
Executive Summary For as long as human beings have deceived one another, people have tried to develop techniques for detecting deception and finding truth. Lie detection took on aspects of modern science
More informationIf A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
More informationGet The Picture: Visualizing Financial Data part 1
Get The Picture: Visualizing Financial Data part 1 by Jeremy Walton Turning numbers into pictures is usually the easiest way of finding out what they mean. We're all familiar with the display of for example
More informationWhitnall School District Report Card Content Area Domains
Whitnall School District Report Card Content Area Domains In order to align curricula kindergarten through twelfth grade, Whitnall teachers have designed a system of reporting to reflect a seamless K 12
More informationThe CSU Graduation & Achievement Gap Initiative: Doing Our Part to Educate 1 Million More Graduates by 2025
CFA WHITE PAPER CALIFORNIA FACULTY ASSOCIATION Representing the Faculty in the California State University The CSU Graduation & Achievement Gap Initiative: Doing Our Part to Educate 1 Million More Graduates
More informationCourse Syllabus. MATH 1350Mathematics for Teachers I. Revision Date: 8/15/2016
Course Syllabus MATH 1350Mathematics for Teachers I Revision Date: 8/15/2016 Catalog Description: This course is intended to build or reinforce a foundation in fundamental mathematics concepts and skills.
More informationIntroduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.
Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative
More informationBOR 6335 Data Mining. Course Description. Course Bibliography and Required Readings. Prerequisites
BOR 6335 Data Mining Course Description This course provides an overview of data mining and fundamentals of using RapidMiner and OpenOffice open access software packages to develop data mining models.
More informationCenter for Effective Organizations
Center for Effective Organizations TOTAL QUALITY MANAGEMENT AND EMPLOYEE INVOLVEMENT: SIMILARITIES, DIFFERENCES, AND FUTURE DIRECTIONS CEO PUBLICATION G 9216 (219) EDWARD E. LAWLER III University of Southern
More informationHigh School Functions Interpreting Functions Understand the concept of a function and use function notation.
Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.
More informationMultivariate Analysis of Ecological Data
Multivariate Analysis of Ecological Data MICHAEL GREENACRE Professor of Statistics at the Pompeu Fabra University in Barcelona, Spain RAUL PRIMICERIO Associate Professor of Ecology, Evolutionary Biology
More informationConstructing Kirq, software for settheoretic social research: A software development travelogue
Constructing Kirq, software for settheoretic social research: A software development travelogue Claude Rubinson University of Houston Downtown rubinsonc@uhd.edu cjr@grundrisse.org http://grundrisse.org
More informationQualitative Data Analysis
Qualitative Data Analysis Qualitative Data Analysis (version 0.5, 1/4/05 ) analysisquali Code: analysisquali Daniel K. Schneider, TECFA, University of Geneva Menu 1. Introduction: classify, code and
More informationI. Thinking and Thinking About Thinking A. Every human being thinks and thinks continually, but we do little thinking about our thinking.
Philosophy 3304 Introduction to Logic Logic and World Views I. Thinking and Thinking About Thinking A. Every human being thinks and thinks continually, but we do little thinking about our thinking. B.
More informationHarvard Business School 9384005. Balance of Payments. Accounting and Presentation
Harvard Business School 9384005 August 8, 1983 Balance of Payments Accounting and Presentation Introduction Few countries in the world run their economies in autarky. Most nations export and import goods
More informationRSA VIA LIFECYCLE AND GOVERNENCE: ROLE MANAGEMENT BEST PRACTICES
RSA VIA LIFECYCLE AND GOVERNENCE: ROLE MANAGEMENT BEST PRACTICES A practitioner s perspective on best practices for Role Management ABSTRACT This white paper provides an overview of the Role Management
More informationDoes It Pay to Attend Clinical Research Conferences?
Vol. 6, No. 12, December 2010 Can You Handle the Truth? Does It Pay to Attend Clinical Research Conferences? By Norman M. Goldfarb Organizations send their employees to clinical research conferences for
More information