Geometric and Radiometric Camera Calibration

Size: px
Start display at page:

Download "Geometric and Radiometric Camera Calibration"

Transcription

1 Geometric and Radiometric Camera Calibration Shape From Stereo requires geometric knowledge of: Cameras extrinsic parameters, i.e. the geometric relationship between the two cameras. Camera intrinsic parameters, i.e. each camera s internal geometry (e.g. Focal Length) and lens distortion effects. Shape From Shading requires radiometric knowledge of: Camera detector uniformity (e.g. Flat-field images) Camera detector temperature noise (e.g. Dark frame images) Camera detector bad pixels Camera Digital Number (DN) to radiance transfer function 1

2 Camera Radiometric Calibration - 1 All cameras require radiometric calibration, and this is most important for correct science image data interpretation. Basic radiometric calibration requires three types of image exposure: Dark Frame Typically a long exposure with no light being received by the camera detector (e.g. lens cap on). This is required to remove extraneous detector noise, and is very easy to perform for terrestrial applications. However, dark frames must be captured at those temperatures that will be experienced by the detector when capturing images. Example dark frame showing hot pixels 2

3 Camera Radiometric Calibration - 2 Bias Frame - Zero-length camera detector exposure. This is required to compensate for different pixel startup values (due to the bias offset applied to the A-D converter). The main issues here are that bias frames should also be captured at those temperatures that will be experienced by the detector, and to ensure that the camera detector software permits this type of exposure. However, they are not needed if the dark frames match the exposure time of the images from which they are to be subtracted, since dark frames contain bias information. 3

4 Camera Radiometric Calibration - 3 Flat Field - Exposure of a uniform white surface. This is required to remove artefacts from 2D images that are caused by variations in the pixel-topixel sensitivity of the detector and/or by distortions in the optical path (e.g. dust on lens, vignetting, unequal pixel light sensitivity). This is harder to set up, and should be dark frame adjusted. The main problem is obtaining a white surface that is truly uniform. In order to overcome this problem, an integrating sphere is used. Ideally a flat field image should be dark frame corrected to create a calibrated flat field image. 4

5 Camera Radiometric Calibration - 4 Field_image Ave_FF_D_images Raw image FF_Dark_corrected_image Calibrated flat field image derived from average of 4 captured flat field images (minus dark frame) Flat field corrected image mean_of_calibrated_flat_field_image corrected_pixelx,y = (raw_pixelx,y Dark_image_pixelx,y ) calibrated_flat_field_pixelx,y 5

6 Camera Radiometric Calibration - 5 Cameras generate a Digital Number (DN) for each pixel. The camera detector (e.g. a CCD) measures a voltage for each pixel which represents the amount of light that the pixel has received. This voltage is converted to a DN using an analogue to digital converter (ADC). For a commercial off the shelf (COTS) 8-bit camera, then the pixel DN range is from 0 to 255. For applications such as shape from shading, then the DN value for each pixel needs to be converted to a physical quantity called radiance. This is a radiometric quantity, and is useful because it indicates how much of the (light) power emitted by an emitting or reflecting surface will be received by an optical system looking at the surface from some angle of view. The units of radiance are W/m 2 /sr. The steradian (sr) unit is the 3D cousin to the 2D radians unit. If filters are used on the camera, for example, then spectral radiance is used and the units are: W/m 2 /sr/nm. A transfer function from DN to radiance is required which may, or may not, have a linear relationship. 6

7 Camera Radiometric Calibration - 6 The DN to radiance transfer function can be obtained via laboratory measurements, and one method is shown below. Spectral Irradiance (W/m 2 ) at the receiving aperture Spectral radiance at the source aperture measured using a spectrometer Nominal distance between source and receiving apertures Radius of source aperture Radius of receiving aperture Example camera images Spectral radiance at the receiving aperture Example transfer function 7

8 Shape From Shading - 1 The Shape From Shading (SFS) problem is how to compute the 3D shape (e.g. height-map) of a surface from a single black and white image of the surface, i.e. an image that shows the brightness (radiance) of the surface under known illumination conditions. Diagram courtesy E. Prados and O. Faugeras 8

9 Shape From Shading - 2 In the 70 s Horn 1 was the first to formulate the Shape From Shading problem, and to realise that it required finding the solution to a nonlinear first-order Partial Differential Equation (PDE) referred to as the brightness equation: I (x 1, x 2 ) = R (n (x 1, x 2 )), where (x 1, x 2 ) are the coordinates of a point x in the image. R is the reflectance map, I the brightness image, and n is the surface normal vector of the point x. Many SFS methods assume that the surface has Lambertian reflectance properties. 1 Horn, Berthold K.P., Shape from Shading: A Method for Obtaining the Shape of a Smooth Opaque Object from One View, PhD thesis, 1970, Department Electrical Engineering, MIT. 9

10 Shape From Shading - 3 For a Lambertian surface, then the reflectance map R is the cosine of the angle between the light vector L(x), and the normal vector n(x) to the surface (Lambert s Law): L R = cos(l,n) = L n n Vector dot product The apparent brightness of Lambertian surface to an observer is the same regardless of the observer s angle of view. The surface represents an ideal diffusely reflecting surface. Note: most real surfaces are not Lambertian (see BRDF link). 10

11 Shape From Shading - 4 cos( 1 ) < cos( 2 ), therefore Slope A is greater than Slope B Sun Light Surface normal Observer cos(0 ) = 1 cos(90 ) = Lambertian surface Slope A Slope B 11

12 Shape From Shading - 5 There have been many algorithms developed to solve the Shape From Shading problem, see: Zhang et. al., Shape from Shading: A Survey, IEEE Trans. Pattern Analysis and Machine Intelligence, 21, 8, ,1999. A recent (AU) solution, called the Large Deformation Optimisation Shape From Shading (LDO-SFS) algorithm, has been generated that shows good results with Mars HRSC images from the Mars Express orbiter, see: R. O Hara, and D. Barnes, A new shape from shading technique with application to Mars Express HRSC images, ISPRS Journal of Photogrammetry and Remote Sensing, 67, 27-34, LDO-SFS can use different surface reflectance models e.g. Lambertian, or Oren-Nayar. 12

13 Shape From Shading: LDO-SFS Original single Martian surface (2D) image from HiRISE (MRO) Ortho-image rendered (3D) DEM views created using shape-from-shading 13

14 Shape From Shading: LDO-SFS Left image is the single 2D HRSC (H1022) image used as the input to the AU SFS algorithm. The right image is the 3D DEM data generated by the SFS algorithm. The DEM has been reverse lighting rendered (as compared to the left input image) to demonstrate the 3D nature of the data. Note that the 3D DEM has not been rendered with the H1022 ortho-image. 14

15 Shape From Shading: LDO-SFS DEM Visualisation and Slope Maps The left image is a topographic colour-coded image of the SFS generated DEM. Here the white coloured areas are the highest regions, and the dark blue coloured areas are the lowest regions. The right image shows a colour-coded slope map of the SFS DEM data. Green: 0 to < 10, Blue: 10 to < 20, and Red: 20 to <. 15

16 Shape From Shading: LDO-SFS Single input image Output image NOTE - SFS now with perspective projection 16

17 Shape From Shading: LDO-SFS Single input image Output image NOTE - SFS now with perspective projection 17

18 Stereo Vision (SV) versus Shape From Shading (SFS) Both SV and SFS require accurate and precise calibration. SFS requires accurate and precise knowledge of the lighting and observer vectors relative to the scene surface. SV requires two images, SFS requires only one image. SV provides absolute scene scale and dimensions. SFS has no concept of absolute scene scale and dimensions. SV accuracy falls off with distance (remember D 1/d). SFS accuracy not dependent on scene distance. SV works well when texture is present for disparity algorithm, e.g. good on rocks, but poor on sand dunes. SFS does not require texture, but does require that surface reflectance assumptions model reality (e.g. Oren-Nayar etc.). SV good at modelling low-frequency scene structure, whereas SFS is good at modelling high-frequency scene structure. Solution: combine strengths of both methods. For an example see: Cryer, J.E, et. al., Integration of Shape From Shading and Stereo, Pattern Recognition, Vol. 28, No. 7, ,

Perspective Shape from Shading and Viscosity Solutions

Perspective Shape from Shading and Viscosity Solutions Perspective Shape from Shading and Viscosity Solutions E.Prados O.Faugeras ODYSSEE Lab. INRIA - ENS Paris - ENPC/CERMICS http://www-sop.inria.fr/odyssee/team ICCV 04, 15th October 2003, Nice/France Abstract

More information

MERIS & OLCI calibration Lessons learnt from MERIS

MERIS & OLCI calibration Lessons learnt from MERIS MERIS & OLCI calibration Lessons learnt from MERIS Ludovic Bourg, Steven Delwart Sentinel 3 EO Level 1 Lessons Learned, ESRIN, June 2013 ACRI ST L Bourg EO Level 1 Lessons Learned, ESRIN, June 2013 Slide

More information

Introduction to CCDs and CCD Data Calibration

Introduction to CCDs and CCD Data Calibration Introduction to CCDs and CCD Data Calibration Dr. William Welsh San Diego State University CCD: charge coupled devices integrated circuit silicon chips that can record optical (and X-ray) light pixel =

More information

MERIS Calibration S. Delwart, L. Bourg, J-P Huot

MERIS Calibration S. Delwart, L. Bourg, J-P Huot MERIS Calibration S. Delwart, L. Bourg, J-P Huot OVERVIEW 1. Instrument & processing overview 2. Radiometric calibration method & results Instrument degradation Diffuser aging 3. Spectral Calibration method

More information

Measurement of Minimum Illumination (MMI) - The Axis Method

Measurement of Minimum Illumination (MMI) - The Axis Method Measurement of Minimum Illumination (MMI) - The Axis Method Table of contents 1. Introduction...3 2. Light sensitivity...3 3. Physical concepts...4 4. The Axis MMI method: a summary...4 5. Concepts in

More information

Getting the Most from Your IR Camera

Getting the Most from Your IR Camera Getting the Most from Your IR Camera Our thanks to FLIR for allowing us to reprint the following article. Understanding IR camera calibration and corrections help ensure accurate temperature measurements

More information

Chapter 1: Machine Vision Systems & Image Processing

Chapter 1: Machine Vision Systems & Image Processing Chapter 1: Machine Vision Systems & Image Processing 1.0 Introduction While other sensors, such as proximity, touch, and force sensing play a significant role in the improvement of intelligent systems,

More information

Radiometric Calibration of a Modified DSLR for NDVI

Radiometric Calibration of a Modified DSLR for NDVI Radiometric Calibration of a Modified DSLR for NDVI Christian Taylor Carlson Center for Imaging Science, Rochester Institute of Technology ABSTRACT Silicon CCD detectors found in commercial DSLR cameras

More information

Digital image processing

Digital image processing 746A27 Remote Sensing and GIS Lecture 4 Digital image processing Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Digital Image Processing Most of the common

More information

8.1 Lens Equation. 8.2 Image Resolution (8.1) z' z r

8.1 Lens Equation. 8.2 Image Resolution (8.1) z' z r Chapter 8 Optics This chapter covers the essentials of geometrical optics. Radiometry is covered in Chapter 9. Machine vision relies on the pinhole camera model which models the geometry of perspective

More information

RESEARCHES ON HAZARD AVOIDANCE CAMERAS CALIBRATION OF LUNAR ROVER

RESEARCHES ON HAZARD AVOIDANCE CAMERAS CALIBRATION OF LUNAR ROVER ICSO International Conference on Space Optics 4-8 October RESERCHES ON HZRD VOIDNCE CMERS CLIBRTION OF LUNR ROVER Li Chunyan,,Wang Li,,LU Xin,,Chen Jihua 3,Fan Shenghong 3. Beijing Institute of Control

More information

Digital SLR Astrophotography

Digital SLR Astrophotography Digital SLR Astrophotography by Michael A. Covington Cambridge University Press 2007 The following pages are a DRAFT TABLE OF from an unfinished version of the book manuscript. The page numbers DO NOT

More information

McGill calibrated colour image database: Details of calibration

McGill calibrated colour image database: Details of calibration 1. Aim of this document McGill calibrated colour image database: Details of calibration The aim of this document is to provide details of how the cameras were calibrated in order to gamma-correct the images

More information

Introduction to Spectral Reflectance (passive sensors) Overview. Electromagnetic Radiation (light) 4/4/2014

Introduction to Spectral Reflectance (passive sensors) Overview. Electromagnetic Radiation (light) 4/4/2014 Introduction to Spectral Reflectance (passive sensors) Kelly R. Thorp Research Agricultural Engineer USDA-ARS Arid-Land Agricultural Research Center Overview Electromagnetic Radiation (light) Solar Energy

More information

Fig.1. The DAWN spacecraft

Fig.1. The DAWN spacecraft Introduction Optical calibration of the DAWN framing cameras G. Abraham,G. Kovacs, B. Nagy Department of Mechatronics, Optics and Engineering Informatics Budapest University of Technology and Economics

More information

Solar Radiation Measurement. Bruce W Forgan, WMO RAV Metrology Workshop, Melbourne, Novemberr 2011

Solar Radiation Measurement. Bruce W Forgan, WMO RAV Metrology Workshop, Melbourne, Novemberr 2011 Solar Radiation Measurement Bruce W Forgan, WMO RAV Metrology Workshop, Melbourne, Novemberr 2011 Why Do We Need Data on Solar Energy? Global Climate System Climate Energy Balance Solar Exposure and Irradiance

More information

Image Formation. Introduce the elements of camera models, optics, and image

Image Formation. Introduce the elements of camera models, optics, and image Image Formation Goal: formation. Introduce the elements of camera models, optics, and image Motivation: Camera models, together with radiometry and reflectance models, allow us to formulate the dependence

More information

CIPS Calibration Last Updated 11 December 2011

CIPS Calibration Last Updated 11 December 2011 1. Description of Calibration (Albedo = 1x10-6 sr -1 ) Figure 1. Flow chart illustrating the steps in the calibration analysis for converting level 0 data into level 1A, represented by DN(i,j) and A(i,j),

More information

Calibration and Recalibration of machine vision systems. Lars Fermum Chief instructor STEMMER IMAGING GmbH

Calibration and Recalibration of machine vision systems. Lars Fermum Chief instructor STEMMER IMAGING GmbH Calibration and Recalibration of machine vision systems Lars Fermum Chief instructor STEMMER IMAGING GmbH www.stemmer-imaging.de AN INTERNATIONAL CONCEPT STEMMER IMAGING customers in UK Germany France

More information

Radiometric alignment and vignetting calibration. Pablo d'angelo University of Bielefeld

Radiometric alignment and vignetting calibration. Pablo d'angelo University of Bielefeld Radiometric alignment and vignetting calibration University of Bielefeld Overview Motivation Image formation Vignetting and exposure estimation Results Summary Motivation Determination of vignetting and

More information

Characterization of JPSS Solar Diffuser Stability Monitor Response to Sun Angle of Incidence

Characterization of JPSS Solar Diffuser Stability Monitor Response to Sun Angle of Incidence Characterization of JPSS Solar Diffuser Stability Monitor Response to Sun Angle of Incidence Vijay Murgai, Kristie Yu, Yuri Zakharenkov, John Steele, Eugene Kim, and Neil Nelson Vijay_murgai@Raytheon.com

More information

CCD or CIS: The Technology Decision

CCD or CIS: The Technology Decision White Paper This White Paper will explain the two scanning technologies and compare them with respect to quality, usability, price and environmental aspects. The two technologies used in all document scanners

More information

Depth from a single camera

Depth from a single camera Depth from a single camera Fundamental Matrix Essential Matrix Active Sensing Methods School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie 1 1 Geometry of two

More information

VECTORAL IMAGING THE NEW DIRECTION IN AUTOMATED OPTICAL INSPECTION

VECTORAL IMAGING THE NEW DIRECTION IN AUTOMATED OPTICAL INSPECTION VECTORAL IMAGING THE NEW DIRECTION IN AUTOMATED OPTICAL INSPECTION Mark J. Norris Vision Inspection Technology, LLC Haverhill, MA mnorris@vitechnology.com ABSTRACT Traditional methods of identifying and

More information

From Pixel to Info-Cloud News at Leica Geosystems JACIE Denver, 31 March 2011 Ruedi Wagner Hexagon Geosystems, Geospatial Solutions Division.

From Pixel to Info-Cloud News at Leica Geosystems JACIE Denver, 31 March 2011 Ruedi Wagner Hexagon Geosystems, Geospatial Solutions Division. From Pixel to Info-Cloud News at Leica Geosystems JACIE Denver, 31 March 2011 Ruedi Wagner Hexagon Geosystems, Geospatial Solutions Division What else can I do with my sensor/data? Earth to Image Image

More information

Illumination Models and Shading. Foley & Van Dam, Chapter 16

Illumination Models and Shading. Foley & Van Dam, Chapter 16 Illumination Models and Shading Foley & Van Dam, Chapter 16 Illumination Models and Shading Light Source Models Ambient Illumination Diffuse Reflection Specular Reflection Polygon Rendering Methods Flat

More information

M. R. Mobasheri Remote Sensing Engineering department, Technology K.N.Toosi University,

M. R. Mobasheri Remote Sensing Engineering department, Technology K.N.Toosi University, Evaluation and Separation of IKONOS Sensor s CCD Noise From Dark Object M. R. Mobasheri Remote Sensing Engineering department, Technology K.N.Toosi University, mobasheri@kntu.ac.ir M. Dastfard MSC. Student

More information

Shape from Shading Under Various Imaging Conditions

Shape from Shading Under Various Imaging Conditions Shape from Shading Under Various Imaging Conditions Abdelrehim H. Ahmed and Aly A. Farag Computer Vision and Image Processing Laboratory (CVIP) University of Louisville, Louisville, KY, 49 abdo,farag@cvip.uofl.edu

More information

Optical Flow as a property of moving objects used for their registration

Optical Flow as a property of moving objects used for their registration Optical Flow as a property of moving objects used for their registration Wolfgang Schulz Computer Vision Course Project York University Email:wschulz@cs.yorku.ca 1. Introduction A soccer game is a real

More information

Optics for Machine Vision

Optics for Machine Vision The Old Barn Grange Court Tongham Surrey GU10 1DW Optics for Machine Vision Photonex 2002 Simon Hickman Firstsight Vision Ltd The purpose of a camera Lens To transmit light onto the camera sensor in a

More information

Information Contents of High Resolution Satellite Images

Information Contents of High Resolution Satellite Images Information Contents of High Resolution Satellite Images H. Topan, G. Büyüksalih Zonguldak Karelmas University K. Jacobsen University of Hannover, Germany Keywords: satellite images, mapping, resolution,

More information

Computer Graphics: Visualisation Lecture 3. Taku Komura Institute for Perception, Action & Behaviour

Computer Graphics: Visualisation Lecture 3. Taku Komura Institute for Perception, Action & Behaviour Computer Graphics: Visualisation Lecture 3 Taku Komura tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour Taku Komura Computer Graphics & VTK 1 Last lecture... Visualisation can be greatly

More information

Introduction to Computer Vision. Week 11, Fall 2010 Instructor: Prof. Ko Nishino

Introduction to Computer Vision. Week 11, Fall 2010 Instructor: Prof. Ko Nishino Introduction to Computer Vision Week 11, Fall 2010 Instructor: Prof. Ko Nishino The Projective Plane Why do we need homogeneous coordinates? represent points at infinity, homographies, perspective projection,

More information

Lighting and Reflectance Models

Lighting and Reflectance Models Lighting and Reflectance Models Basic principles of illumination and reflectance are introduced. They are central to understanding the dependence of image colour and intensity on material reflectance,

More information

Interactions Between Electromagnetic Wave and Targets

Interactions Between Electromagnetic Wave and Targets Interactions Between Electromagnetic Wave and Targets Electromagnetic radiation wavelength λ, frequency ν and the velocity υ have the following relation. λ = υ/ν by: Dr. Kiyoshi Honda Space Technology

More information

SR Series Traffic Camera. Architect & Engineering Specifications

SR Series Traffic Camera. Architect & Engineering Specifications SR Series Traffic Camera Architect & Engineering Specifications This document is controlled to FLIR Technology Level 1. The information contained in this document pertains to a dual use product controlled

More information

Path Tracing. Michael Doggett Department of Computer Science Lund university. 2012 Michael Doggett

Path Tracing. Michael Doggett Department of Computer Science Lund university. 2012 Michael Doggett Path Tracing Michael Doggett Department of Computer Science Lund university 2012 Michael Doggett Outline Light transport notation Radiometry - Measuring light Illumination Rendering Equation Monte Carlo

More information

EVIDENCE PHOTOGRAPHY TEST SPECIFICATIONS MODULE 1: CAMERA SYSTEMS & LIGHT THEORY (37)

EVIDENCE PHOTOGRAPHY TEST SPECIFICATIONS MODULE 1: CAMERA SYSTEMS & LIGHT THEORY (37) EVIDENCE PHOTOGRAPHY TEST SPECIFICATIONS The exam will cover evidence photography involving crime scenes, fire scenes, accident scenes, aircraft incident scenes, surveillances and hazardous materials scenes.

More information

Precision wavelength measurement using a Fabry-Pérot etalon

Precision wavelength measurement using a Fabry-Pérot etalon Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Precision wavelength measurement using a Fabry-Pérot etalon Introduction The main purpose of this

More information

COOKBOOK. for. Aristarchos Transient Spectrometer (ATS)

COOKBOOK. for. Aristarchos Transient Spectrometer (ATS) NATIONAL OBSERVATORY OF ATHENS Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing HELMOS OBSERVATORY COOKBOOK for Aristarchos Transient Spectrometer (ATS) P. Boumis, J. Meaburn,

More information

Geometric Camera Parameters

Geometric Camera Parameters Geometric Camera Parameters What assumptions have we made so far? -All equations we have derived for far are written in the camera reference frames. -These equations are valid only when: () all distances

More information

Computer Vision. Image acquisition. 25 August 2014. Copyright 2001 2014 by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved

Computer Vision. Image acquisition. 25 August 2014. Copyright 2001 2014 by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved Computer Vision Image acquisition 25 August 2014 Copyright 2001 2014 by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved j.van.de.loosdrecht@nhl.nl, jaap@vdlmv.nl Image acquisition

More information

C4 Computer Vision. 4 Lectures Michaelmas Term Tutorial Sheet Prof A. Zisserman. fundamental matrix, recovering ego-motion, applications.

C4 Computer Vision. 4 Lectures Michaelmas Term Tutorial Sheet Prof A. Zisserman. fundamental matrix, recovering ego-motion, applications. C4 Computer Vision 4 Lectures Michaelmas Term 2004 1 Tutorial Sheet Prof A. Zisserman Overview Lecture 1: Stereo Reconstruction I: epipolar geometry, fundamental matrix. Lecture 2: Stereo Reconstruction

More information

RADIOMETRIC PROCESSING AND CALIBRATION OF EO-1 ADVANCED LAND IMAGER DATA

RADIOMETRIC PROCESSING AND CALIBRATION OF EO-1 ADVANCED LAND IMAGER DATA RADIOMETRIC PROCESSING AND CALIBRATION OF EO-1 ADVANCED LAND IMAGER DATA B. L. Markham, Scientist Biospheric Sciences Branch NASA/GSFC Greenbelt, MD 20771 Brian.L.Markham@nasa.gov G. Chander, Scientist

More information

Integrated sensors for robotic laser welding

Integrated sensors for robotic laser welding Proceedings of the Third International WLT-Conference on Lasers in Manufacturing 2005,Munich, June 2005 Integrated sensors for robotic laser welding D. Iakovou *, R.G.K.M Aarts, J. Meijer University of

More information

Video Camera Image Quality in Physical Electronic Security Systems

Video Camera Image Quality in Physical Electronic Security Systems Video Camera Image Quality in Physical Electronic Security Systems Video Camera Image Quality in Physical Electronic Security Systems In the second decade of the 21st century, annual revenue for the global

More information

CBERS Program Update Jacie 2011. Frederico dos Santos Liporace AMS Kepler liporace@amskepler.com

CBERS Program Update Jacie 2011. Frederico dos Santos Liporace AMS Kepler liporace@amskepler.com CBERS Program Update Jacie 2011 Frederico dos Santos Liporace AMS Kepler liporace@amskepler.com Overview CBERS 3 and 4 characteristics Differences from previous CBERS satellites (CBERS 1/2/2B) Geometric

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

Swath SATELLITE ORBIT. Fig. 1 Synchronous Imaging Mode SATELLITE GROUND TRACK

Swath SATELLITE ORBIT. Fig. 1 Synchronous Imaging Mode SATELLITE GROUND TRACK Tutorial on the satellite imaging in a non-synchronous mode (1) ASYNCHRONOUS IMAGING MODE Traditionally, remote sensing (imaging) satellites were designed to scan in a synchronous mode, which meant that

More information

CCD Image Sensor Noise Sources

CCD Image Sensor Noise Sources CCD Image Sensor Noise Sources Image Sensor Solutions Eastman Kodak Company Rochester, New York 14650-2010 August 8, 2001 Revision 1 Introduction: In an ideal digital camera, the noise performance is limited

More information

Pinhole Camera. Pinhole Camera with a mirror

Pinhole Camera.  Pinhole Camera with a mirror Pinhole Camera http://en.wikipedia.org/wiki/file:camera_obscura_box.jpg Pinhole Camera with a mirror Camera Obscura Camera Obscura, Gemma Frisius, 1558 Camera Obscura with Lens Camera obscura, from a manuscript

More information

Highlight Removal by Illumination-Constrained Inpainting

Highlight Removal by Illumination-Constrained Inpainting Highlight Removal by Illumination-Constrained Inpainting Ping Tan Stephen Lin Long Quan Heung-Yeung Shum Microsoft Research, Asia Hong Kong University of Science and Technology Abstract We present a single-image

More information

The Z/I DMC II Imaging Revolution

The Z/I DMC II Imaging Revolution Photogrammetric Week '11 Dieter Fritsch (Ed.) Wichmann/VDE Verlag, Belin & Offenbach, 2011 Neumann 97 The Z/I DMC II Imaging Revolution KLAUS J. NEUMANN, Aalen ABSTRACT It had always been the philosophy

More information

Module 6: Pinhole camera model Lecture 30: Intrinsic camera parameters, Perspective projection using homogeneous coordinates

Module 6: Pinhole camera model Lecture 30: Intrinsic camera parameters, Perspective projection using homogeneous coordinates The Lecture Contains: Pinhole camera model 6.1 Intrinsic camera parameters A. Perspective projection using homogeneous coordinates B. Principal-point offset C. Image-sensor characteristics file:///d /...0(Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2030/30_1.htm[12/31/2015

More information

SCAN IN A BOX Guide to the Ideal 3D Scan

SCAN IN A BOX Guide to the Ideal 3D Scan SCAN IN A BOX Guide to the Ideal 3D Scan Part I General Considerations This document is a guide for the person that approaches for the first time to the world of 3D scanning. The advices contained in this

More information

The Moon as a Common Reference for Sensor Cross-Comparison

The Moon as a Common Reference for Sensor Cross-Comparison The Moon as a Common Reference for Sensor Cross-Comparison Thomas C. Stone U.S. Geological Survey, Flagstaff AZ, USA CEOS IVOS Workshop JRC Ispra, Italy 18 20 October 2010 The Moon as a source lunar calibration

More information

HIGH ACCURACY MATCHING OF PLANETARY IMAGES

HIGH ACCURACY MATCHING OF PLANETARY IMAGES 1 HIGH ACCURACY MATCHING OF PLANETARY IMAGES Giuseppe Vacanti and Ernst-Jan Buis cosine Science & Computing BV, Niels Bohrweg 11, 2333 CA, Leiden, The Netherlands ABSTRACT 2. PATTERN MATCHING We address

More information

Computational Photography and Video: More on Camera, Sensors & Color. Prof. Marc Pollefeys

Computational Photography and Video: More on Camera, Sensors & Color. Prof. Marc Pollefeys Computational Photography and Video: More on Camera, Sensors & Color Prof. Marc Pollefeys Today s schedule Last week s recap & administrivia Metering Aberrations Sensors Color sensing Today s schedule

More information

How to calculate reflectance and temperature using ASTER data

How to calculate reflectance and temperature using ASTER data How to calculate reflectance and temperature using ASTER data Prepared by Abduwasit Ghulam Center for Environmental Sciences at Saint Louis University September, 2009 This instructions walk you through

More information

TWO-DIMENSIONAL X-RAY DIFFRACTION

TWO-DIMENSIONAL X-RAY DIFFRACTION TWO-DIMENSIONAL X-RAY DIFFRACTION BOB B. HE GQ WILEY ,. "'! :~! CONTENTS~\.-.~..). Preface 1. Introduction 1.1 X-Ray Technology and Its Brief History, 1.2 Geometry of Crystals, 2 1.2.1 Crystal Lattice

More information

CSCI 445 Amin Atrash. Ultrasound, Laser and Vision Sensors. Introduction to Robotics L. Itti & M. J. Mataric

CSCI 445 Amin Atrash. Ultrasound, Laser and Vision Sensors. Introduction to Robotics L. Itti & M. J. Mataric Introduction to Robotics CSCI 445 Amin Atrash Ultrasound, Laser and Vision Sensors Today s Lecture Outline Ultrasound (sonar) Laser range-finders (ladar, not lidar) Vision Stereo vision Ultrasound/Sonar

More information

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2

More information

Image Formation. Image Formation occurs when a sensor registers radiation. Mathematical models of image formation:

Image Formation. Image Formation occurs when a sensor registers radiation. Mathematical models of image formation: Image Formation Image Formation occurs when a sensor registers radiation. Mathematical models of image formation: 1. Image function model 2. Geometrical model 3. Radiometrical model 4. Color model 5. Spatial

More information

Radiometry. Steve Marschner Cornell University CS 6630 Spring 2012, 26 January

Radiometry. Steve Marschner Cornell University CS 6630 Spring 2012, 26 January Radiometry Steve Marschner Cornell University CS 6630 Spring 2012, 26 January Radiometry is a system for describing the flow of radiant energy through space. It is essentially a geometric topic all the

More information

DIGITAL AERIAL CAMERAS

DIGITAL AERIAL CAMERAS DIGITAL AERIAL CAMERAS Klaus J. Neumann Intergraph Z/I Deutschland GmbH Ziegelstrasse 12 73431 Aalen Germany klaus.neumann@intergraph.com INTRODUCTION Today airborne 3D data acquisition is quickly moving

More information

Computer Vision - part II

Computer Vision - part II Computer Vision - part II Review of main parts of Section B of the course School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture Name Course Name 1 1 2

More information

Chapter 9. Shading. 9.1 Image Irradiance

Chapter 9. Shading. 9.1 Image Irradiance Chapter 9 Shading This chapter covers the physics of how light reflects from surfaces and describes a method called photometric stereo for estimating the shape of surfaces using the reflectance properties.

More information

SOLSPEC MEASUREMENT OF THE SOLAR ABSOLUTE SPECTRAL IRRADIANCE FROM 165 to 2900 nm ON BOARD THE INTERNATIONAL SPACE STATION

SOLSPEC MEASUREMENT OF THE SOLAR ABSOLUTE SPECTRAL IRRADIANCE FROM 165 to 2900 nm ON BOARD THE INTERNATIONAL SPACE STATION SOLSPEC MEASUREMENT OF THE SOLAR ABSOLUTE SPECTRAL IRRADIANCE FROM 165 to 2900 nm ON BOARD THE INTERNATIONAL SPACE STATION G. Thuillier1, D. Bolsee2 1 LATMOS-CNRS, France 2 Institut d Aéronomie Spatiale

More information

COMP 558 Exercises 1 Oct 2, 2010

COMP 558 Exercises 1 Oct 2, 2010 Questions 1. When a face is photographed from the front and from a small distance, the nose appears much larger than it should in comparison to the other parts of the face. Why? 2. Below are sketches of

More information

Introduction to the Digital Video Camera Fabian Winkler

Introduction to the Digital Video Camera  Fabian Winkler Introduction to the Digital Video Camera http://www.cla.purdue.edu/vpa/etb/ Fabian Winkler Required hardware for this workshop: Description Digital video camera, with as many manual setting options as

More information

An introduction to Global Illumination. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology

An introduction to Global Illumination. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology An introduction to Global Illumination Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Isn t ray tracing enough? Effects to note in Global Illumination image:

More information

ING LA PALMA TECHNICAL NOTE No. 130. Investigation of Low Fringing Detectors on the ISIS Spectrograph.

ING LA PALMA TECHNICAL NOTE No. 130. Investigation of Low Fringing Detectors on the ISIS Spectrograph. ING LA PALMA TECHNICAL NOTE No. 130 Investigation of Low Fringing Detectors on the ISIS Spectrograph. Simon Tulloch (ING) June 2005 Investigation of Low Fringing Detectors on the ISIS Spectrograph. 1.

More information

Implementing and Using the EMVA1288 Standard

Implementing and Using the EMVA1288 Standard Implementing and Using the EMVA1288 Standard A. Darmont *, J. Chahiba, J.-F. Lemaitre, M. Pirson, D. Dethier Aphesa, Rue de Lorcé, 39, 4920 Harzé, Belgium ABSTRACT The European Machine Vision Association

More information

INTRODUCTION TO RENDERING TECHNIQUES

INTRODUCTION TO RENDERING TECHNIQUES INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature

More information

Lecture 16: A Camera s Image Processing Pipeline Part 1. Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011)

Lecture 16: A Camera s Image Processing Pipeline Part 1. Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011) Lecture 16: A Camera s Image Processing Pipeline Part 1 Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011) Today (actually all week) Operations that take photons to an image Processing

More information

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin - nzarrin@qiau.ac.ir

More information

Detailed simulation of mass spectra for quadrupole mass spectrometer systems

Detailed simulation of mass spectra for quadrupole mass spectrometer systems Detailed simulation of mass spectra for quadrupole mass spectrometer systems J. R. Gibson, a) S. Taylor, and J. H. Leck Department of Electrical Engineering and Electronics, The University of Liverpool,

More information

Image-based Lighting in Lightwave 3D

Image-based Lighting in Lightwave 3D Image-based Lighting in LightWave Page 1 of 4 Image-based Lighting in Lightwave 3D 2001 Lightwave 3D Background The Lightwave 3D renderer is one of the most widely used in Film and Broadcast production

More information

Measuring the Doppler Shift of a Kepler Star with a Planet

Measuring the Doppler Shift of a Kepler Star with a Planet Measuring the Doppler Shift of a Kepler Star with a Planet 1 Introduction The Doppler shift of a spectrum reveals the line of sight component of the velocity vector ( radial velocity ) of the object. Doppler

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 torsten@sfu.ca www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics

More information

Reflectance Measurements of Materials Used in the Solar Industry. Selecting the Appropriate Accessories for UV/Vis/NIR Measurements.

Reflectance Measurements of Materials Used in the Solar Industry. Selecting the Appropriate Accessories for UV/Vis/NIR Measurements. T e c h n i c a l N o t e Reflectance Measurements of Materials Used in the Solar Industry UV/Vis/NIR Author: Dr. Jeffrey L. Taylor PerkinElmer, Inc. 710 Bridgeport Avenue Shelton, CT 06484 USA Selecting

More information

Types of Scanning. Different radiation principles Same operating principles Same image geometry. Multispectral scanning Thermal scanning

Types of Scanning. Different radiation principles Same operating principles Same image geometry. Multispectral scanning Thermal scanning Types of Scanning Multispectral scanning Thermal scanning Different radiation principles Same operating principles Same image geometry Hyperspectral scanning Multispectral Scanners Advantages over multiband

More information

LED Lighting. Definitions and Characteristics. TND328/D Rev.1 Sep07

LED Lighting. Definitions and Characteristics. TND328/D Rev.1 Sep07 LED Lighting Definitions and Characteristics Definitions 2 Luminous Flux [lm] Luminous flux is the quantity of the energy of the light emitted per second in all directions. The unit of luminous flux is

More information

Reprint (R22) Avoiding Errors in UV Radiation Measurements. By Thomas C. Larason July 2001. Reprinted from Photonics Spectra, Laurin Publishing

Reprint (R22) Avoiding Errors in UV Radiation Measurements. By Thomas C. Larason July 2001. Reprinted from Photonics Spectra, Laurin Publishing Reprint (R22) Avoiding Errors in UV Radiation Measurements By Thomas C. Larason July 2001 Reprinted from Photonics Spectra, Laurin Publishing Gooch & Housego 4632 36 th Street, Orlando, FL 32811 Tel: 1

More information

Characterizing Digital Cameras with the Photon Transfer Curve

Characterizing Digital Cameras with the Photon Transfer Curve Characterizing Digital Cameras with the Photon Transfer Curve By: David Gardner Summit Imaging (All rights reserved) Introduction Purchasing a camera for high performance imaging applications is frequently

More information

Image Synthesis. Ambient Occlusion. computer graphics & visualization

Image Synthesis. Ambient Occlusion. computer graphics & visualization Image Synthesis Ambient Occlusion Ambient Occlusion (AO) Ambient Occlusion approximates the diffuse illumination of a surface based on its directly visible occluders Idea: Trace rays through the normal-oriented

More information

Signal-to-Noise Ratio (SNR) discussion

Signal-to-Noise Ratio (SNR) discussion Signal-to-Noise Ratio (SNR) discussion The signal-to-noise ratio (SNR) is a commonly requested parameter for hyperspectral imagers. This note is written to provide a description of the factors that affect

More information

We bring quality to light. MAS 40 Mini-Array Spectrometer. light measurement

We bring quality to light. MAS 40 Mini-Array Spectrometer. light measurement MAS 40 Mini-Array Spectrometer light measurement Features at a glance Cost-effective and robust CCD spectrometer technology Standard USB interface Compatible with all Instrument Systems measuring adapters

More information

Lectures Remote Sensing

Lectures Remote Sensing Lectures Remote Sensing ATMOSPHERIC CORRECTION dr.ir. Jan Clevers Centre of Geo-Information Environmental Sciences Wageningen UR Atmospheric Correction of Optical RS Data Background When needed? Model

More information

Waves and Modern Physics PHY Spring 2012

Waves and Modern Physics PHY Spring 2012 Waves and Modern Physics PHY 123 - Spring 2012 1st Midterm Exam Wednesday, February 22 Chapter 32 Light: Reflec2on and Refrac2on Units of Chapter 32 Today we will cover: The Ray Model of Light Reflection;

More information

3D Scanner using Line Laser. 1. Introduction. 2. Theory

3D Scanner using Line Laser. 1. Introduction. 2. Theory . Introduction 3D Scanner using Line Laser Di Lu Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Institute The goal of 3D reconstruction is to recover the 3D properties of a geometric

More information

Computer vision. 3D Stereo camera Bumblebee. 25 August 2014

Computer vision. 3D Stereo camera Bumblebee. 25 August 2014 Computer vision 3D Stereo camera Bumblebee 25 August 2014 Copyright 2001 2014 by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved Thomas Osinga j.van.de.loosdrecht@nhl.nl, jaap@vdlmv.nl

More information

Fast field survey with a smartphone

Fast field survey with a smartphone Fast field survey with a smartphone A. Masiero F. Fissore, F. Pirotti, A. Guarnieri, A. Vettore CIRGEO Interdept. Research Center of Geomatics University of Padova Italy cirgeo@unipd.it 1 Mobile Mapping

More information

Colorado School of Mines Computer Vision Professor William Hoff

Colorado School of Mines Computer Vision Professor William Hoff Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Introduction to 2 What is? A process that produces from images of the external world a description

More information

PDF Created with deskpdf PDF Writer - Trial :: http://www.docudesk.com

PDF Created with deskpdf PDF Writer - Trial :: http://www.docudesk.com CCTV Lens Calculator For a quick 1/3" CCD Camera you can work out the lens required using this simple method: Distance from object multiplied by 4.8, divided by horizontal or vertical area equals the lens

More information

APPLICATION NOTE AN-B04. May 06, 2010 BOBCAT CAMERA SERIES DUAL FLAT FIELD CORRECTION

APPLICATION NOTE AN-B04. May 06, 2010 BOBCAT CAMERA SERIES DUAL FLAT FIELD CORRECTION APPLICATION NOTE AN-B04 May 06, 2010 BOBCAT CAMERA SERIES DUAL FLAT FIELD CORRECTION Abstract: This application note describes how to create and use Flat Field Correction files for BOBCAT camera series.

More information

Reflectance Characteristics of Accuflect Light Reflecting Ceramic

Reflectance Characteristics of Accuflect Light Reflecting Ceramic Reflectance Characteristics of Accuflect Light Reflecting Ceramic Copyright July 1 Accuratus Corporation 35 Howard Street Phillipsburg, NJ 8865 USA +1.98.13.77 http://accuratus.com SUMMARY Accuflect is

More information

Digital Image Processing. Prof. P. K. Biswas. Department of Electronics & Electrical Communication Engineering

Digital Image Processing. Prof. P. K. Biswas. Department of Electronics & Electrical Communication Engineering Digital Image Processing Prof. P. K. Biswas Department of Electronics & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 28 Colour Image Processing - III Hello,

More information

Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications

Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications Screw thread image generated by WLI Steep PSS angles WLI color imaging Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications 3D optical microscopy is a mainstay metrology

More information

Monte Carlo Path Tracing

Monte Carlo Path Tracing CS294-13: Advanced Computer Graphics Lecture #5 University of California, Berkeley Wednesday, 23 September 29 Monte Carlo Path Tracing Lecture #5: Wednesday, 16 September 29 Lecturer: Ravi Ramamoorthi

More information