# Neural Networks. CAP5610 Machine Learning Instructor: Guo-Jun Qi

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Neural Networks CAP5610 Machine Learning Instructor: Guo-Jun Qi

2 Recap: linear classifier Logistic regression Maximizing the posterior distribution of class Y conditional on the input vector X Support vector machines Maximizing the maximum margin, and Hard margin: subject to the constraints that no training error shall be made Soft margin: minimizing the slack variables that represent how much an associated training example violates the classification rule. Extended to nonlinear classifier with kernel trick Mapping input vectors to high dimensional space linear classifier in high dimensional space, nonlinear in original space.

3 Building nonlinear classifier With a network of logistic units? A single logistic unit is linear classifier : f: X Y 1 f X = 1 + exp( W 0 N n=1 W n X n )

4 Graph representation of a logistic unit Input layer: An input X=(X 1,, X n ) Output: logistic function of the input features

5 A logistic unit as an neuron: Input layer: An input X=(X 1,, X n ) Activation: weighted sum of input features a = W 0 + N n=1 W n X n Activation function: logistic function h applied to the weighted sum Output: z = h(a)

6 Neural Network: Multiple layers of neurons Output of a layer is the input into the upper layer

7 An example A three layer neural network w 10 z 1 a 1 w 11 a 1 y 1 w 12 a 2 z2 w 10 w 20 a1 = w11 x1 + w 12 x2 + w 10 z 1 = h(a 1 ) a 2 = w21 x1 + w 22 x2 + w 20 z 2 = h(a 2 ) w 11 w 21 w 12 w 22 x 1 x 2 a 1 = w11 z1 + w 12 x2 + w 10 y 1 = f(a 1 )

8 XOR Problem It is impossible to linearly separate these two classes x 2 (0,1) (1,1) (0,0) (1,0) x 1

9 XOR Problem Two classes become separable by putting a threshold 0.5 to the output y 1 x 2 (0,1) (1,1) 6.06 z 1 y z Input Output (0,0) (1,0) (0,1) (1,1) (0,0) (1,0) x 1 x 1 x 2

10 Application: Drive a car Input: real-time videos captured by a camera Output: signals that steer a car From the sharp left, straight to sharp right

11 Training Neural Network Given a training set of M examples {(x (i),t (i) ) i=1,,m} Training neural network is equivalent to minimizing the least square error between the network output and the true value min w L w = 1 (y (i) t i ) 2 2 i=1 Where y (i) is the output depending on the network parameters w. M

12 Recap: Gradient decent Method Gradient descent method is an iterative algorithm hill climbing method to find the peak point of a mountain At each point, compute its gradient L L L L,,..., w w w 0 1 N Gradient is a vector that points to the steepest direction climbing up the mountain. At each point, w is updated so it moves a size of step λ in the gradient direction w w L( w)

13 Stochastic Gradient Ascent Method Making the learning algorithm scalable to big data Computing the gradient of square error for only one example L w = M i=1 (y (i) t i ) 2 L L L L,,..., w w w 0 1 N L (i) w = (y (i) t i ) 2 L () i L L L,,..., w w w ( i) ( i) ( i) 0 1 N

14 Boiling down to computing the gradient y 1 z 1 w 11 a 1 w 12 z2 w 10 Square loss: L 1 (y t ) 2 k k 2 y f ( a ), a w z k k k kj j j Derivative to the activation in the second layer: L y (y t ) (y t ) f '( a ) k k k k k k k ak ak x 1 x 2 Derivative to the parameter in the second layer: L L a k ki k ki w a w k z i

15 Boiling down to computing the gradient Computing the derivatives to the parameters in the first layer w 10 z 1 w 11 a 1 y 1 w 12 z2 w 10 Relation between activations of the first and second layers By chain rule: a w h( a ) L k kj j j k j k k j h '( a ) L a a a a w j k kj j k w 11 w 21 w w The derivative to the parameter in the first layer: a w x j jn n n L L a w a w j jn j jn j x n x 1 x 2

16 Summary: Back propagation δ 1 For each training example (x,y), For each output unit k For each hidden unit j (y t ) f '( a ) k k k k δ 1 δ 2 h '( a ) w j j k kj k

17 Summary: Back propagation δ 1 For each training example (x,y), For each weight w ki : L w = δ k ki zi δ 1 δ 2 Update w ki wki δk zi For each weight w jn : Update L w jn = δ j xn w jn wjn δj xn

18 Regularized Square Error Add a zero mean Gaussian prior on the weights w ij (l) ~N(0, σ 2 ) MAP estimate of w L (i) w = 1 2 (y(i) t i ) 2 + γ 2 (w ij (l) ) 2

19 Summary: Back propagation δ 1 For each training example (x,y), For each weight w ki : L w = δ k zi + γw ki ki δ 1 δ 2 Update w ki wki δk zi γw ki For each weight w jn : Update L w = δ j xn + γw jn jn w jn wjn δj xn γw jn

20 Multiple outputs encoding multiple classes MNIST: ten classes of digits Encoding multiple classes as multiple outputs: An output variable is set to 1 if the corresponding class is positive for the example Otherwise, the output is set to 0. The posterior probability of an example belonging to class k P Class k x = y k K k =1 y k

21 Overfitting Tuning the number of update iterations on validation set

22 How expressive is NN? Boolean functions: Every Boolean function can be represented by network with single hidden layer But might require exponential number of hidden units Continuous functions: Every bounded continuous function can be approximated with arbitrarily small error by neural network with one hidden layer Any function can be approximated to arbitrary accuracy by a network with two hidden layers

23 Learning feature representation by neural networks A compact representation for high dimensional input vectors A large image with thousands of pixels High dimensional input vectors might cause curse of dimensionality Needs more examples for training (in lecture 1) Not well capture the intrinsic variations an arbitrary point in a high dimensional space probably does not represent a valid real object. A meaningful low dimensional space is preferred!

24 Autoencoder Set output to input Hidden layers as feature representation, since it contains sufficient information to reconstruct the input in the output layer

25 An example

26 Deep Learning: A Deep Feature Representation If you build multiple layers to reconstruct the input at the output layer

27 Summary Neural Networks: Multiple layers of neurons Each upper layer neuron encodes weighted sum of inputs from the other neurons at a lower layer by an activation function BP training: a stochastic gradient descent method From the output layer down to the hidden and input layers Autoencoder: feature representation

### INTRODUCTION TO NEURAL NETWORKS

INTRODUCTION TO NEURAL NETWORKS Pictures are taken from http://www.cs.cmu.edu/~tom/mlbook-chapter-slides.html http://research.microsoft.com/~cmbishop/prml/index.htm By Nobel Khandaker Neural Networks An

### Lecture 8 February 4

ICS273A: Machine Learning Winter 2008 Lecture 8 February 4 Scribe: Carlos Agell (Student) Lecturer: Deva Ramanan 8.1 Neural Nets 8.1.1 Logistic Regression Recall the logistic function: g(x) = 1 1 + e θt

### PMR5406 Redes Neurais e Lógica Fuzzy Aula 3 Multilayer Percetrons

PMR5406 Redes Neurais e Aula 3 Multilayer Percetrons Baseado em: Neural Networks, Simon Haykin, Prentice-Hall, 2 nd edition Slides do curso por Elena Marchiori, Vrie Unviersity Multilayer Perceptrons Architecture

### Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence

Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support

### Statistical Machine Learning

Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

### Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk

Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski trakovski@nyus.edu.mk Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems

### Cheng Soon Ong & Christfried Webers. Canberra February June 2016

c Cheng Soon Ong & Christfried Webers Research Group and College of Engineering and Computer Science Canberra February June (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 31 c Part I

### Supervised Learning (Big Data Analytics)

Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used

### Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승

Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승 How much energy do we need for brain functions? Information processing: Trade-off between energy consumption and wiring cost Trade-off between energy consumption

### Linear Threshold Units

Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

### Chapter 4: Artificial Neural Networks

Chapter 4: Artificial Neural Networks CS 536: Machine Learning Littman (Wu, TA) Administration icml-03: instructional Conference on Machine Learning http://www.cs.rutgers.edu/~mlittman/courses/ml03/icml03/

### Efficient online learning of a non-negative sparse autoencoder

and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-93030-10-2. Efficient online learning of a non-negative sparse autoencoder Andre Lemme, R. Felix Reinhart and Jochen J. Steil

### CS 688 Pattern Recognition Lecture 4. Linear Models for Classification

CS 688 Pattern Recognition Lecture 4 Linear Models for Classification Probabilistic generative models Probabilistic discriminative models 1 Generative Approach ( x ) p C k p( C k ) Ck p ( ) ( x Ck ) p(

### Introduction to Neural Networks : Revision Lectures

Introduction to Neural Networks : Revision Lectures John A. Bullinaria, 2004 1. Module Aims and Learning Outcomes 2. Biological and Artificial Neural Networks 3. Training Methods for Multi Layer Perceptrons

### A Simple Introduction to Support Vector Machines

A Simple Introduction to Support Vector Machines Martin Law Lecture for CSE 802 Department of Computer Science and Engineering Michigan State University Outline A brief history of SVM Large-margin linear

### Lecture 6. Artificial Neural Networks

Lecture 6 Artificial Neural Networks 1 1 Artificial Neural Networks In this note we provide an overview of the key concepts that have led to the emergence of Artificial Neural Networks as a major paradigm

### Making Sense of the Mayhem: Machine Learning and March Madness

Making Sense of the Mayhem: Machine Learning and March Madness Alex Tran and Adam Ginzberg Stanford University atran3@stanford.edu ginzberg@stanford.edu I. Introduction III. Model The goal of our research

### PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

### Learning. Artificial Intelligence. Learning. Types of Learning. Inductive Learning Method. Inductive Learning. Learning.

Learning Learning is essential for unknown environments, i.e., when designer lacks omniscience Artificial Intelligence Learning Chapter 8 Learning is useful as a system construction method, i.e., expose

### Judging a Movie by its Poster using Deep Learning

Brett Kuprel kuprel@stanford.edu Abstract It is often the case that a human can determine the genre of a movie by looking at its movie poster. This task is not trivial for computers. A recent advance in

### CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

### Introduction to Support Vector Machines. Colin Campbell, Bristol University

Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.

### Programming Exercise 3: Multi-class Classification and Neural Networks

Programming Exercise 3: Multi-class Classification and Neural Networks Machine Learning November 4, 2011 Introduction In this exercise, you will implement one-vs-all logistic regression and neural networks

### STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

### Lecture 2: The SVM classifier

Lecture 2: The SVM classifier C19 Machine Learning Hilary 2015 A. Zisserman Review of linear classifiers Linear separability Perceptron Support Vector Machine (SVM) classifier Wide margin Cost function

### Neural Networks and Support Vector Machines

INF5390 - Kunstig intelligens Neural Networks and Support Vector Machines Roar Fjellheim INF5390-13 Neural Networks and SVM 1 Outline Neural networks Perceptrons Neural networks Support vector machines

### Neural networks. Chapter 20, Section 5 1

Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

### Supporting Online Material for

www.sciencemag.org/cgi/content/full/313/5786/504/dc1 Supporting Online Material for Reducing the Dimensionality of Data with Neural Networks G. E. Hinton* and R. R. Salakhutdinov *To whom correspondence

Simplified Machine Learning for CUDA Umar Arshad @arshad_umar Arrayfire @arrayfire ArrayFire CUDA and OpenCL experts since 2007 Headquartered in Atlanta, GA In search for the best and the brightest Expert

### CSC321 Introduction to Neural Networks and Machine Learning. Lecture 21 Using Boltzmann machines to initialize backpropagation.

CSC321 Introduction to Neural Networks and Machine Learning Lecture 21 Using Boltzmann machines to initialize backpropagation Geoffrey Hinton Some problems with backpropagation The amount of information

### SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK

SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK N M Allinson and D Merritt 1 Introduction This contribution has two main sections. The first discusses some aspects of multilayer perceptrons,

### IFT3395/6390. Machine Learning from linear regression to Neural Networks. Machine Learning. Training Set. t (3.5, -2,..., 127, 0,...

IFT3395/6390 Historical perspective: back to 1957 (Prof. Pascal Vincent) (Rosenblatt, Perceptron ) Machine Learning from linear regression to Neural Networks Computer Science Artificial Intelligence Symbolic

### Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S

Linear smoother ŷ = S y where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S 2 Online Learning: LMS and Perceptrons Partially adapted from slides by Ryan Gabbard

### Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression

Logistic Regression Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max

### Neural Networks. Introduction to Artificial Intelligence CSE 150 May 29, 2007

Neural Networks Introduction to Artificial Intelligence CSE 150 May 29, 2007 Administration Last programming assignment has been posted! Final Exam: Tuesday, June 12, 11:30-2:30 Last Lecture Naïve Bayes

### Question 2 Naïve Bayes (16 points)

Question 2 Naïve Bayes (16 points) About 2/3 of your email is spam so you downloaded an open source spam filter based on word occurrences that uses the Naive Bayes classifier. Assume you collected the

### Machine Learning: Multi Layer Perceptrons

Machine Learning: Multi Layer Perceptrons Prof. Dr. Martin Riedmiller Albert-Ludwigs-University Freiburg AG Maschinelles Lernen Machine Learning: Multi Layer Perceptrons p.1/61 Outline multi layer perceptrons

### University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 8: Multi-Layer Perceptrons

University of Cambridge Engineering Part IIB Module 4F0: Statistical Pattern Processing Handout 8: Multi-Layer Perceptrons x y (x) Inputs x 2 y (x) 2 Outputs x d First layer Second Output layer layer y

### Introduction to Machine Learning Using Python. Vikram Kamath

Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression

### 6. Feed-forward mapping networks

6. Feed-forward mapping networks Fundamentals of Computational Neuroscience, T. P. Trappenberg, 2002. Lecture Notes on Brain and Computation Byoung-Tak Zhang Biointelligence Laboratory School of Computer

### Regression Using Support Vector Machines: Basic Foundations

Regression Using Support Vector Machines: Basic Foundations Technical Report December 2004 Aly Farag and Refaat M Mohamed Computer Vision and Image Processing Laboratory Electrical and Computer Engineering

### degrees of freedom and are able to adapt to the task they are supposed to do [Gupta].

1.3 Neural Networks 19 Neural Networks are large structured systems of equations. These systems have many degrees of freedom and are able to adapt to the task they are supposed to do [Gupta]. Two very

### Introduction to Artificial Neural Networks MAE-491/591

Introduction to Artificial Neural Networks MAE-491/591 Artificial Neural Networks: Biological Inspiration The brain has been extensively studied by scientists. Vast complexity prevents all but rudimentary

### Big Data Analytics CSCI 4030

High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

### Self Organizing Maps: Fundamentals

Self Organizing Maps: Fundamentals Introduction to Neural Networks : Lecture 16 John A. Bullinaria, 2004 1. What is a Self Organizing Map? 2. Topographic Maps 3. Setting up a Self Organizing Map 4. Kohonen

### Novelty Detection in image recognition using IRF Neural Networks properties

Novelty Detection in image recognition using IRF Neural Networks properties Philippe Smagghe, Jean-Luc Buessler, Jean-Philippe Urban Université de Haute-Alsace MIPS 4, rue des Frères Lumière, 68093 Mulhouse,

### Linear Classification. Volker Tresp Summer 2015

Linear Classification Volker Tresp Summer 2015 1 Classification Classification is the central task of pattern recognition Sensors supply information about an object: to which class do the object belong

### Support Vector Machines Explained

March 1, 2009 Support Vector Machines Explained Tristan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introduction This document has been written in an attempt to make the Support Vector Machines (SVM),

### Neural Networks. Neural network is a network or circuit of neurons. Neurons can be. Biological neurons Artificial neurons

Neural Networks Neural network is a network or circuit of neurons Neurons can be Biological neurons Artificial neurons Biological neurons Building block of the brain Human brain contains over 10 billion

### CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu September 22, 2014 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) September 22, 2014 1 /

### An Introduction to Neural Networks

An Introduction to Vincent Cheung Kevin Cannons Signal & Data Compression Laboratory Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Advisor: Dr. W. Kinsner May 27,

### Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris

Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines

### Introduction to Online Learning Theory

Introduction to Online Learning Theory Wojciech Kot lowski Institute of Computing Science, Poznań University of Technology IDSS, 04.06.2013 1 / 53 Outline 1 Example: Online (Stochastic) Gradient Descent

### Data Mining Practical Machine Learning Tools and Techniques

Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

### CS 2750 Machine Learning. Lecture 1. Machine Learning. CS 2750 Machine Learning.

Lecture 1 Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x-5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

### Manifold Learning with Variational Auto-encoder for Medical Image Analysis

Manifold Learning with Variational Auto-encoder for Medical Image Analysis Eunbyung Park Department of Computer Science University of North Carolina at Chapel Hill eunbyung@cs.unc.edu Abstract Manifold

### 3F3: Signal and Pattern Processing

3F3: Signal and Pattern Processing Lecture 3: Classification Zoubin Ghahramani zoubin@eng.cam.ac.uk Department of Engineering University of Cambridge Lent Term Classification We will represent data by

### Rate-based artificial neural networks and error backpropagation learning. Scott Murdison Machine learning journal club May 16, 2016

Rate-based artificial neural networks and error backpropagation learning Scott Murdison Machine learning journal club May 16, 2016 Murdison, Leclercq, Lefèvre and Blohm J Neurophys 2015 Neural networks???

### These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

Music and Machine Learning (IFT6080 Winter 08) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher

### MACHINE LEARNING. Introduction. Alessandro Moschitti

MACHINE LEARNING Introduction Alessandro Moschitti Department of Computer Science and Information Engineering University of Trento Email: moschitti@disi.unitn.it Course Schedule Lectures Tuesday, 14:00-16:00

### NEURAL NETWORKS A Comprehensive Foundation

NEURAL NETWORKS A Comprehensive Foundation Second Edition Simon Haykin McMaster University Hamilton, Ontario, Canada Prentice Hall Prentice Hall Upper Saddle River; New Jersey 07458 Preface xii Acknowledgments

### Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections

Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Maximilian Hung, Bohyun B. Kim, Xiling Zhang August 17, 2013 Abstract While current systems already provide

### Introduction to Machine Learning

Introduction to Machine Learning Prof. Alexander Ihler Prof. Max Welling icamp Tutorial July 22 What is machine learning? The ability of a machine to improve its performance based on previous results:

### CSC 321 H1S Study Guide (Last update: April 3, 2016) Winter 2016

1. Suppose our training set and test set are the same. Why would this be a problem? 2. Why is it necessary to have both a test set and a validation set? 3. Images are generally represented as n m 3 arrays,

### Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

### Predict Influencers in the Social Network

Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons

### Machine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. huang@cs.qc.cuny.edu

Machine Learning CUNY Graduate Center, Spring 2013 Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning Logistics Lectures M 9:30-11:30 am Room 4419 Personnel

### Classification: Basic Concepts, Decision Trees, and Model Evaluation. General Approach for Building Classification Model

10 10 Classification: Basic Concepts, Decision Trees, and Model Evaluation Dr. Hui Xiong Rutgers University Introduction to Data Mining 1//009 1 General Approach for Building Classification Model Tid Attrib1

### Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network

Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network Qian Wu, Yahui Wang, Long Zhang and Li Shen Abstract Building electrical system fault diagnosis is the

### Semi-Supervised Support Vector Machines and Application to Spam Filtering

Semi-Supervised Support Vector Machines and Application to Spam Filtering Alexander Zien Empirical Inference Department, Bernhard Schölkopf Max Planck Institute for Biological Cybernetics ECML 2006 Discovery

### Tracking Algorithms. Lecture17: Stochastic Tracking. Joint Probability and Graphical Model. Probabilistic Tracking

Tracking Algorithms (2015S) Lecture17: Stochastic Tracking Bohyung Han CSE, POSTECH bhhan@postech.ac.kr Deterministic methods Given input video and current state, tracking result is always same. Local

### MACHINE LEARNING AN INTRODUCTION

AN INTRODUCTION JOSEFIN ROSÉN, SENIOR ANALYTICAL EXPERT, SAS INSTITUTE JOSEFIN.ROSEN@SAS.COM TWITTER: @ROSENJOSEFIN AGENDA What is machine learning? When, where and how is machine learning used? Exemple

### C19 Machine Learning

C9 Machine Learning 8 Lectures Hilary Term 25 2 Tutorial Sheets A. Zisserman Overview: Supervised classification perceptron, support vector machine, loss functions, kernels, random forests, neural networks

Data Mining: An Overview David Madigan http://www.stat.columbia.edu/~madigan Overview Brief Introduction to Data Mining Data Mining Algorithms Specific Eamples Algorithms: Disease Clusters Algorithms:

### Electroencephalography Analysis Using Neural Network and Support Vector Machine during Sleep

Engineering, 23, 5, 88-92 doi:.4236/eng.23.55b8 Published Online May 23 (http://www.scirp.org/journal/eng) Electroencephalography Analysis Using Neural Network and Support Vector Machine during Sleep JeeEun

### Logistic Regression (1/24/13)

STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used

### Deep Learning for Multivariate Financial Time Series. Gilberto Batres-Estrada

Deep Learning for Multivariate Financial Time Series Gilberto Batres-Estrada June 4, 2015 Abstract Deep learning is a framework for training and modelling neural networks which recently have surpassed

### Probabilistic Linear Classification: Logistic Regression. Piyush Rai IIT Kanpur

Probabilistic Linear Classification: Logistic Regression Piyush Rai IIT Kanpur Probabilistic Machine Learning (CS772A) Jan 18, 2016 Probabilistic Machine Learning (CS772A) Probabilistic Linear Classification:

### CS229 Project Final Report. Sign Language Gesture Recognition with Unsupervised Feature Learning

CS229 Project Final Report Sign Language Gesture Recognition with Unsupervised Feature Learning Justin K. Chen, Debabrata Sengupta, Rukmani Ravi Sundaram 1. Introduction The problem we are investigating

### CSC 411: Lecture 07: Multiclass Classification

CSC 411: Lecture 07: Multiclass Classification Class based on Raquel Urtasun & Rich Zemel s lectures Sanja Fidler University of Toronto Feb 1, 2016 Urtasun, Zemel, Fidler (UofT) CSC 411: 07-Multiclass

### Several Views of Support Vector Machines

Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min

### Recurrent Neural Networks

Recurrent Neural Networks Neural Computation : Lecture 12 John A. Bullinaria, 2015 1. Recurrent Neural Network Architectures 2. State Space Models and Dynamical Systems 3. Backpropagation Through Time

### Lecture 14: Convolutional neural networks for computer vision

Lecture 14: Convolutional neural networks for computer vision Dr. Richard E. Turner (ret26@cam.ac.uk) November 20, 2014 Big picture Goal: how to produce good internal representations of the visual world

### Methods and Applications for Distance Based ANN Training

Methods and Applications for Distance Based ANN Training Christoph Lassner, Rainer Lienhart Multimedia Computing and Computer Vision Lab Augsburg University, Universitätsstr. 6a, 86159 Augsburg, Germany

### BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376

Course Director: Dr. Kayvan Najarian (DCM&B, kayvan@umich.edu) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.

### Improving Generalization

Improving Generalization Introduction to Neural Networks : Lecture 10 John A. Bullinaria, 2004 1. Improving Generalization 2. Training, Validation and Testing Data Sets 3. Cross-Validation 4. Weight Restriction

### Performance Evaluation of Artificial Neural. Networks for Spatial Data Analysis

Contemporary Engineering Sciences, Vol. 4, 2011, no. 4, 149-163 Performance Evaluation of Artificial Neural Networks for Spatial Data Analysis Akram A. Moustafa Department of Computer Science Al al-bayt

### An Introduction to Statistical Machine Learning - Overview -

An Introduction to Statistical Machine Learning - Overview - Samy Bengio bengio@idiap.ch Dalle Molle Institute for Perceptual Artificial Intelligence (IDIAP) CP 592, rue du Simplon 4 1920 Martigny, Switzerland

### Machine Learning - Spring 2012 Problem Set 3

10-701 Machine Learning - Spring 2012 Problem Set 3 Out: February 29th, 1:30pm In: March 19h, 1:30pm TA: Hai-Son Le (hple@cs.cmu.edu) School Of Computer Science, Carnegie Mellon University Homework will

### Support Vector Machines with Clustering for Training with Very Large Datasets

Support Vector Machines with Clustering for Training with Very Large Datasets Theodoros Evgeniou Technology Management INSEAD Bd de Constance, Fontainebleau 77300, France theodoros.evgeniou@insead.fr Massimiliano

### Early defect identification of semiconductor processes using machine learning

STANFORD UNIVERISTY MACHINE LEARNING CS229 Early defect identification of semiconductor processes using machine learning Friday, December 16, 2011 Authors: Saul ROSA Anton VLADIMIROV Professor: Dr. Andrew

### Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com

Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University caizhua@gmail.com 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian

### Quiz 1 for Name: Good luck! 20% 20% 20% 20% Quiz page 1 of 16

Quiz 1 for 6.034 Name: 20% 20% 20% 20% Good luck! 6.034 Quiz page 1 of 16 Question #1 30 points 1. Figure 1 illustrates decision boundaries for two nearest-neighbour classifiers. Determine which one of

### Acknowledgments. Data Mining with Regression. Data Mining Context. Overview. Colleagues

Data Mining with Regression Teaching an old dog some new tricks Acknowledgments Colleagues Dean Foster in Statistics Lyle Ungar in Computer Science Bob Stine Department of Statistics The School of the

### Learning to Process Natural Language in Big Data Environment

CCF ADL 2015 Nanchang Oct 11, 2015 Learning to Process Natural Language in Big Data Environment Hang Li Noah s Ark Lab Huawei Technologies Part 1: Deep Learning - Present and Future Talk Outline Overview

### Machine Learning and Pattern Recognition Logistic Regression

Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,

### Natural Language Processing. Today. Logistic Regression Models. Lecture 13 10/6/2015. Jim Martin. Multinomial Logistic Regression

Natural Language Processing Lecture 13 10/6/2015 Jim Martin Today Multinomial Logistic Regression Aka log-linear models or maximum entropy (maxent) Components of the model Learning the parameters 10/1/15

### A Survey of Kernel Clustering Methods

A Survey of Kernel Clustering Methods Maurizio Filippone, Francesco Camastra, Francesco Masulli and Stefano Rovetta Presented by: Kedar Grama Outline Unsupervised Learning and Clustering Types of clustering