Neural Networks. CAP5610 Machine Learning Instructor: Guo-Jun Qi
|
|
|
- Rosamund Flynn
- 9 years ago
- Views:
Transcription
1 Neural Networks CAP5610 Machine Learning Instructor: Guo-Jun Qi
2 Recap: linear classifier Logistic regression Maximizing the posterior distribution of class Y conditional on the input vector X Support vector machines Maximizing the maximum margin, and Hard margin: subject to the constraints that no training error shall be made Soft margin: minimizing the slack variables that represent how much an associated training example violates the classification rule. Extended to nonlinear classifier with kernel trick Mapping input vectors to high dimensional space linear classifier in high dimensional space, nonlinear in original space.
3 Building nonlinear classifier With a network of logistic units? A single logistic unit is linear classifier : f: X Y 1 f X = 1 + exp( W 0 N n=1 W n X n )
4 Graph representation of a logistic unit Input layer: An input X=(X 1,, X n ) Output: logistic function of the input features
5 A logistic unit as an neuron: Input layer: An input X=(X 1,, X n ) Activation: weighted sum of input features a = W 0 + N n=1 W n X n Activation function: logistic function h applied to the weighted sum Output: z = h(a)
6 Neural Network: Multiple layers of neurons Output of a layer is the input into the upper layer
7 An example A three layer neural network w 10 z 1 a 1 w 11 a 1 y 1 w 12 a 2 z2 w 10 w 20 a1 = w11 x1 + w 12 x2 + w 10 z 1 = h(a 1 ) a 2 = w21 x1 + w 22 x2 + w 20 z 2 = h(a 2 ) w 11 w 21 w 12 w 22 x 1 x 2 a 1 = w11 z1 + w 12 x2 + w 10 y 1 = f(a 1 )
8 XOR Problem It is impossible to linearly separate these two classes x 2 (0,1) (1,1) (0,0) (1,0) x 1
9 XOR Problem Two classes become separable by putting a threshold 0.5 to the output y 1 x 2 (0,1) (1,1) 6.06 z 1 y z Input Output (0,0) (1,0) (0,1) (1,1) (0,0) (1,0) x 1 x 1 x 2
10 Application: Drive a car Input: real-time videos captured by a camera Output: signals that steer a car From the sharp left, straight to sharp right
11 Training Neural Network Given a training set of M examples {(x (i),t (i) ) i=1,,m} Training neural network is equivalent to minimizing the least square error between the network output and the true value min w L w = 1 (y (i) t i ) 2 2 i=1 Where y (i) is the output depending on the network parameters w. M
12 Recap: Gradient decent Method Gradient descent method is an iterative algorithm hill climbing method to find the peak point of a mountain At each point, compute its gradient L L L L,,..., w w w 0 1 N Gradient is a vector that points to the steepest direction climbing up the mountain. At each point, w is updated so it moves a size of step λ in the gradient direction w w L( w)
13 Stochastic Gradient Ascent Method Making the learning algorithm scalable to big data Computing the gradient of square error for only one example L w = M i=1 (y (i) t i ) 2 L L L L,,..., w w w 0 1 N L (i) w = (y (i) t i ) 2 L () i L L L,,..., w w w ( i) ( i) ( i) 0 1 N
14 Boiling down to computing the gradient y 1 z 1 w 11 a 1 w 12 z2 w 10 Square loss: L 1 (y t ) 2 k k 2 y f ( a ), a w z k k k kj j j Derivative to the activation in the second layer: L y (y t ) (y t ) f '( a ) k k k k k k k ak ak x 1 x 2 Derivative to the parameter in the second layer: L L a k ki k ki w a w k z i
15 Boiling down to computing the gradient Computing the derivatives to the parameters in the first layer w 10 z 1 w 11 a 1 y 1 w 12 z2 w 10 Relation between activations of the first and second layers By chain rule: a w h( a ) L k kj j j k j k k j h '( a ) L a a a a w j k kj j k w 11 w 21 w w The derivative to the parameter in the first layer: a w x j jn n n L L a w a w j jn j jn j x n x 1 x 2
16 Summary: Back propagation δ 1 For each training example (x,y), For each output unit k For each hidden unit j (y t ) f '( a ) k k k k δ 1 δ 2 h '( a ) w j j k kj k
17 Summary: Back propagation δ 1 For each training example (x,y), For each weight w ki : L w = δ k ki zi δ 1 δ 2 Update w ki wki δk zi For each weight w jn : Update L w jn = δ j xn w jn wjn δj xn
18 Regularized Square Error Add a zero mean Gaussian prior on the weights w ij (l) ~N(0, σ 2 ) MAP estimate of w L (i) w = 1 2 (y(i) t i ) 2 + γ 2 (w ij (l) ) 2
19 Summary: Back propagation δ 1 For each training example (x,y), For each weight w ki : L w = δ k zi + γw ki ki δ 1 δ 2 Update w ki wki δk zi γw ki For each weight w jn : Update L w = δ j xn + γw jn jn w jn wjn δj xn γw jn
20 Multiple outputs encoding multiple classes MNIST: ten classes of digits Encoding multiple classes as multiple outputs: An output variable is set to 1 if the corresponding class is positive for the example Otherwise, the output is set to 0. The posterior probability of an example belonging to class k P Class k x = y k K k =1 y k
21 Overfitting Tuning the number of update iterations on validation set
22 How expressive is NN? Boolean functions: Every Boolean function can be represented by network with single hidden layer But might require exponential number of hidden units Continuous functions: Every bounded continuous function can be approximated with arbitrarily small error by neural network with one hidden layer Any function can be approximated to arbitrary accuracy by a network with two hidden layers
23 Learning feature representation by neural networks A compact representation for high dimensional input vectors A large image with thousands of pixels High dimensional input vectors might cause curse of dimensionality Needs more examples for training (in lecture 1) Not well capture the intrinsic variations an arbitrary point in a high dimensional space probably does not represent a valid real object. A meaningful low dimensional space is preferred!
24 Autoencoder Set output to input Hidden layers as feature representation, since it contains sufficient information to reconstruct the input in the output layer
25 An example
26 Deep Learning: A Deep Feature Representation If you build multiple layers to reconstruct the input at the output layer
27 Summary Neural Networks: Multiple layers of neurons Each upper layer neuron encodes weighted sum of inputs from the other neurons at a lower layer by an activation function BP training: a stochastic gradient descent method From the output layer down to the hidden and input layers Autoencoder: feature representation
Lecture 8 February 4
ICS273A: Machine Learning Winter 2008 Lecture 8 February 4 Scribe: Carlos Agell (Student) Lecturer: Deva Ramanan 8.1 Neural Nets 8.1.1 Logistic Regression Recall the logistic function: g(x) = 1 1 + e θt
Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence
Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support
Statistical Machine Learning
Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes
Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski [email protected] Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems
Supervised Learning (Big Data Analytics)
Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used
Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승
Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승 How much energy do we need for brain functions? Information processing: Trade-off between energy consumption and wiring cost Trade-off between energy consumption
Efficient online learning of a non-negative sparse autoencoder
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-93030-10-2. Efficient online learning of a non-negative sparse autoencoder Andre Lemme, R. Felix Reinhart and Jochen J. Steil
CS 688 Pattern Recognition Lecture 4. Linear Models for Classification
CS 688 Pattern Recognition Lecture 4 Linear Models for Classification Probabilistic generative models Probabilistic discriminative models 1 Generative Approach ( x ) p C k p( C k ) Ck p ( ) ( x Ck ) p(
Chapter 4: Artificial Neural Networks
Chapter 4: Artificial Neural Networks CS 536: Machine Learning Littman (Wu, TA) Administration icml-03: instructional Conference on Machine Learning http://www.cs.rutgers.edu/~mlittman/courses/ml03/icml03/
Linear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
Lecture 6. Artificial Neural Networks
Lecture 6 Artificial Neural Networks 1 1 Artificial Neural Networks In this note we provide an overview of the key concepts that have led to the emergence of Artificial Neural Networks as a major paradigm
A Simple Introduction to Support Vector Machines
A Simple Introduction to Support Vector Machines Martin Law Lecture for CSE 802 Department of Computer Science and Engineering Michigan State University Outline A brief history of SVM Large-margin linear
Making Sense of the Mayhem: Machine Learning and March Madness
Making Sense of the Mayhem: Machine Learning and March Madness Alex Tran and Adam Ginzberg Stanford University [email protected] [email protected] I. Introduction III. Model The goal of our research
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical
Programming Exercise 3: Multi-class Classification and Neural Networks
Programming Exercise 3: Multi-class Classification and Neural Networks Machine Learning November 4, 2011 Introduction In this exercise, you will implement one-vs-all logistic regression and neural networks
CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.
Lecture Machine Learning Milos Hauskrecht [email protected] 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht [email protected] 539 Sennott
Introduction to Support Vector Machines. Colin Campbell, Bristol University
Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.
Lecture 2: The SVM classifier
Lecture 2: The SVM classifier C19 Machine Learning Hilary 2015 A. Zisserman Review of linear classifiers Linear separability Perceptron Support Vector Machine (SVM) classifier Wide margin Cost function
STA 4273H: Statistical Machine Learning
STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! [email protected]! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct
Simplified Machine Learning for CUDA. Umar Arshad @arshad_umar Arrayfire @arrayfire
Simplified Machine Learning for CUDA Umar Arshad @arshad_umar Arrayfire @arrayfire ArrayFire CUDA and OpenCL experts since 2007 Headquartered in Atlanta, GA In search for the best and the brightest Expert
Neural Networks and Support Vector Machines
INF5390 - Kunstig intelligens Neural Networks and Support Vector Machines Roar Fjellheim INF5390-13 Neural Networks and SVM 1 Outline Neural networks Perceptrons Neural networks Support vector machines
IFT3395/6390. Machine Learning from linear regression to Neural Networks. Machine Learning. Training Set. t (3.5, -2,..., 127, 0,...
IFT3395/6390 Historical perspective: back to 1957 (Prof. Pascal Vincent) (Rosenblatt, Perceptron ) Machine Learning from linear regression to Neural Networks Computer Science Artificial Intelligence Symbolic
SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK
SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK N M Allinson and D Merritt 1 Introduction This contribution has two main sections. The first discusses some aspects of multilayer perceptrons,
Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S
Linear smoother ŷ = S y where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S 2 Online Learning: LMS and Perceptrons Partially adapted from slides by Ryan Gabbard
Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression
Logistic Regression Department of Statistics The Pennsylvania State University Email: [email protected] Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max
Supporting Online Material for
www.sciencemag.org/cgi/content/full/313/5786/504/dc1 Supporting Online Material for Reducing the Dimensionality of Data with Neural Networks G. E. Hinton* and R. R. Salakhutdinov *To whom correspondence
Question 2 Naïve Bayes (16 points)
Question 2 Naïve Bayes (16 points) About 2/3 of your email is spam so you downloaded an open source spam filter based on word occurrences that uses the Naive Bayes classifier. Assume you collected the
Introduction to Machine Learning Using Python. Vikram Kamath
Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression
degrees of freedom and are able to adapt to the task they are supposed to do [Gupta].
1.3 Neural Networks 19 Neural Networks are large structured systems of equations. These systems have many degrees of freedom and are able to adapt to the task they are supposed to do [Gupta]. Two very
Machine Learning: Multi Layer Perceptrons
Machine Learning: Multi Layer Perceptrons Prof. Dr. Martin Riedmiller Albert-Ludwigs-University Freiburg AG Maschinelles Lernen Machine Learning: Multi Layer Perceptrons p.1/61 Outline multi layer perceptrons
University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 8: Multi-Layer Perceptrons
University of Cambridge Engineering Part IIB Module 4F0: Statistical Pattern Processing Handout 8: Multi-Layer Perceptrons x y (x) Inputs x 2 y (x) 2 Outputs x d First layer Second Output layer layer y
Big Data Analytics CSCI 4030
High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising
Linear Classification. Volker Tresp Summer 2015
Linear Classification Volker Tresp Summer 2015 1 Classification Classification is the central task of pattern recognition Sensors supply information about an object: to which class do the object belong
Support Vector Machines Explained
March 1, 2009 Support Vector Machines Explained Tristan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introduction This document has been written in an attempt to make the Support Vector Machines (SVM),
Self Organizing Maps: Fundamentals
Self Organizing Maps: Fundamentals Introduction to Neural Networks : Lecture 16 John A. Bullinaria, 2004 1. What is a Self Organizing Map? 2. Topographic Maps 3. Setting up a Self Organizing Map 4. Kohonen
CSCI567 Machine Learning (Fall 2014)
CSCI567 Machine Learning (Fall 2014) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu September 22, 2014 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) September 22, 2014 1 /
Data Mining Practical Machine Learning Tools and Techniques
Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea
Introduction to Online Learning Theory
Introduction to Online Learning Theory Wojciech Kot lowski Institute of Computing Science, Poznań University of Technology IDSS, 04.06.2013 1 / 53 Outline 1 Example: Online (Stochastic) Gradient Descent
Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris
Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines
An Introduction to Neural Networks
An Introduction to Vincent Cheung Kevin Cannons Signal & Data Compression Laboratory Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Advisor: Dr. W. Kinsner May 27,
Novelty Detection in image recognition using IRF Neural Networks properties
Novelty Detection in image recognition using IRF Neural Networks properties Philippe Smagghe, Jean-Luc Buessler, Jean-Philippe Urban Université de Haute-Alsace MIPS 4, rue des Frères Lumière, 68093 Mulhouse,
Manifold Learning with Variational Auto-encoder for Medical Image Analysis
Manifold Learning with Variational Auto-encoder for Medical Image Analysis Eunbyung Park Department of Computer Science University of North Carolina at Chapel Hill [email protected] Abstract Manifold
3F3: Signal and Pattern Processing
3F3: Signal and Pattern Processing Lecture 3: Classification Zoubin Ghahramani [email protected] Department of Engineering University of Cambridge Lent Term Classification We will represent data by
NEURAL NETWORKS A Comprehensive Foundation
NEURAL NETWORKS A Comprehensive Foundation Second Edition Simon Haykin McMaster University Hamilton, Ontario, Canada Prentice Hall Prentice Hall Upper Saddle River; New Jersey 07458 Preface xii Acknowledgments
These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop
Music and Machine Learning (IFT6080 Winter 08) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher
Machine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. [email protected]
Machine Learning CUNY Graduate Center, Spring 2013 Professor Liang Huang [email protected] http://acl.cs.qc.edu/~lhuang/teaching/machine-learning Logistics Lectures M 9:30-11:30 am Room 4419 Personnel
Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections
Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Maximilian Hung, Bohyun B. Kim, Xiling Zhang August 17, 2013 Abstract While current systems already provide
Lecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
Predict Influencers in the Social Network
Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, [email protected] Department of Electrical Engineering, Stanford University Abstract Given two persons
Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network
Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network Qian Wu, Yahui Wang, Long Zhang and Li Shen Abstract Building electrical system fault diagnosis is the
Semi-Supervised Support Vector Machines and Application to Spam Filtering
Semi-Supervised Support Vector Machines and Application to Spam Filtering Alexander Zien Empirical Inference Department, Bernhard Schölkopf Max Planck Institute for Biological Cybernetics ECML 2006 Discovery
Probabilistic Linear Classification: Logistic Regression. Piyush Rai IIT Kanpur
Probabilistic Linear Classification: Logistic Regression Piyush Rai IIT Kanpur Probabilistic Machine Learning (CS772A) Jan 18, 2016 Probabilistic Machine Learning (CS772A) Probabilistic Linear Classification:
Data Mining: An Overview. David Madigan http://www.stat.columbia.edu/~madigan
Data Mining: An Overview David Madigan http://www.stat.columbia.edu/~madigan Overview Brief Introduction to Data Mining Data Mining Algorithms Specific Eamples Algorithms: Disease Clusters Algorithms:
Logistic Regression (1/24/13)
STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used
Electroencephalography Analysis Using Neural Network and Support Vector Machine during Sleep
Engineering, 23, 5, 88-92 doi:.4236/eng.23.55b8 Published Online May 23 (http://www.scirp.org/journal/eng) Electroencephalography Analysis Using Neural Network and Support Vector Machine during Sleep JeeEun
CSC 411: Lecture 07: Multiclass Classification
CSC 411: Lecture 07: Multiclass Classification Class based on Raquel Urtasun & Rich Zemel s lectures Sanja Fidler University of Toronto Feb 1, 2016 Urtasun, Zemel, Fidler (UofT) CSC 411: 07-Multiclass
BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376
Course Director: Dr. Kayvan Najarian (DCM&B, [email protected]) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.
Support Vector Machines with Clustering for Training with Very Large Datasets
Support Vector Machines with Clustering for Training with Very Large Datasets Theodoros Evgeniou Technology Management INSEAD Bd de Constance, Fontainebleau 77300, France [email protected] Massimiliano
Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University [email protected]
Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University [email protected] 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian
Performance Evaluation of Artificial Neural. Networks for Spatial Data Analysis
Contemporary Engineering Sciences, Vol. 4, 2011, no. 4, 149-163 Performance Evaluation of Artificial Neural Networks for Spatial Data Analysis Akram A. Moustafa Department of Computer Science Al al-bayt
Learning to Process Natural Language in Big Data Environment
CCF ADL 2015 Nanchang Oct 11, 2015 Learning to Process Natural Language in Big Data Environment Hang Li Noah s Ark Lab Huawei Technologies Part 1: Deep Learning - Present and Future Talk Outline Overview
Several Views of Support Vector Machines
Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min
Natural Language Processing. Today. Logistic Regression Models. Lecture 13 10/6/2015. Jim Martin. Multinomial Logistic Regression
Natural Language Processing Lecture 13 10/6/2015 Jim Martin Today Multinomial Logistic Regression Aka log-linear models or maximum entropy (maxent) Components of the model Learning the parameters 10/1/15
Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 )
Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 ) and Neural Networks( 類 神 經 網 路 ) 許 湘 伶 Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) LR Chap 10 1 / 35 13 Examples
Machine Learning and Pattern Recognition Logistic Regression
Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,
Acknowledgments. Data Mining with Regression. Data Mining Context. Overview. Colleagues
Data Mining with Regression Teaching an old dog some new tricks Acknowledgments Colleagues Dean Foster in Statistics Lyle Ungar in Computer Science Bob Stine Department of Statistics The School of the
Neural Networks for Machine Learning. Lecture 13a The ups and downs of backpropagation
Neural Networks for Machine Learning Lecture 13a The ups and downs of backpropagation Geoffrey Hinton Nitish Srivastava, Kevin Swersky Tijmen Tieleman Abdel-rahman Mohamed A brief history of backpropagation
Machine learning algorithms for predicting roadside fine particulate matter concentration level in Hong Kong Central
Article Machine learning algorithms for predicting roadside fine particulate matter concentration level in Hong Kong Central Yin Zhao, Yahya Abu Hasan School of Mathematical Sciences, Universiti Sains
Class-specific Sparse Coding for Learning of Object Representations
Class-specific Sparse Coding for Learning of Object Representations Stephan Hasler, Heiko Wersing, and Edgar Körner Honda Research Institute Europe GmbH Carl-Legien-Str. 30, 63073 Offenbach am Main, Germany
Latent variable and deep modeling with Gaussian processes; application to system identification. Andreas Damianou
Latent variable and deep modeling with Gaussian processes; application to system identification Andreas Damianou Department of Computer Science, University of Sheffield, UK Brown University, 17 Feb. 2016
Early defect identification of semiconductor processes using machine learning
STANFORD UNIVERISTY MACHINE LEARNING CS229 Early defect identification of semiconductor processes using machine learning Friday, December 16, 2011 Authors: Saul ROSA Anton VLADIMIROV Professor: Dr. Andrew
MVA ENS Cachan. Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos [email protected]
Machine Learning for Computer Vision 1 MVA ENS Cachan Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos [email protected] Department of Applied Mathematics Ecole Centrale Paris Galen
Deep Learning for Multivariate Financial Time Series. Gilberto Batres-Estrada
Deep Learning for Multivariate Financial Time Series Gilberto Batres-Estrada June 4, 2015 Abstract Deep learning is a framework for training and modelling neural networks which recently have surpassed
Search Taxonomy. Web Search. Search Engine Optimization. Information Retrieval
Information Retrieval INFO 4300 / CS 4300! Retrieval models Older models» Boolean retrieval» Vector Space model Probabilistic Models» BM25» Language models Web search» Learning to Rank Search Taxonomy!
Machine Learning for Data Science (CS4786) Lecture 1
Machine Learning for Data Science (CS4786) Lecture 1 Tu-Th 10:10 to 11:25 AM Hollister B14 Instructors : Lillian Lee and Karthik Sridharan ROUGH DETAILS ABOUT THE COURSE Diagnostic assignment 0 is out:
Implementation of Neural Networks with Theano. http://deeplearning.net/tutorial/
Implementation of Neural Networks with Theano http://deeplearning.net/tutorial/ Feed Forward Neural Network (MLP) Hidden Layer Object Hidden Layer Object Hidden Layer Object Logistic Regression Object
CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York
BME I5100: Biomedical Signal Processing Linear Discrimination Lucas C. Parra Biomedical Engineering Department CCNY 1 Schedule Week 1: Introduction Linear, stationary, normal - the stuff biology is not
Recurrent Neural Networks
Recurrent Neural Networks Neural Computation : Lecture 12 John A. Bullinaria, 2015 1. Recurrent Neural Network Architectures 2. State Space Models and Dynamical Systems 3. Backpropagation Through Time
Support Vector Machine (SVM)
Support Vector Machine (SVM) CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin
Classification Problems
Classification Read Chapter 4 in the text by Bishop, except omit Sections 4.1.6, 4.1.7, 4.2.4, 4.3.3, 4.3.5, 4.3.6, 4.4, and 4.5. Also, review sections 1.5.1, 1.5.2, 1.5.3, and 1.5.4. Classification Problems
Combining GLM and datamining techniques for modelling accident compensation data. Peter Mulquiney
Combining GLM and datamining techniques for modelling accident compensation data Peter Mulquiney Introduction Accident compensation data exhibit features which complicate loss reserving and premium rate
jorge s. marques image processing
image processing images images: what are they? what is shown in this image? What is this? what is an image images describe the evolution of physical variables (intensity, color, reflectance, condutivity)
Car Insurance. Havránek, Pokorný, Tomášek
Car Insurance Havránek, Pokorný, Tomášek Outline Data overview Horizontal approach + Decision tree/forests Vertical (column) approach + Neural networks SVM Data overview Customers Viewed policies Bought
Support Vector Machine. Tutorial. (and Statistical Learning Theory)
Support Vector Machine (and Statistical Learning Theory) Tutorial Jason Weston NEC Labs America 4 Independence Way, Princeton, USA. [email protected] 1 Support Vector Machines: history SVMs introduced
Employer Health Insurance Premium Prediction Elliott Lui
Employer Health Insurance Premium Prediction Elliott Lui 1 Introduction The US spends 15.2% of its GDP on health care, more than any other country, and the cost of health insurance is rising faster than
The equivalence of logistic regression and maximum entropy models
The equivalence of logistic regression and maximum entropy models John Mount September 23, 20 Abstract As our colleague so aptly demonstrated ( http://www.win-vector.com/blog/20/09/the-simplerderivation-of-logistic-regression/
Data, Measurements, Features
Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal
Learning Example Chapter 18: Learning from Examples 22c:145 An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients. A decision is needed: whether
An Introduction to Machine Learning
An Introduction to Machine Learning L5: Novelty Detection and Regression Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia [email protected] Tata Institute, Pune,
Convolution. 1D Formula: 2D Formula: Example on the web: http://www.jhu.edu/~signals/convolve/
Basic Filters (7) Convolution/correlation/Linear filtering Gaussian filters Smoothing and noise reduction First derivatives of Gaussian Second derivative of Gaussian: Laplacian Oriented Gaussian filters
TRAINING A LIMITED-INTERCONNECT, SYNTHETIC NEURAL IC
777 TRAINING A LIMITED-INTERCONNECT, SYNTHETIC NEURAL IC M.R. Walker. S. Haghighi. A. Afghan. and L.A. Akers Center for Solid State Electronics Research Arizona State University Tempe. AZ 85287-6206 [email protected]
5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson
COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS
COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS B.K. Mohan and S. N. Ladha Centre for Studies in Resources Engineering IIT
Analysis of Multilayer Neural Networks with Direct and Cross-Forward Connection
Analysis of Multilayer Neural Networks with Direct and Cross-Forward Connection Stanis law P laczek and Bijaya Adhikari Vistula University, Warsaw, Poland [email protected],[email protected]
Cross-validation for detecting and preventing overfitting
Cross-validation for detecting and preventing overfitting Note to other teachers and users of these slides. Andrew would be delighted if ou found this source material useful in giving our own lectures.
Data Mining - Evaluation of Classifiers
Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010
Temporal Difference Learning in the Tetris Game
Temporal Difference Learning in the Tetris Game Hans Pirnay, Slava Arabagi February 6, 2009 1 Introduction Learning to play the game Tetris has been a common challenge on a few past machine learning competitions.
Simple and efficient online algorithms for real world applications
Simple and efficient online algorithms for real world applications Università degli Studi di Milano Milano, Italy Talk @ Centro de Visión por Computador Something about me PhD in Robotics at LIRA-Lab,
