Databases & Web Applications Lab Big Data Project A
|
|
|
- Sandra Hunter
- 10 years ago
- Views:
Transcription
1 Databases & Web Applications Lab Big Data Project A Instructor: Peter Baumann [email protected] tel: office: room 88, Research Databases & Web Applications (P. Baumann)
2 Big Science Data [OGC Ocean Science Interoperability Experiment; image source: Mbari] 2
3 OGC Coverage Types Coverage = digital representation of space/time varying phenomenon n-d MultiSolid Coverage MultiSurface Coverage MultiCurve CoverageMultiPoint Coverage «FeatureType» Abstract Coverage Referenceable GridCoverage Grid Coverage Rectified GridCoverage 3
4 Facing the Coverage Deluge sensor feeds [OGC SWE] coverage server 4 4
5 Taming the Coverage Deluge sensor feeds [OGC SWE] coverage server 5 5
6 Let s Take a Closer Look... t Divergent access patterns for ingest and retrieval Server must mediate between access patterns 6
7 Our Research Large-Scale Scientific Information Services (L-SIS) Research Group flexible, scalable services on massive multi-dimensional scientific data Particular focus: n-d arrays Massive = multi-tb multi-pb per object Results: rasdaman array DBMS ( demo at Geoservice standards: OGC WCS suite, ISO 9075 SQL Part 15: MDA (under work) 7
8 rasdaman: Scalable Array Analytics raster data manager : Array Database = SQL + n-d arrays select img.green[x0:x1,y0:y1] > 130 from LandsatArchive as img tile streaming architecture: scaling from laptop to cloud rasdaman Web visitors 8
9 Use Case: Satellite ImageTime Series [Diedrich et al 2001] 9
10 EarthServer Big Earth Data Analytics Up to 130 TB databases for all Earth sciences + planetary science EU FP7-INFRA, 3 years, 5.85 meur Platform: rasdaman; strictly open standards Cryospheric Science landcover mapping Airborne Science high-altitude drones Atmospheric Science climate variables Geology geological models Oceanography marine model runs + in-situ data Planetary Science Mars geology 10
11 Database Visualization select encode( struct { red: (char) s.image.b7[x0:x1,x0:x1], green: (char) s.image.b5[x0:x1,x0:x1], blue: (char) s.image.b0[x0:x1,x0:x1], alpha: (char) scale( d.elev, 20 ) }, "image/png" ) from SatImage as s, DEM as d [JacobsU, Fraunhofer 2012; [data courtesy BGS, ESA] [JacobsU, Fraunhofer; data courtesy BGS, ESA] 11
12 Parallel / Distributed Query Processing ad-hoc federation mixed hardware Dataset D select max((a.nir - A.red) / (A.nir + A.red)) - max((b.nir - B.red) / (B.nir + B.red)) - max((c.nir - C.red) / (C.nir + C.red)) - max((d.nir - D.red) / (D.nir + D.red)) from A, B, C, D Dataset C Dataset A Dataset B 12
13 Secured Archive Integration First-ever direct, ad-hoc mix from protected NASA & ESA services in OGC WCS/WCPS Web client (EarthServer + CobWeb) 13
14 Demo 14
15 Next: On-Board Query Intelligence [OPS-SAT: ESA CubeSat] Democratize direct data access [imagery courtesy ESA, NASA] 15
16 Summary Project work embedded in international projects & collaborations Present Publish 16
17 Big Picture Databases and Web Applications Fall lecture, undergrad + grad Advanced course in spring: Information Architectures Databases and Web Applications Lab Lab, grad Big Data Project A Project, grad New meeting slot: Tue 09:45, Research 1, room 88 17
18 Project Task Pick a topic Perform task planful: Spec document 20% -- Sep 26 Oct 03 Prototype 1: breakthrough implementation 20% -- Oct 17 Prototype 2: ready for benchmark 20% -- Oct 31 Benchmark results 20% -- Nov 14 Publication 10% -- Nov 28 Prototype 3: ready for handover 10% -- Dec 05 18
19 Resources rasdaman website demo Our publications Instructor: the rasdaman team 19
20 Main Evaluation Criteria complete wrt. requirements Solid engineering bug-free, project & code documentation, coding quality,... user-friendliness and appealing look&feel complexity (in absolute terms and in comparison to other teams' work) Good writeup Specification, documentation, paper (no particular order) 20
21 Project/Lab Topics -> course list -> list of topics 21
Adding Big Earth Data Analytics to GEOSS
Research funded through EU FP7 283610 EarthServer European Scalable Earth Science Service Environment Adding Big Earth Data Analytics to GEOSS GEO IX Plenary Foz do Iguacu, 2012-nov-20 Peter Baumann, Stefano
Agile Analytics on Extreme-Size Earth Science Data
Agile Analytics on Extreme-Size Earth Science Data COPERNICUS Big Data Workshop Brussels / BE, 2014-mar-14 Peter Baumann Jacobs University rasdaman GmbH [email protected] What are the Big
Agile Retrieval of Big Data with. EarthServer. ECMWF Visualization Week, Reading, 2015-sep-29
Agile Retrieval of Big Data with EarthServer ECMWF Visualization Week, Reading, 2015-sep-29 Peter Baumann Jacobs University rasdaman GmbH [email protected] [co-funded by EU through EarthServer, PublicaMundi]
WCS as a Download Service for Big (and Small) Data
WCS as a Download Service for Big (and Small) Data INSPIRE 2013 Florence, Italy, 2013-jun-25 Peter Baumann 1, Stephan Meissl 2, Alan Beccati 1 1 Jacobs University rasdaman GmbH, Bremen, Germany 2 EOX GmbH,
Handling Heterogeneous EO Datasets via the Web Coverage Processing Service
Handling Heterogeneous EO Datasets via the Web Coverage Processing Service Piero Campalani a*, Simone Mantovani b, Alan Beccati a, a a a Jacobs University Bremen (DE) / b MEEO Srl (IT) * {[email protected]
On the Efficient Evaluation of Array Joins
[co-funded by EU through H2020 EarthServer -2] On the Efficient Evaluation of Array Joins Big Data in the Geosciences Workshop IEEE Big Data, Santa Clara, US, 2015-oct-29 Peter Baumann, Vlad Merticariu
A Big Picture for Big Data
Supported by EU FP7 SCIDIP-ES, EU FP7 EarthServer A Big Picture for Big Data FOSS4G-Europe, Bremen, 2014-07-15 Peter Baumann Jacobs University rasdaman GmbH [email protected] Our Stds Involvement
Big Data Volume & velocity data management with ERDAS APOLLO. Alain Kabamba Hexagon Geospatial
Big Data Volume & velocity data management with ERDAS APOLLO Alain Kabamba Hexagon Geospatial Intergraph is Part of the Hexagon Family Hexagon is dedicated to delivering actionable information through
HPC technology and future architecture
HPC technology and future architecture Visual Analysis for Extremely Large-Scale Scientific Computing KGT2 Internal Meeting INRIA France Benoit Lange [email protected] Toàn Nguyên [email protected]
<Insert Picture Here> Data Management Innovations for Massive Point Cloud, DEM, and 3D Vector Databases
Data Management Innovations for Massive Point Cloud, DEM, and 3D Vector Databases Xavier Lopez, Director, Product Management 3D Data Management Technology Drivers: Challenges & Benefits
The distribution of marine OpenData via distributed data networks and Web APIs. The example of ERDDAP, the message broker and data mediator from NOAA
The distribution of marine OpenData via distributed data networks and Web APIs. The example of ERDDAP, the message broker and data mediator from NOAA Dr. Conor Delaney 9 April 2014 GeoMaritime, London
NetCDF and HDF Data in ArcGIS
2013 Esri International User Conference July 8 12, 2013 San Diego, California Technical Workshop NetCDF and HDF Data in ArcGIS Nawajish Noman Kevin Butler Esri UC2013. Technical Workshop. Outline NetCDF
RDA PROPOSAL FOR Array Database Working Group (AD-WG) Peter Baumann, Jacobs University
RDA PROPOSAL FOR Array Database Working Group (AD-WG) Peter Baumann, Jacobs University Co-Chairs Two or three co-chairs (tbd) will be elected from the member body, by simple majority within AD-WG and considering
VITO Centre of Image Processing
07/11/2013 VITO Centre of Image Processing Towards an Improved Scientific Exploitation of EO Data Sources in Support of Vegetation Monitoring Erwin Goor, VITO nv Outline» Introduction» The role & and objectives
GIS Initiative: Developing an atmospheric data model for GIS. Olga Wilhelmi (ESIG), Jennifer Boehnert (RAP/ESIG) and Terri Betancourt (RAP)
GIS Initiative: Developing an atmospheric data model for GIS Olga Wilhelmi (ESIG), Jennifer Boehnert (RAP/ESIG) and Terri Betancourt (RAP) Unidata seminar August 30, 2004 Presentation Outline Overview
PART 1. Representations of atmospheric phenomena
PART 1 Representations of atmospheric phenomena Atmospheric data meet all of the criteria for big data : they are large (high volume), generated or captured frequently (high velocity), and represent a
Databases for 3D Data Management: From Point Cloud to City Model
Databases for 3D Data Management: From Point Cloud to City Model Xavier Lopez, Ph.D. Senior Director, Spatial and Graph Technologies Oracle Program Agenda Approach: Spatially-enable the Enterprise Oracle
Use of OGC Sensor Web Enablement Standards in the Meteorology Domain. in partnership with
Use of OGC Sensor Web Enablement Standards in the Meteorology Domain in partnership with Outline Introduction to OGC Sensor Web Enablement Standards Web services Metadata encodings SWE as front end of
EED Task Order. Contract: NNG10HP02C Contractor: Raytheon Task Type:
EED Task Order Title: Studies CMR Phase 0 No-Cost Extension Task Number: 9 Rev 15 Originator: Marinelli Effective Date: Dec 11, 2013 ESDIS POC: Marinelli Task Estimate Cost and Maximum Available Fee Estimate
Training for Big Data
Training for Big Data Learnings from the CATS Workshop Raghu Ramakrishnan Technical Fellow, Microsoft Head, Big Data Engineering Head, Cloud Information Services Lab Store any kind of data What is Big
CSE 544 Principles of Database Management Systems. Magdalena Balazinska (magda) Spring 2006 Lecture 1 - Class Introduction
CSE 544 Principles of Database Management Systems Magdalena Balazinska (magda) Spring 2006 Lecture 1 - Class Introduction Outline Introductions Class overview What is the point of a database? Course Staff
Big Data and Analytics: Getting Started with ArcGIS. Mike Park Erik Hoel
Big Data and Analytics: Getting Started with ArcGIS Mike Park Erik Hoel Agenda Overview of big data Distributed computation User experience Data management Big data What is it? Big Data is a loosely defined
Arrays in database systems, the next frontier?
Arrays in database systems, the next frontier? What is an array? An array is a systematic arrangement of objects, usually in rows and columns Get(A, X, Y) => Value Set(A, X, Y)
Big Data in the context of Preservation and Value Adding
Big Data in the context of Preservation and Value Adding R. Leone, R. Cosac, I. Maggio, D. Iozzino ESRIN 06/11/2013 ESA UNCLASSIFIED Big Data Background ESA/ESRIN organized a 'Big Data from Space' event
Cloud Computing and Advanced Relationship Analytics
Cloud Computing and Advanced Relationship Analytics Using Objectivity/DB to Discover the Relationships in your Data By Brian Clark Vice President, Product Management Objectivity, Inc. 408 992 7136 [email protected]
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing
GIS Databases With focused on ArcSDE
Linköpings universitet / IDA / Div. for human-centered systems GIS Databases With focused on ArcSDE Imad Abugessaisa [email protected] 20071004 1 GIS and SDBMS Geographical data is spatial data whose
A New Cloud-based Deployment of Image Analysis Functionality
243 A New Cloud-based Deployment of Image Analysis Functionality Thomas BAHR 1 and Bill OKUBO 2 1 Exelis Visual Information Solutions GmbH, Gilching/Germany [email protected] 2 Exelis Visual Information
INTEROPERABLE IMAGE DATA ACCESS THROUGH ARCGIS SERVER
INTEROPERABLE IMAGE DATA ACCESS THROUGH ARCGIS SERVER Qian Liu Environmental Systems Research Institute 380 New York Street Redlands, CA92373, U.S.A - [email protected] KEY WORDS: OGC, Standard, Interoperability,
Mr. Apichon Witayangkurn [email protected] Department of Civil Engineering The University of Tokyo
Sensor Network Messaging Service Hive/Hadoop Mr. Apichon Witayangkurn [email protected] Department of Civil Engineering The University of Tokyo Contents 1 Introduction 2 What & Why Sensor Network
The USGS Landsat Big Data Challenge
The USGS Landsat Big Data Challenge Brian Sauer Engineering and Development USGS EROS [email protected] U.S. Department of the Interior U.S. Geological Survey USGS EROS and Landsat 2 Data Utility and Exploitation
The Arctic Observing Network and its Data Management Challenges Florence Fetterer (NSIDC/CIRES/CU), James A. Moore (NCAR/EOL), and the CADIS team
The Arctic Observing Network and its Data Management Challenges Florence Fetterer (NSIDC/CIRES/CU), James A. Moore (NCAR/EOL), and the CADIS team Photo courtesy Andrew Mahoney NSF Vision What is AON? a
Where is... How do I get to...
Big Data, Fast Data, Spatial Data Making Sense of Location Data in a Smart City Hans Viehmann Product Manager EMEA ORACLE Corporation August 19, 2015 Copyright 2014, Oracle and/or its affiliates. All rights
Big Data in OpenTopography
Big Data in OpenTopography Vishu Nandigam San Diego Supercomputer Center NSF Big Data in Educa
Sextant. Spatial Data Infrastructure for Marine Environment. C. Satra Le Bris, E. Quimbert, M. Treguer
Sextant On-Line information system for marine geographical information E. Quimbert, M. Bellouis, F. Lecuy, M. Treguer Centre de Bretagne BP 70, Plouzané 29280 France E-mail: [email protected] Sextant
Norwegian Satellite Earth Observation Database for Marine and Polar Research http://normap.nersc.no USE CASES
Norwegian Satellite Earth Observation Database for Marine and Polar Research http://normap.nersc.no USE CASES The NORMAP Project team has prepared this document to present functionality of the NORMAP portal.
NASA Earth System Science: Structure and data centers
SUPPLEMENT MATERIALS NASA Earth System Science: Structure and data centers NASA http://nasa.gov/ NASA Mission Directorates Aeronautics Research Exploration Systems Science http://nasascience.nasa.gov/
GLOBAL DATA SPATIALLY INTERRELATE SYSTEM FOR SCIENTIFIC BIG DATA SPATIAL-SEAMLESS SHARING
GLOBAL DATA SPATIALLY INTERRELATE SYSTEM FOR SCIENTIFIC BIG DATA SPATIAL-SEAMLESS SHARING Jieqing Yu a, Lixin WU b, a, c*, Yizhou Yang c, Xie Lei d, Wang He d a School of Environment Science and Spatial
MEETING TOMORROW S EARTH OBSERVATION CHALLENGES _ WHITE PAPER
MEETING TOMORROW S EARTH OBSERVATION CHALLENGES _ WHITE PAPER CONTENTS I. INTRODUCTION 3 II. CHALLENGES FOR TOMORROW S EARTH OBSERVATION APPLICATIONS 4 III. CONNECT, VISUALIZE, ANALYZE, ACT: LUCIAD AS
Welcome to the first Workshop on Big data Open Source Systems (BOSS)
Welcome to the first Workshop on Big data Open Source Systems (BOSS) September 4th, 2015 Co-located with VLDB 2015 Tilmann Rabl Hands on Big Data 8 parallel tutorials 8 systems Open source Publicly available
Use of ISO standards by NERC (a snapshot!)
Use of ISO standards by NERC (a snapshot!) Dr Andrew Woolf [email protected] STFC Rutherford Appleton Laboratory Outline NERC overview The NERC SDI Metadata Data Services Standards activities UK/EU
Deploying ArcGIS for Server Using Managed Services
Deploying ArcGIS for Server Using Managed Services Andrew Sakowicz Erin Ross Sridhar Karra Agenda Introduction Program Overview - Overview - Methodology - Tools Customer Deployments - Architecture and
Developing Fleet and Asset Tracking Solutions with Web Maps
Developing Fleet and Asset Tracking Solutions with Web Maps Introduction Many organizations have mobile field staff that perform business processes away from the office which include sales, service, maintenance,
Scalable Distributed Service Integrity Attestation for Software-as-a-Service Clouds
Scalable Distributed Service Integrity Attestation for Software-as-a-Service Clouds ABSTRACT: Software-as-a-service (SaaS) cloud systems enable application service providers to deliver their applications
A Web services solution for Work Management Operations. Venu Kanaparthy Dr. Charles O Hara, Ph. D. Abstract
A Web services solution for Work Management Operations Venu Kanaparthy Dr. Charles O Hara, Ph. D Abstract The GeoResources Institute at Mississippi State University is leveraging Spatial Technologies and
IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper
IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper CAST-2015 provides an opportunity for researchers, academicians, scientists and
NASA Earth Science Research in Data and Computational Science Technologies Report of the ESTO/AIST Big Data Study Roadmap Team September 2015
NASA Earth Science Research in Data and Computational Science Technologies Report of the ESTO/AIST Big Data Study Roadmap Team September 2015 I. Background Over the next decade, the dramatic growth of
Big Data R&D Initiative
Big Data R&D Initiative Howard Wactlar CISE Directorate National Science Foundation NIST Big Data Meeting June, 2012 Image Credit: Exploratorium. The Landscape: Smart Sensing, Reasoning and Decision Environment
Cloud-based Geospatial Data services and analysis
Cloud-based Geospatial Data services and analysis Xuezhi Wang Scientific Data Center Computer Network Information Center Chinese Academy of Sciences 2014-08-25 Outlines 1 Introduction of Geospatial Data
Analyse, Collaborate and Publish Statistics for Measuring Progress in our Society using Storytelling. The most ancient of social rituals
Analyse, Collaborate and Publish Statistics for Measuring Progress in our Society using Storytelling Storytelling by Professor Mikael Jern The most ancient of social rituals Agenda Massive statistics data..interest
A standards-based open source processing chain for ocean modeling in the GEOSS Architecture Implementation Pilot Phase 8 (AIP-8)
NATO Science & Technology Organization Centre for Maritime Research and Experimentation (STO-CMRE) Viale San Bartolomeo, 400 19126 La Spezia, Italy A standards-based open source processing chain for ocean
Microsoft SQL Server 2012: What to Expect
ASPE RESOURCE SERIES Microsoft SQL Server 2012: What to Expect Prepared for ASPE by Global Knowledge's Brian D. Egler MCITP-DBA, MCT, Real Skills. Real Results. Real IT. in partnership with Microsoft SQL
Cleveland State University
Cleveland State University CIS 612 Modern Database Programming & Big Data Processing (3-0-3) Fall 2014 Section 50 Class Nbr. 2670. Tues, Thur 4:00 5:15 PM Prerequisites: CIS 505 and CIS 530. CIS 611 Preferred.
MyOcean Copernicus Marine Service Architecture and data access Experience
MyOcean Copernicus Marine Service Architecture and data access Experience Sophie Besnard CLS, Toulouse, France February 2015 MyOcean Story MyOcean Challenge & Success MyOcean Service MyOcean System MyOcean
ISQS 3358 BUSINESS INTELLIGENCE FALL 2014
ISQS 3358 BUSINESS INTELLIGENCE FALL 2014 Instructor: Dr. Miguel. I. Aguirre-Urreta, Ph.D. Office: BA E322 Phone: 806.834.0765 Email: [email protected] Office Hours Tuesdays and Thursdays from
ARIS 9ARIS 9.6 map and Future Directions Die nächste Generation des Geschäftsprozessmanagements
ARIS 9ARIS 9.6 map and Future Directions Die nächste Generation des Geschäftsprozessmanagements Dr. Katrina Simon ARIS Product Management 2014 Software AG. All rights reserved. ARIS @ Software AG 2M END
CSE 544 Principles of Database Management Systems. Magdalena Balazinska (magda) Winter 2009 Lecture 1 - Class Introduction
CSE 544 Principles of Database Management Systems Magdalena Balazinska (magda) Winter 2009 Lecture 1 - Class Introduction Outline Introductions Class overview What is the point of a db management system
Oklahoma s Open Source Spatial Data Clearinghouse: OKMaps
Oklahoma s Open Source Spatial Data Clearinghouse: OKMaps Presented by: Mike Sharp State Geographic Information Coordinator Oklahoma Office of Geographic Information MAGIC 2014 Symposium April 28-May1,
One-Size-Fits-All: A DBMS Idea Whose Time has Come and Gone. Michael Stonebraker December, 2008
One-Size-Fits-All: A DBMS Idea Whose Time has Come and Gone Michael Stonebraker December, 2008 DBMS Vendors (The Elephants) Sell One Size Fits All (OSFA) It s too hard for them to maintain multiple code
NASA s Big Data Challenges in Climate Science
NASA s Big Data Challenges in Climate Science Tsengdar Lee, Ph.D. High-end Computing Program Manager NASA Headquarters Presented at IEEE Big Data 2014 Workshop October 29, 2014 1 2 7-km GEOS-5 Nature Run
How To Use Gis
Welcome Understanding Purpose Creating Relationships You A Global Community of GIS Professionals Changing the World Together Applying Geography Everywhere Your WORK Showcasing Your Web Apps Vision Applying
Distributed Computing. Mark Govett Global Systems Division
Distributed Computing Mark Govett Global Systems Division Modeling Activities Prediction & Research Weather forecasts, climate prediction, earth system science Observing Systems Denial experiments Observing
MONTHLY REMINDERS FOR 2013
MONTHLY REMINDERS FOR 2013 Legend: Red IRS Due Dates Green Department of Revenue Due Dates Blue Parish Finance Due Dates Black Second Collections JANUARY 4 Deposit payroll tax for payments on Jan 1 if
ECS 165A: Introduction to Database Systems
ECS 165A: Introduction to Database Systems Todd J. Green based on material and slides by Michael Gertz and Bertram Ludäscher Winter 2011 Dept. of Computer Science UC Davis ECS-165A WQ 11 1 1. Introduction
Cloud Computing @ JPL Science Data Systems
Cloud Computing @ JPL Science Data Systems Emily Law, GSAW 2011 Outline Science Data Systems (SDS) Space & Earth SDSs SDS Common Architecture Components Key Components using Cloud Computing Use Case 1:
Big Data Explained. An introduction to Big Data Science.
Big Data Explained An introduction to Big Data Science. 1 Presentation Agenda What is Big Data Why learn Big Data Who is it for How to start learning Big Data When to learn it Objective and Benefits of
Integration of mobile automated monitoring systems with decision support tools for smart HAB management. VITO Jaap van Nes Göteborg, May 2015
Integration of mobile automated monitoring systems with decision support tools for smart HAB management VITO Jaap van Nes Göteborg, May 2015 INDEX 1. Background VITO Belgium 2. HAB monitoring methods 3.
Web and Mobile GIS Applications Development
Web and Mobile GIS Applications Development Presented by : Aamir Ali Manager Section Head (GIS Software Customization) Pakistan Space and Upper Atmosphere Research Commission (SUPARCO) Geographical Information
CISC 432/CMPE 432/CISC 832 Advanced Database Systems
CISC 432/CMPE 432/CISC 832 Advanced Database Systems Course Info Instructor: Patrick Martin Goodwin Hall 630 613 533 6063 [email protected] Office Hours: Wednesday 11:00 1:00 or by appointment Schedule:
Metadata for Data Discovery: The NERC Data Catalogue Service. Steve Donegan
Metadata for Data Discovery: The NERC Data Catalogue Service Steve Donegan Introduction NERC, Science and Data Centres NERC Discovery Metadata The Data Catalogue Service NERC Data Services Case study:
CSE 544 Principles of Database Management Systems. Magdalena Balazinska (magda) Fall 2007 Lecture 1 - Class Introduction
CSE 544 Principles of Database Management Systems Magdalena Balazinska (magda) Fall 2007 Lecture 1 - Class Introduction Outline Introductions Class overview What is the point of a db management system
ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL IMAGERY.
ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL IMAGERY. ENVI Imagery Becomes Knowledge ENVI software uses proven scientific methods and automated processes to help you turn geospatial
