How To Increase Permeability Of Soil

Size: px
Start display at page:

Download "How To Increase Permeability Of Soil"

Transcription

1 REMEDIATION OF BRINE-IMPACTED SOIL: EVALUATION OF SEVERAL PERFORMANCE ENHANCEMENTS COUPLED WITH A LEACHATE COLLECTION SYSTEM JOHN N. VEENSTRA AND ROBERT W. WARDEN, OKLAHOMA STATE UNIVERSITY, STILLWATER, OK: THOMAS M. HARRIS, UNIVERSITY OF TULSA, TULSA, OK ABSTRACT Brine-impacted soil poses several environmental problems. High salinity in soil inhibits plant growth, resulting in erosion. The secondary contamination of surface and ground waters by surface runoff and leaching is also a major concern. Currently, many brineimpacted soil remediation techniques exacerbate secondary contamination as they increase the hydraulic conductivity of soils. These methods rely on leaching of salt deeper into the soil instead of its removal. A leachate collection system (LCS) collects the leachate for disposal and ultimate removal of salt from the soil. Several potential performance enhancements were investigated on a field scale both in a historic and contemporary spill in northern Oklahoma for approximately one year. These enhancements included installation of collection system piping in gravel filled trenches to increase the collection rate of the leachate in the contemporary spill, and a drained limestone gravel layer to protect a fresh imported topsoil layer in the historic spill. In both the historic and contemporary spill, elemental sulfur was added to the limestone gravel to biostimulate sulfur oxidizing bacteria to enhance the dissolution of the limestone gravel, providing available calcium in solution for sodium ion exchange on the clay soil particles. Effectiveness of the enhancements was evaluated by analysis of salt concentration in soils, soil permeability, and bacterial plate counts.

2 INTRODUCTION Oilfield brine impacted soils are the legacy of accidental spill or purposeful disposal of water produced during oil production. The problem is common wherever oil is produced. Spilled brine causes the death of the plants supported by the soil leading to increased erosion and eventual loss of the topsoil. Further ramifications are long-term soil productivity loss, spread of saline conditions in the soil, contamination of surface water, the displacement of minerals usually attached to clay particles by sodium ions resulting in poor structure, and reduced permeability to water (1). Current remediation techniques include treatments that enhance the soils fertility and permeability through adding amendments (2). The success of these treatments is dependent on the ability of the water to permeate into the subsurface, carrying salt with it. Naturally, these treatments will be unsuitable for areas where valuable ground water resources would be threatened and unsuccessful where the salt would be unable to migrate downward due to an impermeable layer (3). A leachate collection system (LCS) addresses the issue of contamination of ground water by collecting and directing the soil water leachate to a collection point for disposal. In Area 1 of the test site (Figure 1), the contemporary spill, a 250 gallon fiberglass collection tank with a lid was installed to collect leachate from Area 1. For Area 2, the historic spill, the leachate was collected in a 9000 ft 2 evaporation pond, approximately 3 feet in depth, lined with 60 mil black flexible polyethylene (HDPE) geotextile with a 10-7 cm/sec permeability (Figure 2). The Area 1 (contemporary spill) test site for this project included test cells with several configurations to enhance leaching performance and displacement of sodium ions on the soil with calcium: 1) The addition of limestone gravel was intended to enhance leaching performance by preventing displaced soil fines from collecting in the LCS and to provide calcium to transfer to the soil resulting in the displacement of the monovalent sodium ion responsible for reduced permeability (4); and 2) Elemental sulfur was added to the limestone gravel to determine if the oxidation of elemental sulfur by sulfur oxidizing bacteria to sulfuric acid would dissolve the calcium carbonate in the gravel to calcium sulfate, a more soluble form of calcium. The hypothesis was that the soluble calcium sulfate would travel in solution and displace the permeability reducing sodium ions on the clay particles as a result of brine contamination. The ion concentrations in the soil, changes in the population of aerobic bacteria, and the permeability of soil cores taken from the various test cells were analyzed to evaluate the performance of the leachate collection system and the effectiveness of the enhancements.

3 LABORATORY METHODOLOGY This study involved the analysis of soil for permeability, ion concentration, and aerobic bacterial population. Soil permeability of cores taken from site were determined using ASTM method D-2434 (5), soil ion concentrations were determined by Atomic Absorption Spectrometry (AAS) (6) and Ion Chromotography (IC). Aerobic bacteria populations were determined using plate counts prepared with media for heterotrophic bacteria (7). Soil Extraction Soil extraction techniques were based on methodology utilized by several sources (8, 9, 10). The analysis of soil ion concentration began with the extraction of soluble ions in the soil using high purity water. To prepare the soil extraction, 25 g of soil that has been oven dried for at least 12 hours at 115 F was weighed and 250 ml of high purity 18 MΩ water, produced with a NANOpure Diamond Analytical ultra pure water system, Series 1190 (Barnstead Thermolyne), was added. The mixture was stirred with a dry, clean glass rod and was allowed to stand for a minimum of 4 hours at room temperature, and sequentially vacuum filtered using dry glassware and filtering apparatus and Metriguard qualitative glass fiber filter paper with 0.8 µm pore size (Gelman Sciences), and a GN µm pore size Metricel Membrane Filter (Gelman Sciences). A 1:1 water to soil ratio was the recommended extraction preparation ratio (8). Given the soil being analyzed and the filtering requirements needed by instruments being used to analyze the extract, several problems were encountered. First, a large amount of soil was needed to produce enough extract to be analyzed several times by two different instruments. Second, it was necessary to filter all samples to remove particles larger than 0.45 µm. This proved very difficult when starting with a very turbid extract taken from the typical 1:1 soil extraction. These difficulties were addressed by increasing the ratio of water to soil to 10:1. This allowed for a volume of water to be filtered that had been settled and the turbidity reduced. This procedure produced ample sample volumes and compensation for a 10:1 dilution factor was made when relating solution concentrations to soil concentrations. A portion of some of the soil samples was also prepared using a 1:1 ratio for comparison (9). This extraction procedure partitions only the highly soluble cations and anions into solution. This procedure was not assumed to produce quantitative values for all concentrations of cations and anions in the soil. However, only those ions easily dissolving into water were of concern in this study. Sample Solution Analysis Chloride and sulfate anion concentrations were determined using a Model DX- 120 (Dionex Corp.) ion chromatograph equipped with a 25 µl sample loop, and an IonPac AS14 Analytical (4X250 mm) column (Dionex Corp.) using a 3.5 mm sodium carbonate/ 1.0 mm bicarbonate buffer solution. Each run on the ion chromatograph included a 7- point non-linear calibration increasing in concentration with 250 mg/l chloride and sulfate as the maximum concentrations. Standard solutions were prepared from reagent grade salts and periodically checked with commercially prepared reference standard solutions (Dionex Corp.).

4 Analysis of the calcium, magnesium, and sodium cations were determined by analyzing the extract solution with an AAnalyst 300 Atomic Absorption Spectrometer (Perkin-Elmer Corp) using the flame technique with air/acetylene. All standards were prepared using commercial reference standard solutions (Fisher Scientific). Initially, all samples were run without dilution. Samples registering outside the calibration range were diluted 10:1 and re-run. Additional dilutions were performed until all samples were represented inside the calibration range. Check standards were run every twenty samples (consisting of 10 samples and their duplicate), and the instrument was recalibrated as necessary. All blanks for analysis matched the matrix of the calibration standards. Calcium and magnesium were determined using absorption mode, and sodium was determined with emission mode on the AAnalyst 300. Calcium was analyzed using a 400 mg/l Ca in 2% HNO 3 as the maximum of three standards. Magnesium was run with 15 mg/l Mg in 2% HNO 3 as the maximum of a four point calibration procedure and sodium concentrations were determined using 500 mg/l Na with only 18 MΩ water for the solvent as the maximum of a seven point calibration. All three metals were analyzed using a non-linear calibration procedure (6). Soil Microbiology Soil samples were taken from the field aseptically using two techniques: 1) Coring was performed using a stainless steel coring device that was manually cleaned to be free of dirt and debris then it was rinsed ethyl alcohol, silicone lubricant from an aerosol can was applied and rinsed with sterile water. Rinseate from the instrument was taken from the runoff from distilled, sterilized water sprayed into the barrel using a squirt bottle. The rinseate was collected in vials for future culturing; 2) Trowel soil samples were collected using an auger to determine the approximate soil/gravel interface depth (by augering to gravel). Near the auger hole, a shovel was used to create a large enough opening and of sufficient depth to get close to the depth of the interface of soil and gravel (within about 1-2 inches). Then a sterilized trowel was used to approach the interface (within 1 inch). Finally, sterilized metal spoons were used to collect the actual soil sample. Each soil sample was stored in a new zip-loc bag. A different spoon was used for each duplicate in each cell. Sterile, TGY (Tryptone, Glucose, Yeast extract medium) agar plates (100 X 15 mm) (Fisher Scientific)(11) were prepared. Next, the soil bacteria extractions were performed by aseptically adding 10 grams of soil to an autoclaved 250 ml Erlenmeyer flask containing 100 ml of sterile sodium pyrophosphate solution (0.2% solution). Transfers of material between containers were performed using aseptic techniques. Soil taken from cores was selected from the center of aseptically dissected cores. Once soil was selected and removed from the cores, it was treated as a loose soil sample. Loose soil samples were transferred and weighed using sterilized instruments. The soil bacteria extraction was done as quickly as possible once the soil and sodium pyrophosphate solution were combined, using the procedure described as follows. The covered flask was shaken on a rotational shaker at 200 rpm for 30 minutes. Serial dilutions were prepared by adding 0.1 µl of the previous dilution to 0.9 µl of sterilized 0.9% NaCl solution in an array of 1.5 µl labeled eppendorf microcentrifuge tubes. After serial dilutions from 10-2 to 10-7 were prepared, 0.1 µl of each dilution was plated and spread with a sterile spreader (7). All dilutions, plate preparations, plating, and spreading occurred in a laminar flow

5 hood with a pathogen filter. All sterilization of liquids were performed in a Sterilmatic Sterilizer Model STM-E Type C autoclave (Market Forge) set for 250 F, 15 psi, for 15 minutes. The plates were stored at room temperature for 72 hours and counts were performed. Plates containing between 30 and 300 CFUs were included in calculating the geometric mean of the population indicated by the dilution corrected plate counts. Reported plate counts are averages of duplicate plates, multiplied to account for the dilution factor. Calculations were performed to convert the data to units of CFU per gram of soil. The moisture content of the soil samples were included in the calculations for CFU per gram of soil to adjust the data to dry basis (CFU per gram of dry soil). Soil Permeability Permeability tests were performed according to ASTM method D-2434 (5). Soil cores were carefully shaved to a diameter slightly larger that the permeameter mold. Silicone vacuum grease was applied to the walls of the permeameter mold, and its weight was recorded. The shaved soil core was carefully inserted into the permeameter mold; excess diameter was shaved piecewise as the core was inserted. After the soil core was inserted, porous stones were inserted in the ends and the core was shaved on the ends accordingly to fit the needed stones. After the sample was inserted, fit, and sized, the porous stones were removed and the permeameter mold and soil test core weight was recorded. After weighing, the porous stones were re-inserted, and the permeameter mold was installed on the permeameter manifold. Tap water was used to test the cores. After degassing the top of the permeameter mold, the test was started. A large number of the cores were tested at 2, 4, and 10 psi, which correspond to 140.6, 281.2, and 1406 cm of head, and hydraulic gradients of 22, 44, and 110 respectively. Operation of LCS RESULTS AND DISCUSSION During the course of this study, the Area 1 collection tank installed for collecting the leachate from the LCS flooded several times because of heavy rains. This resulted in leachate backing up into the LCS, preventing proper collection of leachate samples. Also, after draining the LCS during a winter sampling event, the empty collection tank floated due to buoyancy caused by saturated soil. It was hypothesized that the installation of the LCS would increase the permeability of the soil by increasing the leaching of ions associated with brine out of the soil. The leaching of the ions that reduce permeability of the soil, specifically sodium, was hypothesized to be enhanced by the potential increased mobilization of calcium through bio-stimulation of sulfur-oxidizing bacteria. This enhancement was based on the production sulfuric acid by sulfur oxidizing bacteria (12) according to the following reactions: 2S + 3O 2 + 2H 2 O 2H 2 SO 4

6 It was believed that the production of sulfuric acid would promote dissolution of the calcium carbonate in the gravel and its mobilization in the aqueous phase. Calcium (Ca 2+) would then be available to displace the sodium (Na + ) on the clay particles. It was intended that a primary measurement in this study would be the composition of the leachate from the LCS over time. Observed changes in ion concentrations in the leachate from individual test cells would indicate what was being leached out of the soil and if the gravel and sulfur enhancements were having any affect. One factor that prevented these observations was that there was little or no leachate to collect during sampling trips. This was likely due to the low permeability of the soil and delay of the leachate traveling to the LCS after a precipitation event (as can be seen from the permeability tests). Soil Permeability Permeability tests were performed according to ASTM method D-2434 (5). It was hoped that testing the soil permeability would yield some data to quantify the effectiveness of the removal of the sodium ions from the soil. However, soil conditions at the site were highly heterogeneous, and many of the samples disintegrated during the permeameter mold core preparations. What permeability data was collected could be grouped with respect to area and the core permeabilites were graphed with respect to date of sample collected (Figure 3). Data illustrated in Figure 3 is the average of all permeabilities of soil cores taken from Area 1. The Area 2 gravel protected imported topsoil layer permeability was not relevant to this portion of the study. It was not possible to show permeability changes by cell because of the relatively few data points gained from the soil cores that survived the preparation for the test. Overall background permeability represents the permeability of the soil in the unaffected area surrounding both Areas 1 and 2. Area 1 background permeability represents the permeability of samples taken from the unaffected areas immediately adjacent to the Area 1 test cells. Notice that the background permeability of Area 1 and the overall background of the project site are very close (K overall background = 6.9E-07 cm/sec, K area 1 background = 7.5E-07 cm/sec). This background permeability for the test area and the unaffected areas was determined from samples locations designated in Figure 4, which shows the sampling regime with the experimental Area 1 overlaid. Area 1 11/18/00 represents the permeability of samples taken from cells 7, 8, 9, and 10 on this date. Of the three cores that could be tested for permeability, data could not be collected on one of them because there was no breakthrough after several weeks of testing. The remaining data was combined and averaged and permeability for those cells was 1.01E-07 cm/s. This represents data taken after 2 months from the start date of the project (September 15, 2000), and there had been significant precipitation by that time to transport ions into the LCS (Figure 5) (13). All data were from cells that had an LCS drainage pipe installed. The average of the permeabilities represented by Area 1 7/10/01 includes the permeability of the same cells (7, 8, 9, and 10) after 10 months of operation. The increase in permeability from the November 2000 sampling event to July 2001 could be misleading since the graph is based on so few sample cores. This permeability trend does not correspond to the decrease of soil ion concentrations (particularly sodium) as seen in Figure 6 for which there is ample data. It was hypothesized that when sodium shows its lowest concentration, permeability would be at its highest. This ion concentration trend was also observed with all other ions (Figure 8, Figure 9, Figure 10) except calcium (Figure 7), which might possibly be explained by the hypothesized dissolution of limestone gravel into the soil solution. Since so many of the cores collected did not stay

7 intact enough to be tested some cells only had one data point, and considering the heterogeneity of the site, this was not enough information to compare changes in permeability by cell. Therefore, the data is inconclusive as to the relative effectiveness of the various individual enhancements. However, it seems to show that even though a significant percentage (20% or more) of the salt was removed (Figure 11)), permeability did not seem to change that much. This conclusion might change if more of the Area 1 11/18/00 and Area 1 7/10/01 samples had survived to be tested. Since this was just an indicator test, the ion concentration of the soil was the direct measurement used to make conclusions. Soil Microbiology It was observed that in every cell, the bacterial population counts were lower in July 2001 (Figure 12). This decrease in bacterial population during the July sampling event could be related to the higher ion concentrations and drier conditions that result in less favorable conditions for heterotropic soil bacteria. The highest bacteria populations were from the November 2000 sampling, when the soils were moist and ion concentrations of the soil were nearest to the concentrations found in unimpacted soils. It was found in both sampling events that the sulfur-amended soils did exhibit a slightly higher population count in Area 1(Figure 13, Figure 14). The Area 1 data included cells 7 and 8 (non-amended) and Cells 9 and 10 (amended). In Area 2, it was found that in November, the non-amended Northeast (NE) cell showed the highest bacterial population. In July of 2001, the amended Northwest (NW) cell had the greatest bacterial population and the difference between the amended and non-amended cells had increased (Figure 15). Soil Ion Concentration All ions exhibited the same concentration trend in Area 1 soil with respect to time, highest on the first sampling event, lowest during the November 2000 sampling, and showing an increase during the July 2001 sampling (Figure 6, Figure 7, Figure 8, and Figure 9). Data labeled (UT) was obtained from the University of Tulsa (15). The data obtained from University of Tulsa was obtained during sampling dates occurring in the gaps between OSU sampling dates. Although the University of Tulsa soil analysis was performed using a 1:1 saturated paste soil extract, and ICP-AES was used to analyze for metals, the data exhibited the same general trend of decreasing ion concentrations in the winter with resurgence of ions in the beginning of summer. In all cases, except calcium, the increase in soil ion concentrations between November 2000 and July 2001 never approached the soil ion concentrations present at startup (Figure 6, Figure 7, Figure 8, Figure 9, Figure 10). Calcium concentration exhibited a steady increase with the expected low values during November (Figure 7). This suggests that calcium is becoming more available in the soil solution as a result of the installation of limestone gravel. The magnesium concentration labeled 5/8/2001 (UT) in Figure 8 shows a dramatic increase from the 1/21/01 (UT) sampling event, decreasing to the 21.7 mg/kg soil value determined during the 7/12/01 sampling event. It was observed that the Cell 7 value in the UT data set was nearly twice any of the soil concentration values. If this value was anomalous and excluded, the soil magnesium concentration for the 5/8/2001 (UT) sampling event would indicate very little change from 5/8/01 to 7/12/01. Percent reductions in each ion measured in Area 1 soil can be seen in Figure 11. The negative

8 value for the calcium bar represents the hypothesized increase in the soil concentration of calcium. The LCS performance should not be based on the reduction in ion concentration observed in the November 2000 sampling. The resurgence of ions during the drier part of the year into the upper soil layers has been documented in several remediation projects (8,14) and is a better reflection of the degree to which the LCS was effective. Temperature and precipitation data taken from Oklahoma Mesonet Station #32 in Copan, OK (12.9 miles north of Bartlesville, OK) (Figure 16) reports relatively low precipitation and dramatically increasing temperatures in the three months prior to the July 2001 sampling event (Figure 17). Soil temperatures with respect to time are illustrated in Figure 18 along with temperature and precipitation. In addition, it was observed that a 20% or greater removal of ions possibly occurred over the year, except in the case of calcium, which exhibited an increase in concentration. Observations with regards to the effects of the LCS compared to natural processes were difficult to discern. The first sampling event in July 1999, indicates the highest soil ion concentrations, except in the case of calcium which increased in concentration from project start up. Sulfate, sodium, and chloride ions exhibit 52.5%, 48.1%, and 11.2% decreases respectively between the 7/20/99 and the 9/24/00 (UT) data set, which was immediately after the installation and is believed to be representative of the soil concentrations at the startup of the LCS due to insignificant precipitation since the 9/15/00 installation (Figure 19). The decrease in soil ion concentrations between the 7/20/99 and 9/24/00 (UT) data sets is believed to be a manifestation of the pulsing effect of the soil ions between wet and dry periods and not the installation of the LCS. However, after a period of time, it remains difficult to quantify the simultaneous effects of natural processes and the LCS in this situation. It has been shown that there is a natural pulsing of the soil ion concentrations that is a function of precipitation. It is difficult to determine where in the pulse the data occurs, however, it is believed that an insignificant amount of salt left the soil between 7/20/99 and 9/24/00 due to natural leaching and the observed difference is due to sampling occurring at different places on the pulse of soil ion concentrations at the sampling depth. Since July is characteristically the driest part of the year of in Oklahoma, it is believed that the 7/20/99 and 7/12/01 data represents the maximum surface soil ion concentrations for that year and that this will be a valid measuring point to determine the effects of the LCS and the various enhancements, therefore percent reductions were calculated using these two data sets. Other reasons for decreases in sulfate soil ion concentration other than leaching include its assimilation into biomass and combination into less soluble forms (12). Sodium and chloride are highly soluble monovalent ions and are therefore exceptionally mobile in the soil solution, resulting in large variations in the concentrations of these particular ions with or without the installation of an LCS. SUMMARY AND CONCLUSIONS A leachate collection system (LCS) collects the leachate for disposal and ultimate removal of salt from soil was demonstrated on a test site 3 miles east of Bartlesville, OK. Several potential performance enhancements were investigated on a field scale in both a contemporary spill (Area 1) and a historic (Area 2) in northeastern Oklahoma for approximately one year. These enhancements included installation of collection system piping in gravel filled trenches to increase the collection rate of the leachate in the contemporary spill, and a drained limestone gravel layer to protect a fresh imported

9 topsoil layer in the historic spill. In both the historic and contemporary spill, elemental sulfur was added to the limestone gravel to biostimulate sulfur oxidizing bacteria to enhance the dissolution of the limestone gravel, providing available calcium in solution for sodium ion exchange on the clay soil particles. Effectiveness of the enhancements was evaluated by analysis of salt concentration in soils, soil permeability, and bacterial plate counts. Permeability tests on the soil were inconclusive. A large portion of summer samples did not survive the permeability test preparations and of those that survived, many of those were impermeable. The remaining samples provided enough data to view Area 1 (the contemporary spill) as a whole, without differentiating between cells and the effectiveness of various enhancements. Soil ion concentrations did evidence percent reductions ranging from 26.6% to 53.6%, except for calcium, which exhibited an approximately 44% increase over the year. It is believed that this is evidence of the success of the gravel and sulfur amendments. The documented pulsing of soil ions in the soil from some depth to the surface was observed. Within the time of one year, it is not possible to ascertain at which point along that pulsing concentration the samples were taken, therefore, more monitoring is needed. Soil bacteria counts were indeterminate. Over time, a decrease in soil bacteria was observed from November (low temperature, high precipitation) to July (hot, dry, and saline conditions). This observation was possibly the result of dry soil conditions and high soil salinity. In summary, the desired increase in calcium concentrations in the soil was observed and a decrease in sodium, magnesium, sulfate, and chloride was observed. The differentiating the effect of the LCS installation and natural pulsing of soil ions back to the surface makes it difficult to determine the effectiveness of the LCS in the scope of one year. A longer monitoring period is needed to determine the benefits of the LCS installation at the Bartlesville, OK site.

10 TABLES AND FIGURES Figure 1. Panoramic View of Area 1- Looking Northwest Figure 2. Overall View of Bartlesville Site

11 Figure 3. Permeability of Area 1 Soils with Respect to Time Figure 4. Area 1 Background Permeability and Soil Ion Concentration Sampling Layout

12 Figure 5. Average Daily and Cumulative Rainfall for Bartlesville, OK Site from September 15 to November 18, 2000 Figure 6. Average Sodium Concentration of Soil in Area 1 Over Time

13 Figure 7. Average Calcium Concentration of Soil in Area 1 with Respect to Time Figure 8. Average Magnesium Concentrations in Area 1 Soil Over Time

14 Figure 9. Average Chloride Concentrations in Area 1 Soil Over Time Figure 10. Average Sulfate Concentrations in Area 1 Soil Over Time

15 Figure 11. Percent Reduction in Soil Ion Concentration in Area 1 from 7/20/99 to 7/10/01 (15) Figure 12. Average Bacterial Populations Count Comparison Between Amended and Non- Amended Cells in Area 1 on 11/18/00 and 7/10/01

16 Figure 13. Average Bacterial Populations Count Comparison between Amended and Non- Amended Cells in Area 1 on 11/18/00 Figure 14. Average Bacterial Populations Count Comparison Between Amended and Non- Amended Cells in Area 1 on 7/10/01

17 Figure 15. Average Bacterial Population Count Comparison Between Amended and Non- Amended Cells in Area 2 from 11/18/00 to 7/10/01 Figure 16. General Location of Oklahoma Mesonet Station #32 With Respect to Bartlesville, OK.

18 Figure 17 Precipitation and Temperature in Three Months Prior to July 2001 Sampling Figure 18. Average Daily Rainfall and Soil/Air Temperature for Bartlesville, OK Site from November 2000 to July 2001.

19 Figure 19. Daily Rainfall From Project Start-up on 9/15/00 to First Sampling Event on 9/24/00.

20 REFERENCES CITED 1. Johnson, G.V. Reclaiming Slick-Spots and Salty Soils, OSU Extension Facts No. 2226, Cooperative Extension Service, Division of Agriculture, Oklahoma State University (April, 1989). 2. Atalay, A., Pyle, T.A., and Lynch, R.A., Strategy for Restoration of Brine-Disturbed Land, in Journal of Soil Contamination, 8(3): (1999). 3. Weathers, M.L, Moore, Ford, D.L., and Curlee, C.K., Reclamation of Saltwater- Contaminated Soil in Big Lake Field, Trans. Gulf Coast Assoc. Geol. Soc., 44, 737, (1994) 4. Jones, J.L., Veenstra, J.N., Sherif, N.Y., and Painter, S.J., Remediation of Oilfield Brine Scars with Subsurface Drainage and a Solar Evaporation Pond, in Proceedings of the 7 th International Petroleum Environmental Conference, K. Sublette, Ed., November 7-10, 2000, Albuquerque, New Mexico. 5. American Society for Testing and Materials, Annual Book of ASTM Standards, Section 4: Construction, ASTM West Conshohocken, PA. (1997). 6. AA Methods book PerkinElmer Instruments, LLC, Analytical Methods for Atomic Absorption Spectrometry, Part Number , Release E, August, (2000). 7. Tate, R.L., Soil Microbiology, 48-54, New York, John Wiley and Sons, Inc. (1995). 8. Harris, T.M., Schulte, K., High, A., Yates, R., Sublette, K., and Tapp, B., Remediation of Brine-Impacted Soil with a Leachate Collection System, in Proceedings of the 5 th International Petroleum Environmental Conference, K. Sublette, Ed., October 20, 1998, Albuquerque, New Mexico. 9. De Jong, E. Reclamation of Soils Contaminated by Sodium Chloride in Can. J. of Soil Sci., 62, (May 1992). 10. T.M. Harris, Brine-Impacted Soils, Remediation, in Encyclopedia of Environmental Analysis and Remediation, 823, New York, John Wiley & Sons, (1998). 11. Atlas, R.M., Media for Environmental Microbiology, 462, Boca Raton, FL., CRC press, (1995). 12. Tate, R.L., Soil Microbiology, Ch 14 The Sulfur and Related Biogeochemical Cycles, Section 14.3 Biological Sulfur Oxidation, , New York, John Wiley and Sons, Inc. (1995). 13. Data downloaded from Oklahoma Mesonet Database, Copan Station #32,

21 14. Harris, T.M., Dewan, C., High, A., Tapp, B., and Sublette, K., Remediation of Brine-Impacted Soil with Subsurface Drainage: Year 2 of the Barnard No. 1 Project, in Proceedings of the 6 th International Petroleum Environmental Conference, K Sublette, Ed., November 18, 1999, Houston, Texas. 15. T.M. Harris, personal communication, October 2001.

Lab 7 Soil ph and Salinity OBJECTIVE INTRODUCTION Soil ph active

Lab 7 Soil ph and Salinity OBJECTIVE INTRODUCTION Soil ph active Lab 7 Soil ph and Salinity OBJECTIVE In this lab you will learn the effect of the concentration of hydrogen ions (ph) and various salts on the fertility of a soil. You will perform some tests which are

More information

Experiment 12- Classification of Matter Experiment

Experiment 12- Classification of Matter Experiment Experiment 12- Classification of Matter Experiment Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances.

More information

Determination of Calcium and Magnesium in Brine

Determination of Calcium and Magnesium in Brine Application Note Determination of Calcium and Magnesium in Brine INTRODUCTION To prevent membrane poisoning, new membrane technology in chlor-alkali cells requires feed brine that is relatively free of

More information

Environmental Water Testing: Surface Water, Groundwater, Hard Water, Wastewater, & Seawater

Environmental Water Testing: Surface Water, Groundwater, Hard Water, Wastewater, & Seawater Document: AND Sol Env 08 2013 Environmental Water Testing: Surface Water, Groundwater, Hard Water, Wastewater, & Seawater Matrix specific sample preparation and testing methods for environmental waters

More information

Separation by Solvent Extraction

Separation by Solvent Extraction Experiment 3 Separation by Solvent Extraction Objectives To separate a mixture consisting of a carboxylic acid and a neutral compound by using solvent extraction techniques. Introduction Frequently, organic

More information

Chapter 3: Separating Mixtures (pg. 54 81)

Chapter 3: Separating Mixtures (pg. 54 81) Chapter 3: Separating Mixtures (pg. 54 81) 3.2: Separating Mechanical Mixtures (PB Pg. 40 5 & TB Pg. 58 61): Name: Date: Check Your Understanding & Learning (PB pg. 40 & TB pg. 61): 1. What are four methods

More information

Mixtures and Pure Substances

Mixtures and Pure Substances Unit 2 Mixtures and Pure Substances Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances. They

More information

Lesson 5: Water Conductivity and Total Dissolved Solids Water Quality Sampling

Lesson 5: Water Conductivity and Total Dissolved Solids Water Quality Sampling Lesson 5: Water Conductivity and Total Dissolved Solids Water Quality Sampling Time Frame: Two 45-50 minute class periods Grade Level: 8 th 12 th Grade Overview: There are a wide variety of inorganic substances

More information

SODIUM CARBOXYMETHYL CELLULOSE

SODIUM CARBOXYMETHYL CELLULOSE SODIUM CARBOXYMETHYL CELLULOSE Prepared at the 28th JECFA (1984), published in FNP 31/2 (1984) and in FNP 52 (1992). Metals and arsenic specifications revised at the 55 th JECFA (2000). An ADI not specified

More information

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND #3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric

More information

ISOLATION OF CAFFEINE FROM TEA

ISOLATION OF CAFFEINE FROM TEA ISLATIN F CAFFEINE FRM TEA Introduction In this experiment, caffeine is isolated from tealeaves. The chief problem with the isolation is that caffeine does not exist alone in the tealeaves, but other natural

More information

Halogen Free: What, Why and How. Presented by : Jim Cronin Environmental Monitoring and Technologies, Inc.

Halogen Free: What, Why and How. Presented by : Jim Cronin Environmental Monitoring and Technologies, Inc. Halogen Free: What, Why and How Presented by : Jim Cronin Environmental Monitoring and Technologies, Inc. We will discuss What are Halogens and how we interact with them. Why Halogens, within consumer

More information

ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS

ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS 1 ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS Buck Scientific Atomic Absorption Spectrophotometer, Model 200 Atomic absorption spectroscopy (AAS) has for many years

More information

National Food Safety Standard Food microbiological examination: Aerobic plate count

National Food Safety Standard Food microbiological examination: Aerobic plate count National Food Safety Standard of the People s Republic of China GB4789.2-2010 National Food Safety Standard Food microbiological examination: Aerobic plate count Issued by 2010-03-26 Implemented by 2010-06-01

More information

PART I SIEVE ANALYSIS OF MATERIAL RETAINED ON THE 425 M (NO. 40) SIEVE

PART I SIEVE ANALYSIS OF MATERIAL RETAINED ON THE 425 M (NO. 40) SIEVE Test Procedure for PARTICLE SIZE ANALYSIS OF SOILS TxDOT Designation: Tex-110-E Effective Date: August 1999 1. SCOPE 1.1 This method covers the quantitative determination of the distribution of particle

More information

Experiment #10: Liquids, Liquid Mixtures and Solutions

Experiment #10: Liquids, Liquid Mixtures and Solutions Experiment #10: Liquids, Liquid Mixtures and Solutions Objectives: This experiment is a broad survey of the physical properties of liquids. We will investigate solvent/solute mixtures. We will study and

More information

Lab Exercise 3: Media, incubation, and aseptic technique

Lab Exercise 3: Media, incubation, and aseptic technique Lab Exercise 3: Media, incubation, and aseptic technique Objectives 1. Compare the different types of media. 2. Describe the different formats of media, plate, tube etc. 3. Explain how to sterilize it,

More information

Dissolved and precipitated oxalate

Dissolved and precipitated oxalate Accepted 2005 Process liquors from bleach plants Dissolved and precipitated oxalate Using Ion Chromatography 0 Introduction In bleach plants of pulp mills with a high degree of system closure, there is

More information

Chapter Test A. Elements, Compounds, and Mixtures MULTIPLE CHOICE. chemically combined? MIXs2 a. element b. compound c. mixture d.

Chapter Test A. Elements, Compounds, and Mixtures MULTIPLE CHOICE. chemically combined? MIXs2 a. element b. compound c. mixture d. Assessment Chapter Test A Elements, Compounds, and Mixtures MULTIPLE CHOICE Write the letter of the correct answer in the space provided. 1. What is a pure substance made of two or more elements that are

More information

AUTOCLAVE CORROSION INHIBITOR EVALUATION

AUTOCLAVE CORROSION INHIBITOR EVALUATION AUTOCLAVE CORROSION INHIBITOR EVALUATION Cormetrics Job #: 12-123 Prepared for: ABC Company Lab: Bay 4-2280 39 th Avenue NE, Calgary, AB. T2E 6P7 Phone: 258-2853 Fax: 291-1423 ABC Company Page 1 of 9 1.

More information

Hands-On Labs SM-1 Lab Manual

Hands-On Labs SM-1 Lab Manual EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.

More information

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER Chemistry 111 Lab: Synthesis of a Copper Complex Page H-1 SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER In this experiment you will synthesize a compound by adding NH 3 to a concentrated

More information

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT -----------------------------------------------------------------------------------------------------------------------------

More information

Lab 4: Osmosis and Diffusion

Lab 4: Osmosis and Diffusion Lab 4: Osmosis and Diffusion The plasma membrane enclosing every cell is the boundary that separates the cell from its external environment. It is not an impermeable barrier, but like all biological membranes,

More information

Experiment 5 Preparation of Cyclohexene

Experiment 5 Preparation of Cyclohexene Experiment 5 Preparation of yclohexene In this experiment we will prepare cyclohexene from cyclohexanol using an acid catalyzed dehydration reaction. We will use the cyclohexanol that we purified in our

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

METHOD OF TEST FOR DETERMINATION OF PERMEABILITY OF GRANULAR SOILS

METHOD OF TEST FOR DETERMINATION OF PERMEABILITY OF GRANULAR SOILS Laboratory Testing Manual Date: 99 06 21 Page 1 of 7 METHOD OF TEST FOR DETERMINATION OF PERMEABILITY OF GRANULAR SOILS 1. SCOPE 1.1 This method covers the determination of the coefficient of permeability

More information

ION EXCHANGE FOR DUMMIES. An introduction

ION EXCHANGE FOR DUMMIES. An introduction ION EXCHANGE FOR DUMMIES An introduction Water Water is a liquid. Water is made of water molecules (formula H 2 O). All natural waters contain some foreign substances, usually in small amounts. The water

More information

4.0 EXPERIMENT ON DETERMINATION OF CHLORIDES

4.0 EXPERIMENT ON DETERMINATION OF CHLORIDES 4.0 EXPERIMENT ON DETERMINATION OF CHLORIDES Sl. No. Contents Preamble 4.1 Aim 4.2 Introduction 4.2.1 Environmental Significance 4.3 Principle 4.4 Materials Required 4.4.1 Apparatus Required 4.4.2 Chemicals

More information

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum

More information

Develop a Quantitative Analytical Method for low (» 1 ppm) levels of Sulfate

Develop a Quantitative Analytical Method for low (» 1 ppm) levels of Sulfate Cantaurus, Vol. 7, 5-8, May 1999 McPherson College Division of Science and Technology Develop a Quantitative Analytical Method for low (» 1 ppm) levels of Sulfate Janet Bowen ABSTRACT Sulfate is used in

More information

EXPERIMENT FIVE. Preparation of Cyclohexene from Cyclohexanol: an Elimination Reaction DISCUSSION

EXPERIMENT FIVE. Preparation of Cyclohexene from Cyclohexanol: an Elimination Reaction DISCUSSION EXPERIMENT FIVE Preparation of Cyclohexene from Cyclohexanol: an Elimination Reaction DISCUSSION A secondary alcohol, such as cyclohexanol, undergoes dehydration by an E1 mechanism. The key intermediate

More information

ENE 806, Project Report 3 CHEMICAL PRECIPITATION: WATER SOFTENING. Grégoire Seyrig Wenqian Shan

ENE 806, Project Report 3 CHEMICAL PRECIPITATION: WATER SOFTENING. Grégoire Seyrig Wenqian Shan ENE 806, Project Report 3 CHEMICAL PRECIPITATION: WATER SOFTENING Grégoire Seyrig Wenqian Shan College of Engineering, Michigan State University Spring 2007 ABSTRACT The groundwater with high level initial

More information

BACTERIAL ENUMERATION

BACTERIAL ENUMERATION BACTERIAL ENUMERATION In the study of microbiology, there are numerous occasions when it is necessary to either estimate or determine the number of bacterial cells in a broth culture or liquid medium.

More information

METHOD 3510C SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION

METHOD 3510C SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION METHOD 3510C SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION 1.0 SCOPE AND APPLICATION 1.1 This method describes a procedure for isolating organic compounds from aqueous samples. The method also describes concentration

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

HS 1003 Part 2 HS 1003 Heavy Metals Test

HS 1003 Part 2 HS 1003 Heavy Metals Test HS 1003 Heavy Metals Test 1. Purpose This test method is used to analyse the heavy metal content in an aliquot portion of stabilised hot acetic acid extract by Atomic Absorption Spectroscopy (AAS). Note:

More information

Standard Operating Procedure for the Determination of Total and Total Dissolved Solids CCAL 13A.2

Standard Operating Procedure for the Determination of Total and Total Dissolved Solids CCAL 13A.2 Standard Operating Procedure for the Determination of Total and Total Dissolved Solids CCAL 13A.2 Cooperative Chemical Analytical Laboratory College of Forestry Oregon State University 321 Richardson Hall

More information

CONDUCTIVITY SENSOR. Description D0382. Figure 1. The Conductivity Sensor

CONDUCTIVITY SENSOR. Description D0382. Figure 1. The Conductivity Sensor CONDUCTIVITY SENSOR Description D0382 Figure 1. The Conductivity Sensor Short Description The Conductivity Sensor can be used to measure either solution conductivity or total ion concentration of aqueous

More information

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT --------------------------------------------------------------------------------------------------------------------------------------------

More information

DEPARTMENT OF ENVIRONMENTAL REGULATION. Technical Document DETERMINING REPRESENTATIVE GROUND WATER SAMPLES, FILTERED OR UNFILTERED

DEPARTMENT OF ENVIRONMENTAL REGULATION. Technical Document DETERMINING REPRESENTATIVE GROUND WATER SAMPLES, FILTERED OR UNFILTERED DEPARTMENT OF ENVIRONMENTAL REGULATION Technical Document DETERMINING REPRESENTATIVE GROUND WATER SAMPLES, FILTERED OR UNFILTERED JANUARY 1994 BUREAU OF DRINKING WATER AND GROUND WATER RESOURCES 2600 BLAIR

More information

Paper Chromatography: Separation and Identification of Five Metal Cations

Paper Chromatography: Separation and Identification of Five Metal Cations Paper Chromatography: Separation and Identification of Five Metal Cations Objectives Known and unknown solutions of the metal ions Ag +, Fe 3+, Co 2+, Cu 2+ and Hg 2+ will be analyzed using paper chromatography.

More information

SOIL-LIME TESTING. Test Procedure for. TxDOT Designation: Tex-121-E 1. SCOPE 2. APPARATUS 3. MATERIALS TXDOT DESIGNATION: TEX-121-E

SOIL-LIME TESTING. Test Procedure for. TxDOT Designation: Tex-121-E 1. SCOPE 2. APPARATUS 3. MATERIALS TXDOT DESIGNATION: TEX-121-E Test Procedure for SOIL-LIME TESTING TxDOT Designation: Tex-121-E Effective Date: August 2002 1. SCOPE 1.1 This method consists of three parts. 1.1.1 Part I determines the unconfined compressive strength

More information

Salinity Management and Soil Amendments for Southwestern Pecan Orchards

Salinity Management and Soil Amendments for Southwestern Pecan Orchards Salinity Management and Soil Amendments for Southwestern Pecan Orchards Thomas L. Thompson, Professor and Soils Specialist James L. Walworth, Associate Professor and Soils Specialist Department of Soil,

More information

Factors Affecting Precipitation of Calcium Carbonate

Factors Affecting Precipitation of Calcium Carbonate Factors Affecting Precipitation of Calcium Carbonate John A. Wojtowicz Chemcon Laboratory tests with clear solutions showed that precipitation of calcium carbonate does not occur in the ph range 7.5 to

More information

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction General Chemistry I (FC, 09-10) Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant, does not

More information

Properties of Acids and Bases

Properties of Acids and Bases Lab 22 Properties of Acids and Bases TN Standard 4.2: The student will investigate the characteristics of acids and bases. Have you ever brushed your teeth and then drank a glass of orange juice? What

More information

Apr 17, 2000 LAB MANUAL 1302.0. 1302 PARTICLE SIZE ANALYSIS OF SOILS AASHTO Designation T 88 (Mn/DOT Modified)

Apr 17, 2000 LAB MANUAL 1302.0. 1302 PARTICLE SIZE ANALYSIS OF SOILS AASHTO Designation T 88 (Mn/DOT Modified) Apr 17, 2000 LAB MANUAL 1302.0 1302 PARTICLE SIZE ANALYSIS OF SOILS AASHTO Designation T 88 (Mn/DOT Modified) 1302.1 SCOPE This method describes a procedure for the quantitative determination of the distribution

More information

PHYSICAL SEPARATION TECHNIQUES. Introduction

PHYSICAL SEPARATION TECHNIQUES. Introduction PHYSICAL SEPARATION TECHNIQUES Lab #2 Introduction When two or more substances, that do not react chemically, are blended together, the result is a mixture in which each component retains its individual

More information

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS Purpose: It is important for chemists to be able to determine the composition of unknown chemicals. This can often be done by way of chemical tests.

More information

6 H2O + 6 CO 2 (g) + energy

6 H2O + 6 CO 2 (g) + energy AEROBIC RESPIRATION LAB DO 2.CALC From Biology with Calculators, Vernier Software & Technology, 2000. INTRODUCTION Aerobic cellular respiration is the process of converting the chemical energy of organic

More information

Chapter 16: Tests for ions and gases

Chapter 16: Tests for ions and gases The position of hydrogen in the reactivity series Hydrogen, although not a metal, is included in the reactivity series because it, like metals, can be displaced from aqueous solution, only this time the

More information

Removing Thallium from Industrial FGD Scrubber Water with Sorbster Adsorbent Media

Removing Thallium from Industrial FGD Scrubber Water with Sorbster Adsorbent Media Case History MAR Systems Inc. Removing Thallium from Industrial FGD Scrubber Water with Sorbster Adsorbent Media Trace thallium levels in process and wastewater streams pose a human toxicity threat. Tidwell

More information

UNITED STATES CONSUMER PRODUCT SAFETY COMMISSION DIRECTORATE FOR LABORATORY SCIENCES DIVISION OF CHEMISTRY 5 RESEARCH PLACE ROCKVILLE, MD 20850

UNITED STATES CONSUMER PRODUCT SAFETY COMMISSION DIRECTORATE FOR LABORATORY SCIENCES DIVISION OF CHEMISTRY 5 RESEARCH PLACE ROCKVILLE, MD 20850 UNITED STATES CONSUMER PRODUCT SAFETY COMMISSION DIRECTORATE FOR LABORATORY SCIENCES DIVISION OF CHEMISTRY 5 RESEARCH PLACE ROCKVILLE, MD 20850 Test Method: CPSC-CH-E1001-08.2 Standard Operating Procedure

More information

Determination of calcium by Standardized EDTA Solution

Determination of calcium by Standardized EDTA Solution Determination of calcium by Standardized EDTA Solution Introduction The classic method of determining calcium and other suitable cations is titration with a standardized solution of ethylenediaminetetraacetic

More information

Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction

Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction Organic Lab 1 Make-up Experiment Extraction of Caffeine from Beverages Introduction Few compounds consumed by Americans are surrounded by as much controversy as caffeine. One article tells us that caffeine

More information

Remediation of Oilfield Brine-impacted Soil Using a Subsurface Drainage System and Hay

Remediation of Oilfield Brine-impacted Soil Using a Subsurface Drainage System and Hay Remediation of Oilfield Brine-impacted Soil Using a Subsurface Drainage System and Hay Running head: Harris, et al. : BRINE IMPACT REMEDIATION Thomas M. Harris*, J. Bryan Tapp and K.L. Sublette *University

More information

Tamsulosin Hydrochloride Capsules

Tamsulosin Hydrochloride Capsules . nal Revision Bulletin Official October 1, 2011 Tamsulosin 1 standard solution, and shake well. Centrifuge at 1500 rpm for 10 min, and use the supernatant, passing it if Tamsulosin Hydrochloride Capsules

More information

Name: PLSOIL 105 & 106 First Hour Exam February 27, 2012. Part A. Place answers on bubble sheet. 2 pts. each.

Name: PLSOIL 105 & 106 First Hour Exam February 27, 2012. Part A. Place answers on bubble sheet. 2 pts. each. Name: PLSOIL 105 & 106 First Hour Exam February 27, 2012 Part A. Place answers on bubble sheet. 2 pts. each. 1. A soil with 15% clay and 20% sand would belong to what textural class? A. Clay C. Loamy sand

More information

FerroVer Method 1 Method 10249 0.1 to 3.0, 1.0 to 30.0 and 10.0 to 300.0 mg/l Fe Powder Pillows

FerroVer Method 1 Method 10249 0.1 to 3.0, 1.0 to 30.0 and 10.0 to 300.0 mg/l Fe Powder Pillows Iron, Total DOC316.53.01314 FerroVer Method 1 Method 10249 0.1 to 3.0, 1.0 to 30.0 and 10.0 to 300.0 mg/l Fe Powder Pillows Scope and application: For oil and gas field waters; digestion is required for

More information

BUREAU OF ENVIRONMENTAL REMEDIATION/REMEDIAL SECTION GUIDANCE INVESTIGATION AND REMEDIATION OF SALT (CHLORIDE)- IMPACTED SOIL AND GROUND WATER

BUREAU OF ENVIRONMENTAL REMEDIATION/REMEDIAL SECTION GUIDANCE INVESTIGATION AND REMEDIATION OF SALT (CHLORIDE)- IMPACTED SOIL AND GROUND WATER BUREAU OF ENVIRONMENTAL REMEDIATION/REMEDIAL SECTION GUIDANCE INVESTIGATION AND REMEDIATION OF SALT (CHLORIDE)- IMPACTED SOIL AND GROUND WATER 1.0 Introduction 1 BER POLICY # BER-RS-13A DATE: March 2004

More information

1. The Determination of Boiling Point

1. The Determination of Boiling Point 1. The Determination of Boiling Point Objective In this experiment, you will first check your thermometer for errors by determining the temperature of two stable equilibrium systems. You will then use

More information

Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy

Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy Determining the Quantity of Iron in a Vitamin Tablet Computer 34 As biochemical research becomes more sophisticated, we are learning more about the role of metallic elements in the human body. For example,

More information

CONFIRMATION OF ZOLPIDEM BY LIQUID CHROMATOGRAPHY MASS SPECTROMETRY

CONFIRMATION OF ZOLPIDEM BY LIQUID CHROMATOGRAPHY MASS SPECTROMETRY CONFIRMATION OF ZOLPIDEM BY LIQUID CHROMATOGRAPHY MASS SPECTROMETRY 9.1 POLICY This test method may be used to confirm the presence of zolpidem (ZOL), with diazepam-d 5 (DZP-d 5 ) internal standard, in

More information

USEPA 1 FerroVer Method 2 Method 8008 0.02 to 3.00 mg/l Fe Powder Pillows or AccuVac Ampuls

USEPA 1 FerroVer Method 2 Method 8008 0.02 to 3.00 mg/l Fe Powder Pillows or AccuVac Ampuls Iron, Total DOC316.53.01053 USEPA 1 FerroVer Method 2 Method 8008 0.02 to 3.00 mg/l Fe Powder Pillows or AccuVac Ampuls Scope and application: For water, wastewater and seawater; digestion is required

More information

HEXANES. Insoluble in water, soluble in ether, alcohol, and acetone. Neutral to methyl orange (ph indicator) Not more than 0.

HEXANES. Insoluble in water, soluble in ether, alcohol, and acetone. Neutral to methyl orange (ph indicator) Not more than 0. HEXANES Prepared at the 51st JECFA (1998), published in FNP 52 Add 6 (1998) superseding specifications prepared at the 14th JECFA (1970), published in NMRS 48B (1971) and in FNP 52 (1992). ADI "limited

More information

Liquid Conductivity: Measuring Conductivity in Saline Water Solutions (Teacher s Guide)

Liquid Conductivity: Measuring Conductivity in Saline Water Solutions (Teacher s Guide) Liquid Conductivity: Measuring Conductivity in Saline Water Solutions (Teacher s Guide) OVERVIEW Students measure the conductivity of a solution of distilled water with varying amounts of NaCl and will

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

Hardness ions also interfere with many chemical processes such as chemical compounding and aqueous cleaners.

Hardness ions also interfere with many chemical processes such as chemical compounding and aqueous cleaners. Water Softeners Industrial Water Purification (800) CAL-WATER By Dave Peairs, Cal Water, Technical Director Rev: 06/08/2004 Before any discussion of water softeners, we must first define what hard water

More information

Preparation of an Alum

Preparation of an Alum Preparation of an Alum Pages 75 84 Pre-lab = pages 81 to 82, all questions No lab questions, a lab report is required by the start of the next lab What is an alum? They are white crystalline double sulfates

More information

AGREGADOS RECICLADOS MITOS Y REALIDADES

AGREGADOS RECICLADOS MITOS Y REALIDADES The Production and Use of Recycled Concrete in the USA Thomas Van Dam, Ph.D., P.E., FACI Principal Engineer CTL Group Introduction In the United States, concrete is the most commonly used recycled material

More information

MOISTURE (Karl Fischer, Buffered)

MOISTURE (Karl Fischer, Buffered) MOIST.03-1 MOISTURE (Karl Fischer, Buffered) PRINCIPLE SCOPE The sample is dissolved in a mixture of methanol and formamide (50:50 v/v) and then titrated with standardized Karl Fischer reagent. The titration

More information

Bioremediation of Petroleum Contamination. Augustine Ifelebuegu GE413

Bioremediation of Petroleum Contamination. Augustine Ifelebuegu GE413 Bioremediation of Petroleum Contamination Augustine Ifelebuegu GE413 Bioremediation Bioremediation is the use of living microorganisms to degrade environmental contaminants in the soil and groundwater

More information

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES Test Procedure for SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES TxDOT Designation: Tex-200-F Effective Date: January 2016 1. SCOPE 1.1 Use this test method to determine the particle size distribution of

More information

POLYDIMETHYLSILOXANE

POLYDIMETHYLSILOXANE POLYDIMETHYLSILOXANE Prepared at the 37th JECFA (1990), published in FNP 52 (1992) superseding specifications prepared at the 29th JECFA (1985), published in FNP 34 (1986). Metals and arsenic specifications

More information

Desalination of Sea Water E7-1

Desalination of Sea Water E7-1 Experiment 7 Desalination of Sea Water E7-1 E7-2 The Task The goal of this experiment is to investigate the nature and some properties of sea water. Skills At the end of the laboratory session you should

More information

Determination of a Chemical Formula

Determination of a Chemical Formula 1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

More information

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

SEPARATION OF A MIXTURE OF SUBSTANCES LAB SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present

More information

UltraClean PCR Clean-Up Kit

UltraClean PCR Clean-Up Kit UltraClean PCR Clean-Up Kit Catalog No. Quantity 12500-50 50 Preps 12500-100 100 Preps 12500-250 250 Preps Instruction Manual Please recycle Version: 02212013 1 Table of Contents Introduction... 3 Protocol

More information

Dimethylglyoxime Method Method 10220 0.1 to 6.0 mg/l Ni TNTplus 856

Dimethylglyoxime Method Method 10220 0.1 to 6.0 mg/l Ni TNTplus 856 Nickel DOC316.53.01065 Dimethylglyoxime Method Method 10220 0.1 to 6.0 mg/l Ni TNTplus 856 Scope and application: For water and wastewater. Test preparation Instrument-specific information Table 1 shows

More information

OSMOSIS AND DIALYSIS 2003 BY Wendy Weeks-Galindo with modifications by David A. Katz

OSMOSIS AND DIALYSIS 2003 BY Wendy Weeks-Galindo with modifications by David A. Katz OSMOSIS AND DIALYSIS 2003 BY Wendy Weeks-Galindo with modifications by David A. Katz OSMOSIS Osmosis is the reason that a fresh water fish placed in the ocean desiccates and dies. Osmosis is the reason

More information

Land Application of Drilling Fluids: Landowner Considerations

Land Application of Drilling Fluids: Landowner Considerations SCS-2009-08 Land Application of Drilling Fluids: Landowner Considerations Mark L. McFarland, Professor and Extension State Water Quality Specialist Sam E. Feagley, Professor and Extension State Environmental

More information

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap Introduction A soap is the sodium or potassium salt of a long-chain fatty acid. The fatty acid usually contains 12 to 18 carbon atoms.

More information

Solubility Curve of Sugar in Water

Solubility Curve of Sugar in Water Solubility Curve of Sugar in Water INTRODUCTION Solutions are homogeneous mixtures of solvents (the larger volume of the mixture) and solutes (the smaller volume of the mixture). For example, a hot chocolate

More information

Isolation of Caffeine from Tea

Isolation of Caffeine from Tea Isolation of Caffeine from Tea Introduction A number of interesting, biologically active compounds have been isolated from plants. Isolating some of these natural products, as they are called, can require

More information

Standard Operating Procedure for Total Kjeldahl Nitrogen (Lachat Method)

Standard Operating Procedure for Total Kjeldahl Nitrogen (Lachat Method) Standard Operating Procedure for Total Kjeldahl Nitrogen (Lachat Method) Grace Analytical Lab 536 South Clark Street 10th Floor Chicago, IL 60605 April 15, 1994 Revision 2 Standard Operating Procedure

More information

MINERAL OIL (MEDIUM VISCOSITY)

MINERAL OIL (MEDIUM VISCOSITY) MINERAL OIL (MEDIUM VISCOSITY) Prepared at the 76 th JECFA, published in FAO JECFA Monographs 13 (2012), superseding specifications for Mineral oil (Medium and low viscosity), class I prepared at the 59th

More information

CHAPTER 13 LAND DISPOSAL

CHAPTER 13 LAND DISPOSAL CHAPTER 13 LAND DISPOSAL Supplemental Questions: Which of Shakespeare's plays is the source of the opening quote? The Tempest [1611-1612],Act: I, Scene: i, Line: 70. 13-1. Cite four reasons landfills remain

More information

The University of Toledo Soil Mechanics Laboratory

The University of Toledo Soil Mechanics Laboratory The University of Toledo Soil Mechanics Laboratory Permeability Testing - 1 Constant and Falling Head Tests Introduction In 1856 the French engineer Henri D arcy demonstrated by experiment that it is possible

More information

LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research

LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research J. Jones, J. Denbigh, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 20581 Key Words SPE, SOLA,

More information

Synthesis of Aspirin and Oil of Wintergreen

Synthesis of Aspirin and Oil of Wintergreen Austin Peay State University Department of hemistry hem 1121 autions Purpose Introduction Acetic Anhydride corrosive and a lachrymator all transfers should be done in the vented fume hood Methanol, Ethanol

More information

Chloride and Salinity

Chloride and Salinity INTRODUCTION Chloride Chloride and Chloride, in the form of the Cl ion, is one of the major inorganic anions, or negative ions, in saltwater and freshwater. It originates from the dissociation of salts,

More information

Remediation of Sodium Contaminated Sites

Remediation of Sodium Contaminated Sites Remediation of Sodium Contaminated Sites..\..\3918b1ca23763e9e9a12ffd67acb0ceb.jpg 21 st International Petroleum Environmental Conference, Houston, Texas Mark Landress P.G. Project Navigator, Ltd. 10497

More information

Use of Nano-scale materials in Water Purification

Use of Nano-scale materials in Water Purification Use of Nano-scale materials in Water Purification Robert Meservy Dept. Physics I chose this subject because I m a reefkeeper and as such have to use distilled water in order to not poison the corals and

More information

Unit 1 - Pure Substances and Mixtures Chapter 2: Solutions

Unit 1 - Pure Substances and Mixtures Chapter 2: Solutions 2.1 Solutes & Solvents Vocabulary: Unit 1 - Pure Substances and Mixtures Chapter 2: Solutions solvent the larger part of a solution - the part of a solution into which the solutes dissolve solute the smaller

More information

Hardness Comparisons

Hardness Comparisons Hardness Comparisons Hardness Adapted from: An original Creek Connections activity. Creek Connections, Box 10, Allegheny College, Meadville, Pennsylvania 16335. Grade Level: all Duration: 50 minutes Setting:

More information

HiPer Ion Exchange Chromatography Teaching Kit

HiPer Ion Exchange Chromatography Teaching Kit HiPer Ion Exchange Chromatography Teaching Kit Product Code: HTC001 Number of experiments that can be performed: 5 Duration of Experiment: Protocol: 5-6 hours Storage Instructions: The kit is stable for

More information

DryWeight BulkVolume

DryWeight BulkVolume Test Procedure for BULK SPECIFIC GRAVITY AND WATER ABSORPTION OF AGGREGATE TxDOT Designation: Tex-201-F Effective Date: January 2016 1. SCOPE 1.1 Use this method to determine the bulk specific gravity

More information

Quantifying Bacterial Concentration using a Calibrated Growth Curve

Quantifying Bacterial Concentration using a Calibrated Growth Curve BTEC 4200 Lab 2. Quantifying Bacterial Concentration using a Calibrated Growth Curve Background and References Bacterial concentration can be measured by several methods, all of which you have studied

More information

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation Experiment 8 Preparation of Cyclohexanone by ypochlorite xidation In this experiment we will prepare cyclohexanone from cyclohexanol using hypochlorite oxidation. We will use common household bleach that

More information