By LaBRI INRIA Information Visualization Team

Size: px
Start display at page:

Download "By LaBRI INRIA Information Visualization Team"

Transcription

1 By LaBRI INRIA Information Visualization Team

2 Tulip 2011 version Tulip is an information visualization framework dedicated to the analysis and visualization of data. Tulip aims to provide the developer with a complete library, supporting the design of interactive information visualization applications for relational and multidimensional data that can be tailored to the problems he or she is addressing. Meta Model, Measure, Clustering Views and Interaction Middleware framework

3 Tulip 2011 Team Members (15 / 4 / ~2) = 21 2 Professors 4 Assistant professors 1 Permanent engineer 9 PhD Students 4 Engineers on contract 9 Doctorants

4 System P. Mary, M. Mathiaut, J. Dubois, L. Fiolka, D. Auber, D. Archambault, R. Bourqui, P.Y Koenig User Interaction : A. Lambert, R. Bourqui, D. Archambault, D. Auber, P.Y Koenig 1 Meta Data Data Base Clustering Visual Metaphor Rendering S. Maabout F. Gilbert G. Melançon M. Delest F. Zaïdi R. Bourqui D. Archambault D. Auber B. Pinaud P. Simonetto G. Melançon P.Y Koenig D. Auber R. Bourqui T. Phan-Quang D. Archambault A. Lambert D. Auber

5 Tulip 2011 History & Numbers Date Version Metaphor Young and crazy Meta or not meta Ready for extension x OS free!!! x Node Link, it is not enough x More interaction please x Let me Viz it my way x Use my hardware please x? Push out the limits, for massive dynamical Graphs x? Lost in the cloud Sep. Nov. Dec. Avg. Starts Web 15K 16K 13K 14.7K Forum post Bug report Fixes Type 2010 French gouv R&D 600K ANR R&D 150K EU R&D 100K Industrial D 100K

6

7 Meta-model Provide an efficient data structure for management Weighted Graphs, Weighted Maps and Hierarchical Weighted Graphs. To support exploration of huge datasets Tulip also managed multi level aggregation. The entire data structure is fine tuned to enable tracking of all modifications. Efficient management of data structure state to enable to reverse/redo all modification operations.

8 Measures To enable graph analysis, Tulip provides a set of plug-ins for computing measure on elements. Well-known social network analysis measure are available as well as specific measure for trees, dag and component identification. Through the Tulip Measure plug-in technology one can easily add new measure. Strahler Strength K-Core Measure Clustering index Page Rank Tulip enable to store an unbounded number of computed or user define measure. Eccentricity Betweeness Centrality

9 Example Co-citation networks measures

10 Layout Graph Drawing Tulip provides one of the largest set of Graph Drawing Algorithm. Including, hierarchical drawing, force directed layout, planar drawing, edge bundling and soon Euler diagram representation. Organic : GEM, FM3, GRIP Hierarchical Walker, Radial, Bubble Treemaps Planar: Mixed Model, FPP Overlaps Packing Planar Layout Edge Bundling Hierachical Force Directed Through the Tulip Layout plug-in technology one can easily add new Layout.

11 Example 100K nodes force directed layout : Internet Back bones

12 Example Squarified Treemaps : File System

13 Example Planar Drawing : Metabolic network

14 Example Migration Map, GPU splatting, fish eyes, bezier curve, brings and go

15 Clustering Through its hierarchical graph data structure Tulip enables any attribute based clustering. Furthermore it also provides graph based clustering algorithm. Marcorids Q-Measure : Agglomerative, divisive MQ-Measure Strength, Agglomerative Newman Clustering MCL Strahler: Convolution based clustering Strahler Componnent Through the Tulip Clustering plug-in technology one can easily add new Clustering method. Metric

16 Example Internet movie database network clustering

17

18 Node Link Diagram The node-link diagram view renders glyphs for nodes and curves for edges. The view provides navigation such as zoom and pan, bring and go, fish eyes views, and a magnifying glass. Direct editing of the graph elements and data, such as adding or removing nodes and edges or translating rotating or scaling elements, are also supported. Other operations on this view include graph splatting, meta-node/graph hierarchy exploration, path-finder and texture-based animation.

19 Matrix The Matrix view implements a matrix view of the graph. This view has been built to support graphs with a large number of nodes and edges. Zooming and selection interactors are available for this view

20 Histogram The Histogram view provides a view of element frequency. A matrix of histograms allows for the visual comparison of several statistical properties of a set of dimensions. This view has a standard set of navigation and statistical interactors. Additionally, an interactor enables the user to build non-linear mapping functions to any of the graph attributes such as size, colors, glyphs, etc..

21 Scatter Plot The Scatter plot 2D view renders attribute values to depict possible correlations between properties and the matrix allows efficient navigation between dimensions. The view provides similar interaction to the node link view and implements an interactor to search for correlation in an interactively defined subsets of elements. Splatting is also available in this view.

22 Parallel Coordinates The Parallel Coordinates view depicts multivariate data, using the traditional parallel coordinates representation as well as a circular representation. In both views, lines can be rendered with smooth Bézier curves. Interaction with the view is supported through zoom and pan, axis edition/permutation/shifting, and multi-criteria/statistical selection.

23 Self Organizing Maps The Self Organizing View implements Kohonen selforganizing maps. Several kinds topology/connectivity for the generated maps are supported, Grid, torus, 4connectivity, 8 connectivity. Zooming and selection interactors are available for this view.

24 Pixel Oriented View The Pixel Oriented view uses space filling curves to display large number of entities and relations on a screen. This view supports Hilbert curves, Z-order curves, and spiral curves. The Pixel Oriented view supports zoom and pan/selection interaction as well as focus+context techniques.

25 Google Map View The Google Map view implements a mash-up of the Google map API. With this API, geospatial positions for the layout of graph elements can be specified. When working with data in geography, graphs can be displayed on top of the map. This view supports standard zoom and pan as well as the selection of elements.

26 Example Visual analysis of poker players

27

28 Tulip Middle Ware On top of its unified data structure, Tulip provides an application that enables to integrate all the Tulip plug-ins: Clustering, layout, measure Glyph Views Interactors The MiddleWare manages the consistency as well as automatic updates/addition/removal of plugins through the Tulip plug-ins web service. Export Glyph Import Measure Tulip Middleware Clusteri ng Layout Interact ors Views

29 Middleware perspective The Tulip middle ware includes a specific kind of plug-in called perspective. A perspective enable to indicate which views/interactors/algorithm should be available and how they interact together. It also enables to add specific widget. Perspective are used to implement working layer. By changing its perspective the user can change the user interface according to its task. CSV Import Expor t Glyph Impor t Meas ure Tulip Middleware Close ness Cluste ring GEM Layou t Intera ctors Layout Views Zoom Interactor

30 Example Full Tulip, enables to use all the component s in a unified HCI. Powerful but hard (more than 200 plug-ins)

31 Example Trypanosome network analysis

32 Example Tulip lite, easy to use (one view, no subgraph, simple meta)

33 QUESTIONS? David Auber

Graph/Network Visualization

Graph/Network Visualization Graph/Network Visualization Data model: graph structures (relations, knowledge) and networks. Applications: Telecommunication systems, Internet and WWW, Retailers distribution networks knowledge representation

More information

An example. Visualization? An example. Scientific Visualization. This talk. Information Visualization & Visual Analytics. 30 items, 30 x 3 values

An example. Visualization? An example. Scientific Visualization. This talk. Information Visualization & Visual Analytics. 30 items, 30 x 3 values Information Visualization & Visual Analytics Jack van Wijk Technische Universiteit Eindhoven An example y 30 items, 30 x 3 values I-science for Astronomy, October 13-17, 2008 Lorentz center, Leiden x An

More information

Hierarchical Data Visualization

Hierarchical Data Visualization Hierarchical Data Visualization 1 Hierarchical Data Hierarchical data emphasize the subordinate or membership relations between data items. Organizational Chart Classifications / Taxonomies (Species and

More information

Information Visualization Multivariate Data Visualization Krešimir Matković

Information Visualization Multivariate Data Visualization Krešimir Matković Information Visualization Multivariate Data Visualization Krešimir Matković Vienna University of Technology, VRVis Research Center, Vienna Multivariable >3D Data Tables have so many variables that orthogonal

More information

An Open Framework for Reverse Engineering Graph Data Visualization. Alexandru C. Telea Eindhoven University of Technology The Netherlands.

An Open Framework for Reverse Engineering Graph Data Visualization. Alexandru C. Telea Eindhoven University of Technology The Netherlands. An Open Framework for Reverse Engineering Graph Data Visualization Alexandru C. Telea Eindhoven University of Technology The Netherlands Overview Reverse engineering (RE) overview Limitations of current

More information

Hierarchical Data Visualization. Ai Nakatani IAT 814 February 21, 2007

Hierarchical Data Visualization. Ai Nakatani IAT 814 February 21, 2007 Hierarchical Data Visualization Ai Nakatani IAT 814 February 21, 2007 Introduction Hierarchical Data Directory structure Genealogy trees Biological taxonomy Business structure Project structure Challenges

More information

The course: An Introduction to Information Visualization Techniques for Exploring Large Database

The course: An Introduction to Information Visualization Techniques for Exploring Large Database The course: An Introduction to Information Visualization Techniques for Exploring Large Database Jing Yang Fall 2006 www.cs.uncc.edu/~jyang13 1 Multi-dimensional Data Visualization 2 1 Parallel Coordinates

More information

Graph Visualization Tools: A Comparative Analysis

Graph Visualization Tools: A Comparative Analysis Graph Visualization Tools: A Comparative Analysis Fariha Majeed 1, Dr. Saif-ur-Rahman 2 1,2 Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) Karachi, Pakistan 1 [email protected]

More information

Understanding Data: A Comparison of Information Visualization Tools and Techniques

Understanding Data: A Comparison of Information Visualization Tools and Techniques Understanding Data: A Comparison of Information Visualization Tools and Techniques Prashanth Vajjhala Abstract - This paper seeks to evaluate data analysis from an information visualization point of view.

More information

Visualization Techniques in Data Mining

Visualization Techniques in Data Mining Tecniche di Apprendimento Automatico per Applicazioni di Data Mining Visualization Techniques in Data Mining Prof. Pier Luca Lanzi Laurea in Ingegneria Informatica Politecnico di Milano Polo di Milano

More information

Integration of Cluster Analysis and Visualization Techniques for Visual Data Analysis

Integration of Cluster Analysis and Visualization Techniques for Visual Data Analysis Integration of Cluster Analysis and Visualization Techniques for Visual Data Analysis M. Kreuseler, T. Nocke, H. Schumann, Institute of Computer Graphics University of Rostock, D-18059 Rostock, Germany

More information

Visualization methods for patent data

Visualization methods for patent data Visualization methods for patent data Treparel 2013 Dr. Anton Heijs (CTO & Founder) Delft, The Netherlands Introduction Treparel can provide advanced visualizations for patent data. This document describes

More information

MicroStrategy Analytics Express User Guide

MicroStrategy Analytics Express User Guide MicroStrategy Analytics Express User Guide Analyzing Data with MicroStrategy Analytics Express Version: 4.0 Document Number: 09770040 CONTENTS 1. Getting Started with MicroStrategy Analytics Express Introduction...

More information

What is Visualization? Information Visualization An Overview. Information Visualization. Definitions

What is Visualization? Information Visualization An Overview. Information Visualization. Definitions What is Visualization? Information Visualization An Overview Jonathan I. Maletic, Ph.D. Computer Science Kent State University Visualize/Visualization: To form a mental image or vision of [some

More information

VISUALIZING HIERARCHICAL DATA. Graham Wills SPSS Inc., http://willsfamily.org/gwills

VISUALIZING HIERARCHICAL DATA. Graham Wills SPSS Inc., http://willsfamily.org/gwills VISUALIZING HIERARCHICAL DATA Graham Wills SPSS Inc., http://willsfamily.org/gwills SYNONYMS Hierarchical Graph Layout, Visualizing Trees, Tree Drawing, Information Visualization on Hierarchies; Hierarchical

More information

Create Cool Lumira Visualization Extensions with SAP Web IDE Dong Pan SAP PM and RIG Analytics Henry Kam Senior Product Manager, Developer Ecosystem

Create Cool Lumira Visualization Extensions with SAP Web IDE Dong Pan SAP PM and RIG Analytics Henry Kam Senior Product Manager, Developer Ecosystem Create Cool Lumira Visualization Extensions with SAP Web IDE Dong Pan SAP PM and RIG Analytics Henry Kam Senior Product Manager, Developer Ecosystem 2015 SAP SE or an SAP affiliate company. All rights

More information

Gephi Tutorial Quick Start

Gephi Tutorial Quick Start Gephi Tutorial Welcome to this introduction tutorial. It will guide you to the basic steps of network visualization and manipulation in Gephi. Gephi version 0.7alpha2 was used to do this tutorial. Get

More information

Recent Large Graph Visualization Tools : A Review

Recent Large Graph Visualization Tools : A Review 159 Recent Large Graph Visualization Tools : A Review Sorn Jarukasemratana Tsuyoshi Murata Large graph visualization tools are important instruments for researchers to understand large graph data sets.

More information

Visualizing Large, Complex Data

Visualizing Large, Complex Data Visualizing Large, Complex Data Outline Visualizing Large Scientific Simulation Data Importance-driven visualization Multidimensional filtering Visualizing Large Networks A layout method Filtering methods

More information

Interactive Data Mining and Visualization

Interactive Data Mining and Visualization Interactive Data Mining and Visualization Zhitao Qiu Abstract: Interactive analysis introduces dynamic changes in Visualization. On another hand, advanced visualization can provide different perspectives

More information

Multi-Dimensional Data Visualization. Slides courtesy of Chris North

Multi-Dimensional Data Visualization. Slides courtesy of Chris North Multi-Dimensional Data Visualization Slides courtesy of Chris North What is the Cleveland s ranking for quantitative data among the visual variables: Angle, area, length, position, color Where are we?!

More information

BIG DATA VISUALIZATION. Team Impossible Peter Vilim, Sruthi Mayuram Krithivasan, Matt Burrough, and Ismini Lourentzou

BIG DATA VISUALIZATION. Team Impossible Peter Vilim, Sruthi Mayuram Krithivasan, Matt Burrough, and Ismini Lourentzou BIG DATA VISUALIZATION Team Impossible Peter Vilim, Sruthi Mayuram Krithivasan, Matt Burrough, and Ismini Lourentzou Let s begin with a story Let s explore Yahoo s data! Dora the Data Explorer has a new

More information

DICON: Visual Cluster Analysis in Support of Clinical Decision Intelligence

DICON: Visual Cluster Analysis in Support of Clinical Decision Intelligence DICON: Visual Cluster Analysis in Support of Clinical Decision Intelligence Abstract David Gotz, PhD 1, Jimeng Sun, PhD 1, Nan Cao, MS 2, Shahram Ebadollahi, PhD 1 1 IBM T.J. Watson Research Center, New

More information

Enterprise Data Visualization and BI Dashboard

Enterprise Data Visualization and BI Dashboard Strengths Key Features and Benefits Ad-hoc Visualization and Data Discovery Prototyping Mockups Dashboards The application is web based and can be installed on any windows or linux server. There is no

More information

9. Text & Documents. Visualizing and Searching Documents. Dr. Thorsten Büring, 20. Dezember 2007, Vorlesung Wintersemester 2007/08

9. Text & Documents. Visualizing and Searching Documents. Dr. Thorsten Büring, 20. Dezember 2007, Vorlesung Wintersemester 2007/08 9. Text & Documents Visualizing and Searching Documents Dr. Thorsten Büring, 20. Dezember 2007, Vorlesung Wintersemester 2007/08 Slide 1 / 37 Outline Characteristics of text data Detecting patterns SeeSoft

More information

Introduction of Information Visualization and Visual Analytics. Chapter 7. Trees and Graphs Visualization

Introduction of Information Visualization and Visual Analytics. Chapter 7. Trees and Graphs Visualization Introduction of Information Visualization and Visual Analytics Chapter 7 Trees and Graphs Visualization Overview! Motivation! Trees Visualization! Graphs Visualization 1 Motivation! Often datasets contain

More information

Visualizing Web Navigation Data with Polygon Graphs

Visualizing Web Navigation Data with Polygon Graphs Visualizing Web Navigation Data with Polygon Graphs Jiyang Chen, Tong Zheng, William Thorne, Daniel Huntley, Osmar R. Zaïane and Randy Goebel Department of Computing Science University of Alberta, Edmonton,

More information

NakeDB: Database Schema Visualization

NakeDB: Database Schema Visualization NAKEDB: DATABASE SCHEMA VISUALIZATION, APRIL 2008 1 NakeDB: Database Schema Visualization Luis Miguel Cortés-Peña, Yi Han, Neil Pradhan, Romain Rigaux Abstract Current database schema visualization tools

More information

IC05 Introduction on Networks &Visualization Nov. 2009. <[email protected]>

IC05 Introduction on Networks &Visualization Nov. 2009. <mathieu.bastian@gmail.com> IC05 Introduction on Networks &Visualization Nov. 2009 Overview 1. Networks Introduction Networks across disciplines Properties Models 2. Visualization InfoVis Data exploration

More information

Hierarchy and Tree Visualization

Hierarchy and Tree Visualization Hierarchy and Tree Visualization Definition Hierarchies An ordering of groups in which larger groups encompass sets of smaller groups. Data repository in which cases are related to subcases Hierarchical

More information

an introduction to VISUALIZING DATA by joel laumans

an introduction to VISUALIZING DATA by joel laumans an introduction to VISUALIZING DATA by joel laumans an introduction to VISUALIZING DATA iii AN INTRODUCTION TO VISUALIZING DATA by Joel Laumans Table of Contents 1 Introduction 1 Definition Purpose 2 Data

More information

3D Interactive Information Visualization: Guidelines from experience and analysis of applications

3D Interactive Information Visualization: Guidelines from experience and analysis of applications 3D Interactive Information Visualization: Guidelines from experience and analysis of applications Richard Brath Visible Decisions Inc., 200 Front St. W. #2203, Toronto, Canada, [email protected] 1. EXPERT

More information

Time Series Data Visualization

Time Series Data Visualization Time Series Data Visualization Time Series Data Fundamental chronological component to the data set Random sample of 4000 graphics from 15 of world s newspapers and magazines from 74-80 found that 75%

More information

Component visualization methods for large legacy software in C/C++

Component visualization methods for large legacy software in C/C++ Annales Mathematicae et Informaticae 44 (2015) pp. 23 33 http://ami.ektf.hu Component visualization methods for large legacy software in C/C++ Máté Cserép a, Dániel Krupp b a Eötvös Loránd University [email protected]

More information

Microsoft Business Intelligence Visualization Comparisons by Tool

Microsoft Business Intelligence Visualization Comparisons by Tool Microsoft Business Intelligence Visualization Comparisons by Tool Version 3: 10/29/2012 Purpose: Purpose of this document is to provide a quick reference of visualization options available in each tool.

More information

Data Visualization Handbook

Data Visualization Handbook SAP Lumira Data Visualization Handbook www.saplumira.com 1 Table of Content 3 Introduction 20 Ranking 4 Know Your Purpose 23 Part-to-Whole 5 Know Your Data 25 Distribution 9 Crafting Your Message 29 Correlation

More information

Criteria for Evaluating Visual EDA Tools

Criteria for Evaluating Visual EDA Tools Criteria for Evaluating Visual EDA Tools Stephen Few, Perceptual Edge Visual Business Intelligence Newsletter April/May/June 2012 We visualize data for various purposes. Specific purposes direct us to

More information

Silverlight for Windows Embedded Graphics and Rendering Pipeline 1

Silverlight for Windows Embedded Graphics and Rendering Pipeline 1 Silverlight for Windows Embedded Graphics and Rendering Pipeline 1 Silverlight for Windows Embedded Graphics and Rendering Pipeline Windows Embedded Compact 7 Technical Article Writers: David Franklin,

More information

A GENERAL TAXONOMY FOR VISUALIZATION OF PREDICTIVE SOCIAL MEDIA ANALYTICS

A GENERAL TAXONOMY FOR VISUALIZATION OF PREDICTIVE SOCIAL MEDIA ANALYTICS A GENERAL TAXONOMY FOR VISUALIZATION OF PREDICTIVE SOCIAL MEDIA ANALYTICS Stacey Franklin Jones, D.Sc. ProTech Global Solutions Annapolis, MD Abstract The use of Social Media as a resource to characterize

More information

<Insert Picture Here> Web 2.0 Data Visualization with JSF. Juan Camilo Ruiz Senior Product Manager Oracle Development Tools

<Insert Picture Here> Web 2.0 Data Visualization with JSF. Juan Camilo Ruiz Senior Product Manager Oracle Development Tools Web 2.0 Data Visualization with JSF Juan Camilo Ruiz Senior Product Manager Oracle Development Tools 1 The preceding is intended to outline our general product direction. It is intended

More information

All Visualizations Documentation

All Visualizations Documentation All Visualizations Documentation All Visualizations Documentation 2 Copyright and Trademarks Licensed Materials - Property of IBM. Copyright IBM Corp. 2013 IBM, the IBM logo, and Cognos are trademarks

More information

The Value of Visualization 2

The Value of Visualization 2 The Value of Visualization 2 G Janacek -0.69 1.11-3.1 4.0 GJJ () Visualization 1 / 21 Parallel coordinates Parallel coordinates is a common way of visualising high-dimensional geometry and analysing multivariate

More information

ECS 235A Project - NVD Visualization Using TreeMaps

ECS 235A Project - NVD Visualization Using TreeMaps ECS 235A Project - NVD Visualization Using TreeMaps Kevin Griffin Email: [email protected] December 12, 2013 1 Introduction The National Vulnerability Database (NVD) is a continuously updated United

More information

Visualization and Visual Analytics

Visualization and Visual Analytics Scientific Visualization and Computer Graphics University of Groningen Visualization and Visual Analytics Jos Roerdink Johann Bernoulli Institute for Mathematics and Computer Science University of Groningen

More information

Sisense. Product Highlights. www.sisense.com

Sisense. Product Highlights. www.sisense.com Sisense Product Highlights Introduction Sisense is a business intelligence solution that simplifies analytics for complex data by offering an end-to-end platform that lets users easily prepare and analyze

More information

Tableau Your Data! Wiley. with Tableau Software. the InterWorks Bl Team. Fast and Easy Visual Analysis. Daniel G. Murray and

Tableau Your Data! Wiley. with Tableau Software. the InterWorks Bl Team. Fast and Easy Visual Analysis. Daniel G. Murray and Tableau Your Data! Fast and Easy Visual Analysis with Tableau Software Daniel G. Murray and the InterWorks Bl Team Wiley Contents Foreword xix Introduction xxi Part I Desktop 1 1 Creating Visual Analytics

More information

IDL. Get the answers you need from your data. IDL

IDL. Get the answers you need from your data. IDL Get the answers you need from your data. IDL is the preferred computing environment for understanding complex data through interactive visualization and analysis. IDL Powerful visualization. Interactive

More information

Handling the Complexity of RDF Data: Combining List and Graph Visualization

Handling the Complexity of RDF Data: Combining List and Graph Visualization Handling the Complexity of RDF Data: Combining List and Graph Visualization Philipp Heim and Jürgen Ziegler (University of Duisburg-Essen, Germany philipp.heim, [email protected]) Abstract: An

More information

PSG College of Technology, Coimbatore-641 004 Department of Computer & Information Sciences BSc (CT) G1 & G2 Sixth Semester PROJECT DETAILS.

PSG College of Technology, Coimbatore-641 004 Department of Computer & Information Sciences BSc (CT) G1 & G2 Sixth Semester PROJECT DETAILS. PSG College of Technology, Coimbatore-641 004 Department of Computer & Information Sciences BSc (CT) G1 & G2 Sixth Semester PROJECT DETAILS Project Project Title Area of Abstract No Specialization 1. Software

More information

White Paper April 2006

White Paper April 2006 White Paper April 2006 Table of Contents 1. Executive Summary...4 1.1 Scorecards...4 1.2 Alerts...4 1.3 Data Collection Agents...4 1.4 Self Tuning Caching System...4 2. Business Intelligence Model...5

More information

TEXT-FILLED STACKED AREA GRAPHS Martin Kraus

TEXT-FILLED STACKED AREA GRAPHS Martin Kraus Martin Kraus Text can add a significant amount of detail and value to an information visualization. In particular, it can integrate more of the data that a visualization is based on, and it can also integrate

More information

Visual Data Mining. Motivation. Why Visual Data Mining. Integration of visualization and data mining : Chidroop Madhavarapu CSE 591:Visual Analytics

Visual Data Mining. Motivation. Why Visual Data Mining. Integration of visualization and data mining : Chidroop Madhavarapu CSE 591:Visual Analytics Motivation Visual Data Mining Visualization for Data Mining Huge amounts of information Limited display capacity of output devices Chidroop Madhavarapu CSE 591:Visual Analytics Visual Data Mining (VDM)

More information

Information Visualization of Attributed Relational Data

Information Visualization of Attributed Relational Data Information Visualization of Attributed Relational Data Mao Lin Huang Department of Computer Systems Faculty of Information Technology University of Technology, Sydney PO Box 123 Broadway, NSW 2007 Australia

More information

Visualizing Data: Scalable Interactivity

Visualizing Data: Scalable Interactivity Visualizing Data: Scalable Interactivity The best data visualizations illustrate hidden information and structure contained in a data set. As access to large data sets has grown, so has the need for interactive

More information

Exploratory Data Analysis with MATLAB

Exploratory Data Analysis with MATLAB Computer Science and Data Analysis Series Exploratory Data Analysis with MATLAB Second Edition Wendy L Martinez Angel R. Martinez Jeffrey L. Solka ( r ec) CRC Press VV J Taylor & Francis Group Boca Raton

More information

Big Data: Rethinking Text Visualization

Big Data: Rethinking Text Visualization Big Data: Rethinking Text Visualization Dr. Anton Heijs [email protected] Treparel April 8, 2013 Abstract In this white paper we discuss text visualization approaches and how these are important

More information

Topic Maps Visualization

Topic Maps Visualization Topic Maps Visualization Bénédicte Le Grand, Laboratoire d'informatique de Paris 6 Introduction Topic maps provide a bridge between the domains of knowledge representation and information management. Topics

More information

GGobi : Interactive and dynamic

GGobi : Interactive and dynamic GGobi : Interactive and dynamic data visualization system Bioinformatics and Biostatistics Lab., Seoul National Univ. Seoul, Korea Eun-Kyung Lee 1 Outline interactive and dynamic graphics Exploratory data

More information

Space-filling Techniques in Visualizing Output from Computer Based Economic Models

Space-filling Techniques in Visualizing Output from Computer Based Economic Models Space-filling Techniques in Visualizing Output from Computer Based Economic Models Richard Webber a, Ric D. Herbert b and Wei Jiang bc a National ICT Australia Limited, Locked Bag 9013, Alexandria, NSW

More information

SuperViz: An Interactive Visualization of Super-Peer P2P Network

SuperViz: An Interactive Visualization of Super-Peer P2P Network SuperViz: An Interactive Visualization of Super-Peer P2P Network Anthony (Peiqun) Yu [email protected] Abstract: The Efficient Clustered Super-Peer P2P network is a novel P2P architecture, which overcomes

More information

Data Visualization. Principles and Practice. Second Edition. Alexandru Telea

Data Visualization. Principles and Practice. Second Edition. Alexandru Telea Data Visualization Principles and Practice Second Edition Alexandru Telea First edition published in 2007 by A K Peters, Ltd. Cover image: The cover shows the combination of scientific visualization and

More information

Graphical Representation of Multivariate Data

Graphical Representation of Multivariate Data Graphical Representation of Multivariate Data One difficulty with multivariate data is their visualization, in particular when p > 3. At the very least, we can construct pairwise scatter plots of variables.

More information

HierarchyMap: A Novel Approach to Treemap Visualization of Hierarchical Data

HierarchyMap: A Novel Approach to Treemap Visualization of Hierarchical Data P a g e 77 Vol. 9 Issue 5 (Ver 2.0), January 2010 Global Journal of Computer Science and Technology HierarchyMap: A Novel Approach to Treemap Visualization of Hierarchical Data Abstract- The HierarchyMap

More information

TIBCO Spotfire Business Author Essentials Quick Reference Guide. Table of contents:

TIBCO Spotfire Business Author Essentials Quick Reference Guide. Table of contents: Table of contents: Access Data for Analysis Data file types Format assumptions Data from Excel Information links Add multiple data tables Create & Interpret Visualizations Table Pie Chart Cross Table Treemap

More information

Multi-Attribute Glyphs on Venn and Euler Diagrams to Represent Data and Aid Visual Decoding

Multi-Attribute Glyphs on Venn and Euler Diagrams to Represent Data and Aid Visual Decoding Multi-Attribute Glyphs on Venn and Euler Diagrams to Represent Data and Aid Visual Decoding Richard Brath Oculus Info Inc., Toronto, ON, Canada [email protected] Abstract. Representing quantities

More information

An Introduction to KeyLines and Network Visualization

An Introduction to KeyLines and Network Visualization An Introduction to KeyLines and Network Visualization 1. What is KeyLines?... 2 2. Benefits of network visualization... 2 3. Benefits of KeyLines... 3 4. KeyLines architecture... 3 5. Uses of network visualization...

More information

RelaViz Graph Visualization of Learned Relations Between Entities. Joel Ferstay - [email protected]

RelaViz Graph Visualization of Learned Relations Between Entities. Joel Ferstay - joelaf@cs.ubc.ca RelaViz Graph Visualization of Learned Relations Between Entities Joel Ferstay - [email protected] RelaViz: Design Study Project Apply Visualization to Assess the Performance of a Machine Learning Algorithm

More information

Chapter 3 - Multidimensional Information Visualization II

Chapter 3 - Multidimensional Information Visualization II Chapter 3 - Multidimensional Information Visualization II Concepts for visualizing univariate to hypervariate data Vorlesung Informationsvisualisierung Prof. Dr. Florian Alt, WS 2013/14 Konzept und Folien

More information

Reconstructing Self Organizing Maps as Spider Graphs for better visual interpretation of large unstructured datasets

Reconstructing Self Organizing Maps as Spider Graphs for better visual interpretation of large unstructured datasets Reconstructing Self Organizing Maps as Spider Graphs for better visual interpretation of large unstructured datasets Aaditya Prakash, Infosys Limited [email protected] Abstract--Self-Organizing

More information

<no narration for this slide>

<no narration for this slide> 1 2 The standard narration text is : After completing this lesson, you will be able to: < > SAP Visual Intelligence is our latest innovation

More information

SAS Visual Analytics 7.1

SAS Visual Analytics 7.1 SAS Visual Analytics 7.1 Getting Started with Exploration and Reporting SAS Documentation The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2014. SAS Visual Analytics

More information

The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. Ben Shneiderman, 1996

The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. Ben Shneiderman, 1996 The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations Ben Shneiderman, 1996 Background the growth of computing + graphic user interface 1987 scientific visualization 1989 information

More information

Twelve. Figure 12.1: 3D Curved MPR Viewer Window

Twelve. Figure 12.1: 3D Curved MPR Viewer Window Twelve The 3D Curved MPR Viewer This Chapter describes how to visualize and reformat a 3D dataset in a Curved MPR plane: Curved Planar Reformation (CPR). The 3D Curved MPR Viewer is a window opened from

More information

Visualizing the Top 400 Universities

Visualizing the Top 400 Universities Int'l Conf. e-learning, e-bus., EIS, and e-gov. EEE'15 81 Visualizing the Top 400 Universities Salwa Aljehane 1, Reem Alshahrani 1, and Maha Thafar 1 [email protected], [email protected], [email protected]

More information

Choosing a successful structure for your visualization

Choosing a successful structure for your visualization IBM Software Business Analytics Visualization Choosing a successful structure for your visualization By Noah Iliinsky, IBM Visualization Expert 2 Choosing a successful structure for your visualization

More information

Visualizing Large Graphs with Compound-Fisheye Views and Treemaps

Visualizing Large Graphs with Compound-Fisheye Views and Treemaps Visualizing Large Graphs with Compound-Fisheye Views and Treemaps James Abello 1, Stephen G. Kobourov 2, and Roman Yusufov 2 1 DIMACS Center Rutgers University {abello}@dimacs.rutgers.edu 2 Department

More information

USING SELF-ORGANIZING MAPS FOR INFORMATION VISUALIZATION AND KNOWLEDGE DISCOVERY IN COMPLEX GEOSPATIAL DATASETS

USING SELF-ORGANIZING MAPS FOR INFORMATION VISUALIZATION AND KNOWLEDGE DISCOVERY IN COMPLEX GEOSPATIAL DATASETS USING SELF-ORGANIZING MAPS FOR INFORMATION VISUALIZATION AND KNOWLEDGE DISCOVERY IN COMPLEX GEOSPATIAL DATASETS Koua, E.L. International Institute for Geo-Information Science and Earth Observation (ITC).

More information

Clustering & Visualization

Clustering & Visualization Chapter 5 Clustering & Visualization Clustering in high-dimensional databases is an important problem and there are a number of different clustering paradigms which are applicable to high-dimensional data.

More information

Innovative Information Visualization of Electronic Health Record Data: a Systematic Review

Innovative Information Visualization of Electronic Health Record Data: a Systematic Review Innovative Information Visualization of Electronic Health Record Data: a Systematic Review Vivian West, David Borland, W. Ed Hammond February 5, 2015 Outline Background Objective Methods & Criteria Analysis

More information

Nuclear Science and Technology Division (94) Multigroup Cross Section and Cross Section Covariance Data Visualization with Javapeño

Nuclear Science and Technology Division (94) Multigroup Cross Section and Cross Section Covariance Data Visualization with Javapeño June 21, 2006 Summary Nuclear Science and Technology Division (94) Multigroup Cross Section and Cross Section Covariance Data Visualization with Javapeño Aaron M. Fleckenstein Oak Ridge Institute for Science

More information

Data Exploration Data Visualization

Data Exploration Data Visualization Data Exploration Data Visualization What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping to select

More information

PERSONALIZED WEB MAP CUSTOMIZED SERVICE

PERSONALIZED WEB MAP CUSTOMIZED SERVICE CO-436 PERSONALIZED WEB MAP CUSTOMIZED SERVICE CHEN Y.(1), WU Z.(1), YE H.(2) (1) Zhengzhou Institute of Surveying and Mapping, ZHENGZHOU, CHINA ; (2) North China Institute of Water Conservancy and Hydroelectric

More information

STAN. Structure Analysis for Java. Version 2. White Paper. Fall 2009

STAN. Structure Analysis for Java. Version 2. White Paper. Fall 2009 STAN Structure Analysis for Java Version 2 White Paper Fall 2009 Abstract: This paper gives a brief introduction to structure analysis using STAN, a static code analysis tool bringing together Java development

More information

How To Visualize Big Data

How To Visualize Big Data NDBI040 Big Data Management and NoSQL Databases Lecture 11. Visualization of (Big) Data RNDr. David Hoksza, Ph.D. Doc. RNDr. Irena Holubova, Ph.D. {hoksza,holubova}@ksi.mff.cuni.cz http://www.ksi.mff.cuni.cz/~holubova/ndbi040/

More information

Open Source Visualization with OpenGraphiti. Thibault Reuille (@ThibaultReuille) [email protected]. Andrew Hay (@andrewsmhay) ahay@opendns.

Open Source Visualization with OpenGraphiti. Thibault Reuille (@ThibaultReuille) thibault@opendns.com. Andrew Hay (@andrewsmhay) ahay@opendns. Open Source Visualization with OpenGraphiti Thibault Reuille (@ThibaultReuille) [email protected] Andrew Hay (@andrewsmhay) [email protected] Introduction Humans have different ways of efficiently digesting

More information