TD 502 Rev.2 (PLEN/15)
|
|
|
- Muriel Roberts
- 9 years ago
- Views:
Transcription
1 INTERNATIONAL TELECOMMUNICATION UNION STUDY GROUP 15 TELECOMMUNICATION STANDARDIZATION SECTOR STUDY PERIOD English only Original: English Question(s): 6/15 Geneva, 5-16 December 2011 Source: Title: Editor G TD Draft revised Recommendation ITU-T G (for Consent) Introduction This document contains draft revised G for consent. Changes with respect to the in-force version of G are shown with changemarks. Version Revision history Date 1.0 In-force version of G June Increase in the number of decimal places in Table 1 and new 22 May 2005 note added Typos in wavelengths for and THz corrected 18 April Output from Geneva meeting 17 Feb Output from Seoul meeting 13 June Output of correspondence after the Seoul meeting 3 Oct Output from Geneva Q6 meeting 5 Dec As modified after joint meeting on Flexible DWDM Grid 13 Dec 2011 Summary This Recommendation provides a frequency grid for dense wavelength division multiplexing (DWDM) applications. The frequency grid, anchored to THz, supports a variety of channel spacings ranging from 12.5 GHz to 100 GHz and wider. Edition 2.0 of this Recommendation also includes a flexible DWDM grid. Contact: Pete Anslow Ciena Corporation USA Tel: [email protected] Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.
2 - 2 - ITU-T Recommendation G Spectral grids for WDM applications: DWDM frequency grid 1 Scope The purpose of this Recommendation is to provide the definition of a frequency grid to support dense wavelength division multiplexing (DWDM) applications. 2 References The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. [ITU-T G.671] ITU-T Recommendation ITU-T G.671 (20092), Transmission characteristics of optical components and subsystems. 3 Definitions 3.1 Terms defined in this Recommendation This Recommendation defines the following terms: Frequency Ggrid: A frequency grid is a reference set of frequencies used to denote allowed nominal central frequencies that may be used for defining applications Frequency slot: The frequency range allocated to a slot and unavailable to other slots within a flexible grid. A frequency slot is defined by its nominal central frequency and its slot width Slot width: The full width of a frequency slot in a flexible grid. 3.2 Terms defined in other Recommendations This Recommendation uses terms defined in [ITU-T Rec. G.671]: Coarse Wavelength Division Multiplexing (CWDM). Dense Wavelength Division Multiplexing (DWDM). 4 Abbreviations and acronyms This Recommendation uses the following abbreviations: CWDM Coarse Wavelength Division Multiplexing DWDM Dense Wavelength Division Multiplexing WDM Wavelength Division Multiplexing
3 5 Dense WDM and its applications Dense Wavelength Division Multiplexing (DWDM), a WDM technology, is characterised by narrower channel spacing than Coarse WDM (CWDM) as defined in [ITU-T Rec. G.671]. In general the transmitters employed in DWDM applications require a control mechanism to enable them to meet the application's frequency stability requirements, in contrast to CWDM transmitters which are generally uncontrolled in this respect. The frequency grid defined by this Recommendation supports a variety of fixed channel spacings ranging from 12.5 GHz to 100 GHz and wider (integer multiples of 100 GHz) as well as a flexible grid. Uneven channel spacings using the fixed grids are also allowed. The current steps in channel spacing for the fixed grids have historically evolved by sub-dividing the initial 100 GHz grid by successive factors of two. 6 Fixed grid Nnominal central frequencies for dense WDM systems For channel spacings of 12.5 GHz on a fibre, the allowed channel frequencies (in THz) are defined by: n where n is a positive or negative integer including 0 For channel spacings of 25 GHz on a fibre, the allowed channel frequencies (in THz) are defined by: n where n is a positive or negative integer including 0 For channel spacings of 50 GHz on a fibre, the allowed channel frequencies (in THz) are defined by: n 0.05 where n is a positive or negative integer including 0 For channel spacings of 100 GHz or more on a fibre, the allowed channel frequencies (in THz) are defined by: n 0.1 where n is a positive or negative integer including 0 Table 1 illustrates some nominal central frequencies within the C and L bands based on the 12.5 GHz minimum channel spacing anchored to the THz reference. Table 1 also illustrates the 25, 50 and 100 GHz grid frequencies within the same region. The endpoints shown are illustrative, not normative. Note that the value of "c" (speed of light in vacuum) that should be used for converting between frequency and wavelength is m/s.
4 - 4 - Table 1/G Example nominal central frequencies of the DWDM grid Nominal central frequencies (THz) for spacings of Approximate nominal central wavelengths (nm) (Note) 12.5 GHz 25 GHz 50 GHz 100 GHz and above
5 - 5 - Table 1/G Example nominal central frequencies of the DWDM grid Nominal central frequencies (THz) for spacings of Approximate nominal central wavelengths (nm) (Note) 12.5 GHz 25 GHz 50 GHz 100 GHz and above
6 - 6 - Table 1/G Example nominal central frequencies of the DWDM grid Nominal central frequencies (THz) for spacings of Approximate nominal central wavelengths (nm) (Note) 12.5 GHz 25 GHz 50 GHz 100 GHz and above Note The wavelengths given in this table are approximations only. The specifications applied to DWDM applications are defined with respect to the
7 - 7 - Table 1/G Example nominal central frequencies of the DWDM grid Nominal central frequencies (THz) for spacings of Approximate nominal central wavelengths (nm) (Note) 12.5 GHz 25 GHz 50 GHz 100 GHz and above nominal central frequencies and not the approximate wavelengths. 7 Flexible DWDM grid definition For the flexible DWDM grid, the allowed frequency slots have a nominal central frequency (in THz) defined by: n where n is a positive or negative integer including 0 and is the nominal central frequency granularity in THz and a slot width defined by: 12.5 m where m is a positive integer and 12.5 is the slot width granularity in GHz. Any combination of frequency slots is allowed as long as no two frequency slots overlap. Further information on the use of the flexible grid can be found in Appendix I. Appendix I Use of the flexible grid (This appendix does not form an integral part of this Recommendation) I.1 Flexible grid examples In addition to the fixed spacing DWDM grids defined in Clause 6, a newer flexible DWDM grid has been introduced in Clause 7. One of the motivations for the flexible grid is to allow a mixed bit rate or mixed modulation format transmission system to allocate frequency slots with different widths so that they can be optimized for the bandwidth requirements of the particular bit rate and modulation scheme of the individual channels. Because of the complexity of defining multi-vendor interoperable transmission systems containing mixed bit rates or modulation formats, there are currently no DWDM optical interface Recommendations that make use of this grid. An example use of the flexible DWDM grid is shown in Figure I.1 where two 50 GHz slots are shown together with two 75 GHz slots. For each slot in the figure, the values of n and m in the formulae defining the slot parameters in Clause 7 are also given. The frequency range between THz and THz is shown unallocated. This range could be left as a guard band between the two sets of channels or it could subsequently be allocated to an additional slot with a
8 width of 50 GHz (n=8, m=4), leaving 6.25 GHz unallocated, or other alternatives (e.g., two 25 GHz slots n=6, m=2 and n=10, m=2). 50 GHz 50 GHz 75 GHz 75 GHz n = -8, m = 4 n = 0, m = 4 n = 19, m = 6 n = 31, m = 6 Figure I.1 An example of the use of the flexible grid. The granularity of the nominal central frequency and slot width parameters for the flexible DWDM grid have been chosen so that any of the fixed spacing DWDM grids defined in Clause 6 can also be described via suitable choices of slots in the flexible DWDM grid. For example, the 50GHz fixed spacing DWDM grid is shown in Figure I.2 represented using the DWDM flexible grid. 50 GHz 50 GHz 50 GHz 50 GHz 50 GHz 50 GHz n = -8, m = 4 n = 0, m = 4 n = 8, m = 4 n = 16, m = 4 n = 24, m = 4 n = 32, m = 4 Figure I.2 The 50 GHz fixed spacing grid represented using the flexible grid. Since the smallest spacing fixed grid is 12.5 GHz, the slot width granularity needs to be 12.5 GHz. In order to be able to place a slot that has a width that is an even multiple of 12.5 GHz next to one with a width that is an odd multiple of 12.5 GHz without a gap, the nominal central frequency granularity needs to be 6.25 GHz. An example of this is shown in Figure I GHz 87.5 GHz 50 GHz 50 GHz n = -1, m = 7 n = 13, m = 7 n = 24, m = 4 n = 32, m = 4 Figure I.3 Example showing the need for 6.25 GHz nominal central frequency granularity.
9 I.2 Flexible grid compliance The flexible DWDM grid defined in Clause 7 has a nominal central frequency granularity of 6.25 GHz and a slot width granularity of 12.5 GHz. However, devices or applications that make use of the flexible grid may not have to be capable of supporting every possible slot width or position. In other words, applications may be defined where only a subset of the possible slot widths and positions are required to be supported. For example, an application could be defined where the nominal central frequency granularity is 12.5 GHz (by only requiring values of n that are even) and that only requires slot widths as a multiple of 25 GHz (by only requiring values of m that are even).
CWDM & DWDM. Wavelength Guide. A Datasheet from Smartoptics
CWDM & DWDM Wavelength Guide A Datasheet from Smartoptics CWDM (Coarse Wavelength Division Multiplexing) Up to 18 Wavelength channels (also referred to as lambdas or colours), can be transported over a
CISCO DWDM XENPAK. Main features of the Cisco DWDM XENPAK include:
DATA SHEET CISCO DWDM XENPAK OVERVIEW The Cisco Dense Wavelength-Division Multiplexing (DWDM) XENPAK pluggable allows enterprise companies and service providers to provide scalable and easy-to-deploy 10
Multiplexing. Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single physical medium.
Multiplexing Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single physical medium. The following two factors in data communications lead to
INTERNATIONAL TELECOMMUNICATION UNION SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF CABLES AND OTHER ELEMENTS OF OUTSIDE PLANT
INTERNATIONAL TELECOMMUNICATION UNION ITU-T L.52 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (05/2003) SERIES L: CONSTRUCTION, INSTALLATION AND PROTECTION OF CABLES AND OTHER ELEMENTS OF OUTSIDE PLANT
CWDM: lower cost for more capacity in the short-haul
MARCUS NEBELING, Fiber Network Engineering The opportunity to add two to eight wavelengths per fiber allows network designers to increase capacity without installing costly DWDM systems. Fiber Network
New Installation and Maintenance Tools for CWDM Networks
Application Note New Installation and Maintenance Tools for CWDM Networks Service providers are showing a renewed interest in deploying coarse wavelength division multiplexing (CWDM)-based systems for
Making OSNR Measurements In a Modulated DWDM Signal Environment
Making OSNR Measurements In a Modulated DWDM Signal Environment Jack Dupre Jim Stimple Making OSNR measurements in a modulated DWDM signal environment May 2001 In a DWDM spectrum, it is desirable to measure
Broadband Networks Virgil Dobrota Technical University of Cluj-Napoca, Romania [email protected]
Broadband Networks Virgil Dobrota Technical University of Cluj-Napoca, Romania [email protected] Copyright Virgil Dobrota 2007-2008, All rights reserved 1 Course 12 - Outline 46. NGN Next Generation
SFP Transceiver Specifications
APPENDIXB This appendix provides cabling specifications for the SFP transceivers supported on the Cisco ME 60 Ethernet switch. Figure B-1 shows an optical SFP transceiver with the major features labeled.
TransPacket white paper. CWDM and DWDM networking. Increasing fibre-optical network utilization and saving on switches/routers 28.06.
TransPacket white paper CWDM and DWDM networking 28.06.2011 Increasing fibre-optical network utilization and saving on switches/routers Executive summary From being primarily a technology for transport
Introduction to Optical Link Design
University of Cyprus Πανεπιστήµιο Κύπρου 1 Introduction to Optical Link Design Stavros Iezekiel Department of Electrical and Computer Engineering University of Cyprus HMY 445 Lecture 08 Fall Semester 2014
Introduction. Background
Introduction By far, the most widely used networking technology in Wide Area Networks (WANs) is SONET/SDH. With the growth of Ethernet now into Metropolitan Area Networks (MANs) there is a growing need
Designing Fiber Optic Systems David Strachan
Designing Fiber Optic Systems David Strachan Everyone knows that fiber optics can carry a huge amount of data. There are more benefits to using fiber optics in broadcast applications than you might realize.
Four Wave Mixing in Closely Spaced DWDM Optical Channels
544 VOL. 1, NO. 2, AUGUST 2006 Four Wave Mixing in Closely Spaced DWDM Optical Channels Moncef Tayahi *, Sivakumar Lanka, and Banmali Rawat Advanced Photonics Research lab, Department of Electrical Engineering
SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Transmission media and optical systems characteristics Optical fibre cables
International Telecommunication Union ITU-T G.655 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (11/2009) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Transmission media and
The Operation and Power Budget of Amplified Optical Networks for Aerospace Applications. FOHEC Conference May 2010
The Operation and Power Budget of Amplified Optical Networks for Aerospace Applications FOHEC Conference May 2010 BAE Systems / University of Strathclyde Henry White Walter Johnstone Craig Michie BAE Systems
Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B
CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation
Suppression of Four Wave Mixing in 8 Channel DWDM System Using Hybrid Modulation Technique
International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 2 (2014), pp. 97-108 International Research Publication House http://www.irphouse.com Suppression of Four
Radio-frequency channel arrangements for fixed wireless system operating in the 10.0-10.68 GHz band
Recommendation ITU-R F.747-1 (03/2012) Radio-frequency channel arrangements for fixed wireless system operating in the 10.0-10.68 GHz band F Series Fixed service ii Rec. ITU-R F.747-1 Foreword The role
Sol: Optical range from λ 1 to λ 1 +Δλ contains bandwidth
1. Use Figure 3.47 and Figure 3.50 to explain why the bandwidth of twisted-wire pairs and coaxial cable decreases with distance. Figure 3.47 figure 3.50 sol: The bandwidth is the range of frequencies where
Chapter 6 Bandwidth Utilization: Multiplexing and Spreading 6.1
Chapter 6 Bandwidth Utilization: Multiplexing and Spreading 6.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Note Bandwidth utilization is the wise use of
10G CWDM Conversion Technology
10G CWDM Conversion Technology Simplifying Today s Challenges By Transition Networks Curt Carlson Product Manager [email protected] com Agenda WDM Technology Overview What are the features/benefits
EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak
FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and
Limiting factors in fiber optic transmissions
Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 [email protected] eportal.pwr.wroc.pl Copying and processing permitted for noncommercial
Modultech MT-XDFx-xx192-08(04)CD 80 (40) km DWDM XFP module with built-in FEC wrapper Description
Modultech MT-XDFx-xx192-08(04)CD 80 (40) km DWDM XFP module with built-in FEC wrapper Description Modultech OTN XFP DWDM transceiver combines carrier grade OTN G.709 and FEC performance into a XFP MSA
Light Link Series 2 LT1550. Laser Transmitter with Erbium Doped Fibre Amplifier. Description. Features
Description The Light Link Series 2 optical transmitter model employs a high performance thermally stabilised, DFB, low-chirp, isolated laser to transmit CATV signals. Operating on a specific optical wavelength
Wavelength Division Multiplexing
WDM Wavelength Division Multiplexing -CWDM vs DWDM- Fargo, ND 1 Agenda 1. Overview 2. Fiber Cable WDM Characteristics 3. CWDM Course WDM 4. DWDM Dense WDM 5. Applications Best Fit- Future? 6. Summary Fargo,
Advanced Modulation Formats in Data Centre Communications Michael J. Wale Director Active Products Research
Advanced Modulation Formats in Data Centre Communications Michael J. Wale Director Active Products Research 2 nd Symposium on Optical Interconnects in Data Centres ECOC, Cannes, 23rd September 2014 1 2014
Modeling and Performance Analysis of DWDM Based 100 Gbps Low Power Inter-satellite Optical Wireless Communication (LP-IsOWC) System
ISSN(Print): 2377-0538 ISSN(Online): 2377-0546 DOI: 10.15764/STSP.2015.01001 Volume 2, Number 1, January 2015 SOP TRANSACTIONS ON SIGNAL PROCESSING Modeling and Performance Analysis of DWDM Based 100 Gbps
INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA
COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue
Recession-Proof Consulting Services with CWDM Network Design
Recession-Proof Consulting Services with CWDM Network Design Presented By Ty Estes Marketing Communications Director Omnitron Systems Recession-Proof Consulting Services with CWDM Network Design Introduction
Optical Software Defined Networking
Optical Software Defined Networking Introduction Service providers look for a dynamic, application-aware network infrastructure that suits today s cloud and mobility needs. Software Defined Networking
Enhancing High-Speed Telecommunications Networks with FEC
White Paper Enhancing High-Speed Telecommunications Networks with FEC As the demand for high-bandwidth telecommunications channels increases, service providers and equipment manufacturers must deliver
VOLUME BRAGG GRATINGS TM A NEW PLATFORM TECHNOLOGY FOR WDM APPLICATIONS. Boris L. Volodin, Sergei V. Dolgy, Elena D. Melnik and Vladimir S.
VOLUME BRAGG GRATINGS TM A NEW PLATFORM TECHNOLOGY FOR WDM APPLICATIONS Boris L. Volodin, Sergei V. Dolgy, Elena D. Melnik and Vladimir S. Ban, PD-LD Inc. Pennington, NJ 08534 Introduction The development
Radio-frequency channel arrangements for fixed wireless systems operating in the 7 110-7 900 MHz band
Recommendation ITU-R F.385-10 (03/2012) Radio-frequency channel arrangements for fixed wireless systems operating in the 7 110-7 900 MHz band F Series Fixed service ii Rec. ITU-R F.385-10 Foreword The
TECHNICAL INFORMATION FOR FREQUENCY PLANNING IN-BUILDING COAXIAL CABLE DISTRIBUTION SYSTEM (IBCCDS)
HKTA 1105 ISSUE 5 TECHNICAL INFORMATION FOR FREQUENCY PLANNING OF IN-BUILDING COAXIAL CABLE DISTRIBUTION SYSTEM (IBCCDS) TELECOMMUNICATIONS AUTHORITY HONG KONG FOREWORD 1. This document intends to provide
FIBER OPTIC COMMUNICATIONS. Optical Fibers
FIBER OPTIC COMMUNICATIONS Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and
SO-CFP-ER-DWDM. CFP, 103/112 Gbps, DWDM tunable, SM, DDM, 20km SO-CFP-ER4-DWDM OVERVIEW PRODUCT FEATURES APPLICATIONS ORDERING INFORMATION
SO-CFP-ER4-DWDM CFP, 103/112 Gbps, DWDM tunable, SM, DDM, 20 km SO-CFP-ER4-DWDM OVERVIEW The SO-CFP-ER4-DWDM is a 100G transceiver module supporting 100GBASE-LR4 and OTU4 applications over singlemode (SM)
40 Gigabit Ethernet and 100 Gigabit Ethernet Technology Overview
40 Gigabit Ethernet and 100 Gigabit Ethernet Technology Overview June 2010 Authors: John D Ambrosia, Force10 Networks David Law, 3COM Mark Nowell, Cisco Systems 1. This work represents the opinions of
Radio-frequency channel arrangements for high-capacity fixed wireless systems operating in the lower 6 GHz (5 925 to 6 425 MHz) band
Recommendation ITU-R F.383-9 (02/2013) Radio-frequency channel arrangements for high-capacity fixed wireless systems operating in the lower 6 GHz (5 925 to 6 425 MHz) band F Series Fixed service ii Rec.
HDO700 P FIBRE OPTIC TRANSMITTER
Timo Rantanen 18.1.2011 1(5) HDO700 P FIBRE OPTIC TRANSMITTER HDO700 P is a high performance, extremely linear externally modulated 1550 nm transmitter for HDO fibre optic CATV link. This transmitter type
)454 6 ")43 0%2 3%#/.$ $50,%8 -/$%- 34!.$!2$):%$ &/2 53% ). 4(% '%.%2!, 37)4#(%$ 4%,%0(/.%.%47/2+ $!4! #/--5.)#!4)/. /6%2 4(% 4%,%0(/.%.
INTERNATIONAL TELECOMMUNICATION UNION )454 6 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU $!4! #/5.)#!4)/. /6%2 4(% 4%,%0(/.%.%47/2+ ")43 0%2 3%#/.$ $50,%8 /$% 34!.$!2$):%$ &/2 53% ). 4(% '%.%2!, 37)4#(%$
Multiplexing on Wireline Telephone Systems
Multiplexing on Wireline Telephone Systems Isha Batra, Divya Raheja Information Technology, Dronacharya College of Engineering Farrukh Nagar, Gurgaon, India ABSTRACT- This Paper Outlines a research multiplexing
best Practices for troubleshooting WDm networks with an optical spectrum analyzer by Jean-Sébastien Tassé, Product Line Manager, EXFO
best Practices for troubleshooting WDm networks with an optical spectrum analyzer by Jean-Sébastien Tassé, Product Line Manager, EXFO the challenge Most telecom operators are facing a growing demand for
Review of Scientific Notation and Significant Figures
II-1 Scientific Notation Review of Scientific Notation and Significant Figures Frequently numbers that occur in physics and other sciences are either very large or very small. For example, the speed of
Infinera waves on a Ciena light system
Infinera waves on a Ciena light system Guy Roberts, GEANT Association Terena Architects workshop, 12 Nov 2014 Fibre sharing Field Trial Background GÉANT Telia Sonera fibre will not be renewed. Looking
CISCO WDM SERIES OF CWDM PASSIVE DEVICES
DATA SHEET CISCO WDM SERIES OF CWDM PASSIVE DEVICES Cisco Systems introduces its second generation of coarse wavelength-division multiplexing (CWDM) passive devices boasting increased functions and improved
Dispersion in Optical Fibers
Dispersion in Optical Fibers By Gildas Chauvel Anritsu Corporation TABLE OF CONTENTS Introduction Chromatic Dispersion (CD): Definition and Origin; Limit and Compensation; and Measurement Methods Polarization
This white paper will provide an overview of the underlying technology of Coherent DWDM and the advantages of the Arista 7500E Series DWDM solution.
ARISTA WHITE PAPER CLOUD INTERCONNECT: DWDM INTEGRATED SOLUTION FOR SECURE LONG HAUL TRANSMISSION The phenomenal growth in mobile, video streaming and Cloud services is driving the need for higher bandwidth
Guideline for the Implementation of Coexistence for Broadband Power Line Communication Standards
NISTIR 7862 Guideline for the Implementation of Coexistence for Broadband Power Line Communication Standards Dr. David Su Dr. Stefano Galli http://dx.doi.org/10.6028/nist.ir.7862 1 NISTIR 7862 Guideline
Ultra High-Speed SONET Fiber-Optic Transmission System
Ultra High-Speed Fiber-Optic Transmission System Takashi Mori Hirokuni Tsuji Hiroyuki Nakano, D.E. Shigeo Shinada ABSTRACT: Recently, there have been numerous demands not only on voice but also data/image
Directly modulated CWDM/DWDM system using negative dispersion fiber for metro network application
Optics Communications 245 (2005) 171 176 www.elsevier.com/locate/optcom Directly modulated /DWDM system using negative dispersion fiber for metro network application H.S. Chung, Y.C. Chung * Korea Advanced
INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.
INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,
OFS AllWave Zero Water Peak (ZWP) single-mode
The New Standard for Single-Mode Fiber Product Description OFS AllWave Zero Water Peak (ZWP) single-mode optical fiber is the industry s first full-spectrum fiber designed for optical transmission systems
Interferometric Measurement of Dispersion in Optical Components
Interferometric Measurement of Dispersion in Optical Components Mark Froggatt, Eric Moore, and Matthew Wolfe Luna Technologies, Incorporated, 293-A Commerce Street, Blacksburg, Virginia 246 [email protected].
Analog-to-Digital Voice Encoding
Analog-to-Digital Voice Encoding Basic Voice Encoding: Converting Analog to Digital This topic describes the process of converting analog signals to digital signals. Digitizing Analog Signals 1. Sample
1 Multi-channel frequency division multiplex frequency modulation (FDM-FM) emissions
Rec. ITU-R SM.853-1 1 RECOMMENDATION ITU-R SM.853-1 NECESSARY BANDWIDTH (Question ITU-R 77/1) Rec. ITU-R SM.853-1 (1992-1997) The ITU Radiocommunication Assembly, considering a) that the concept of necessary
BROADBAND AND HIGH SPEED NETWORKS
BROADBAND AND HIGH SPEED NETWORKS INTRODUCTION TO MUTIPLEXING Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single data link INTRODUCTION
1. Benefits and History of Optical Networks. Definition. Tutorial Overview. Topics. History. Alcatel: Optical Networks Tutorial: Index Page 1 of 22
Alcatel: Optical Networks Tutorial: Index Page 1 of 22 Optical Networks Tutorial Definition Optical networks are high-capacity telecommunications networks based on optical technologies and components that
Objectives. Lecture 4. How do computers communicate? How do computers communicate? Local asynchronous communication. How do computers communicate?
Lecture 4 Continuation of transmission basics Chapter 3, pages 75-96 Dave Novak School of Business University of Vermont Objectives Line coding Modulation AM, FM, Phase Shift Multiplexing FDM, TDM, WDM
INTERNATIONAL TELECOMMUNICATION UNION $!4! #/--5.)#!4)/. /6%2 4(% 4%,%0(/.%.%47/2+
INTERNATIONAL TELECOMMUNICATION UNION )454 6 TER TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU $!4! #/--5.)#!4)/. /6%2 4(% 4%,%(/.%.%47/2+ ")43 %2 3%#/.$ -/$%- 34!.$!2$):%$ &/2 53% ). 4(% '%.%2!, 37)4#(%$
Large-Capacity Optical Transmission Technologies Supporting the Optical Submarine Cable System
Large-Capacity Optical Transmission Technologies Supporting the Optical Submarine Cable System INOUE Takanori Abstract As one of the foundations of the global network, the submarine cable system is required
Value Proposition for Data Centers
Value Proposition for Data Centers C ollocation or a trend of hosting customers servers at a provider s physical location has been steadily growing in the recent years due to its many benefits. The collocation
Prisma IP 10 GbE VOD Line Card
Digital Transport Prisma IP 10 GbE VOD Line Card Description The Prisma IP 10 GbE Line Card family of products consists of Transmitter (OTX), Receiver (ORX), and Transceiver (OTR) modules. These modules
Wireless Technologies for the 450 MHz band
Wireless Technologies for the 450 MHz band By CDG 450 Connectivity Special Interest Group (450 SIG) September 2013 1. Introduction Fast uptake of Machine- to Machine (M2M) applications and an installed
ITU-T. G.994.1 Amendment 5 (04/2010)
International Telecommunication Union ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.994.1 Amendment 5 (04/2010) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Digital
Introduction and Comparison of Common Videoconferencing Audio Protocols I. Digital Audio Principles
Introduction and Comparison of Common Videoconferencing Audio Protocols I. Digital Audio Principles Sound is an energy wave with frequency and amplitude. Frequency maps the axis of time, and amplitude
Network Performance: Networks must be fast. What are the essential network performance metrics: bandwidth and latency
Network Performance: Networks must be fast What are the essential network performance metrics: bandwidth and latency Transmission media AS systems Input'signal'f(t) Has'bandwidth'B System'with'H(-) Output'signal'g(t)
1 2π SNR. Equation 1. BER vs. SNR equation from IEC 61280-2-7
MEASURING OSNR IN WDM SYSTEMS EFFECTS OF RESOLUTION BANDWIDTH AND OPTICAL REJECTION RATIO Daniel Gariépy, Research Scientist, Optical Business Unit Gang He, Ph. D., Senior Research Scientist, Optical Business
Photonics for the Coherent CFP2-ACO Unlocking 100G and 200G for the Metro
Photonics for the Coherent CFP2-ACO Unlocking 100G and 200G for the Metro Brandon Collings JDSU September, 2014 ECOC This communication contains forward looking product development plans based on our current
DWDM SYSTEMS CHAPTER 14.1 INTRODUCTION
CHAPTER 14 DWDM SYSTEMS 14.1 NTRODUCTON Current wavelength division multiplexing (WDM) systems use each wavelength as a separate channel. Each channel may transport homogeneous or heterogeneous traffic,
The Role of SDN & NFV for Flexible Optical Networks: Current Status, Challenges and Opportunities
The Role of SDN & NFV for Flexible Optical Networks: Current Status, Challenges and Opportunities Daniel King, Lancaster University, United Kingdom, [email protected]. A. Farrel, Old Dog Consulting,
Performance Management and Fault Management. 1 Dept. of ECE, SRM University
Performance Management and Fault Management 1 Dept. of ECE, SRM University Performance Management Performance management requires monitoring of the performance parameters for all the connections supported
Appendix A: Basic network architecture
Appendix A: Basic network architecture TELECOMMUNICATIONS LOCAL ACCESS NETWORKS Traditionally, telecommunications networks are classified as either fixed or mobile, based on the degree of mobility afforded
Network Planning and Operation Tool
Network Planning and Operation Tool Development progress through the view of 3 EU projects Dimitrios Klonidis C. Kachris, P. Zakynthinos, I. Tomkos Networks and Optical Communications group NOC New challenges
FTTP OSP Design to Maximize Coverage and Upgradeability
FTTP OSP Design to Maximize Coverage and Upgradeability Introduction Now that FTTP technology is being deployed after years of discussion and several false starts, one has to ask, What took so long? Was
THE BEST LOW-COST CAPACITY BOOST FOR ACCESS NETWORKS IS ALSO THE GREENEST THE TRANSMODE TG-SERIES
THE BEST LOW-COST CAPACITY BOOST FOR ACCESS NETWORKS IS ALSO THE GREENEST THE TRANSMODE TG-SERIES NEED TO INCREASE YOUR ACCESS NETWORK CAPACITY? THEN WE HAVE SOMETHING FOR YOU! The requirement for greater
Understanding Mobile Wireless Backhaul
Understanding Mobile Wireless Backhaul Understanding Mobile Wireless Backhaul 1 Introduction Wireless networks are evolving from voice-only traffic to networks supporting both voice and high-speed data
CARLETON UNIVERSITY Department of Systems and Computer Engineering. SYSC4700 Telecommunications Engineering Winter 2014. Term Exam 13 February 2014
CARLETON UNIVERSITY Department of Systems and Computer Engineering SYSC4700 Telecommunications Engineering Winter 2014 Term Exam 13 February 2014 Duration: 75 minutes Instructions: 1. Closed-book exam
Carrier Ethernet Defined
Carrier Ethernet Defined A comparison of the key WAN transport methods now available for delivering high-value Ethernet services Describing each method s capabilities and how they support the end-user
USE OF FIBRE OPTICS INTERNATIONAL STANDARDS FOR CALIBRATION LABORATORY ACCREDITATION INTERNATIONAL ELECTROTECHNICAL COMMISSION
USE OF FIBRE OPTICS INTERNATIONAL STANDARDS FOR CALIBRATION LABORATORY ACCREDITATION INTERNATIONAL ELECTROTECHNICAL COMMISSION USE OF FIBRE OPTICS INTERNATIONAL STANDARDS FOR CALIBRATION LABORATORY ACCREDITATION
ITU-T G.652. Characteristics of a single-mode optical fibre cable
INTERNATIONAL TELECOMMUNICATION UNION ITU-T G.652 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (10/2000) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Transmission media characteristics
OM2210 Coherent Receiver Calibration Source OM2210 Datasheet
OM2210 Coherent Receiver Calibration Source OM2210 Datasheet Class 1M Laser Safety Product IEC/UL 60950-1 Safety Certified Applications Calibration of Coherent Receiver Front-end Characteristics for Use
Construction of High-speed and High-reliability Optical Networks for Social Infrastructure
Hitachi Review Vol. 59 (Feb. 2010) 1 Construction of High-speed and High-reliability Optical Networks for Social Infrastructure Ryosuke Nishino Hideaki Tsushima, Dr. Eng. Eisuke Sato Shinsuke Tanaka OVERVIEW:
Modulation Formats for High-Speed, Long-Haul Fiber Optic Communication Systems
Modulation Formats for High-Speed, Long-Haul Fiber Optic Communication Systems Anjali Singh, Ph.D. Inphi Corporation, 2393 Townsgate Rd #101, Westlake Village, CA 91361 1. Introduction The goal of an optical
FTB-5240S/BP Optical Spectrum Analyzers
FTB-5240S/BP Optical Spectrum Analyzers 2011 Highly accurate, easy-to-use intelligent OSAs for current and next-generation networks. KEY FEATURES Intelligent in-band OSNR measurement for 40 Gbit/s and
GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving
GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving 1 Space Division Multiple Access of the signals from the MSs A BTS with n directed antennae covers mobile stations
Nigerian Communications Commission
Nigerian Communications Commission REGULATORY GUIDELINES FOR THE USE OF 2.4 GHz ISM BAND FOR COMMERCIAL TELECOM SERVICES Introduction The use of broadband for last mile access or for final distribution
Relationship between SMP, ASON, GMPLS and SDN
Relationship between SMP, ASON, GMPLS and SDN With the introduction of a control plane in optical networks, this white paper describes the relationships between different protocols and architectures. Introduction
What Does Communication (or Telecommunication) Mean?
What Does Communication (or Telecommunication) Mean? The term communication (or telecommunication) means the transfer of some form of information from one place (known as the source of information) to
FOMi-E3, FOMi-T3 E3, T3, and HSSI Manageable Fiber Optic Modems
Data Sheet FOMi-E3, FOMi-T3 Extend the range of E3, T3 or HSSI services over fiber optic cables up to 110 km (68 miles) Transparently transmit E3, T3 or HSSI signals over multimode and single-mode fiber
High-Performance Submarine Line Terminal Equipment for Next-Generation Optical Submarine Cable System: FLASHWAVE S650
High-Performance Submarine Line Terminal Equipment for Next-Generation Optical Submarine Cable System: V Hiroshi Oikawa V Junichi Yoshimura V Haruki Watanabe (Manuscript received June 20, 2006) Global
Chap 4 Circuit-Switching Networks
hap 4 ircuit-switching Networks Provide dedicated circuits between users Example: 1. telephone network: provides 64Kbps circuits for voice signals 64Kbps=8 k samples/sec * 8 bits/sample 2. transport network:
SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS Next Generation Networks Security
International Telecommunication Union ITU-T Y.2723 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (11/2013) SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS
How To Define Hfc Technology
Cable network topologies and implications for evolutionary approaches 33 rd International conference and Exhibition PIKE 2008, Zakopane, 14 October 2008 Bart Brusse, ReDeSign Project Manager Pressure on
MINIMUM TECHNICAL AND EXPLOITATION REQUIREMENTS FOR DIGITAL SOUND BROADCASTING DAB+ RECEIVER DESIGNED FOR POLAND
MINIMUM TECHNICAL AND EXPLOITATION REQUIREMENTS FOR DIGITAL SOUND BROADCASTING DAB+ RECEIVER DESIGNED FOR POLAND Version 1.0 Prepared by: Technical Subgroup of Digital Sound Broadcasting Committee National
